Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (417)

Search Parameters:
Keywords = transwell migration assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3790 KiB  
Article
Anti-CD26 Antibody Suppresses Epithelial-Mesenchymal Transition in Colorectal Cancer Stem Cells
by Takumi Iwasawa, Ryo Hatano, Satoshi Takeda, Ayumi Kurusu, Chikako Okamoto, Kazunori Kato, Chikao Morimoto and Noriaki Iwao
Int. J. Mol. Sci. 2025, 26(15), 7620; https://doi.org/10.3390/ijms26157620 - 6 Aug 2025
Abstract
CD26 (dipeptidyl peptidase-4) is a marker of colorectal cancer stem cells with high metastatic potential and resistance to therapy. Although CD26 expression is known to be associated with tumor progression, its functional involvement in epithelial-mesenchymal transition (EMT) and metastasis remains to be fully [...] Read more.
CD26 (dipeptidyl peptidase-4) is a marker of colorectal cancer stem cells with high metastatic potential and resistance to therapy. Although CD26 expression is known to be associated with tumor progression, its functional involvement in epithelial-mesenchymal transition (EMT) and metastasis remains to be fully elucidated. In this study, we aimed to investigate the effects of a monoclonal anti-CD26 antibody on EMT-related phenotypes and metastatic behavior in colorectal cancer cells. We evaluated changes in EMT markers by quantitative PCR and Western blotting, assessed cell motility and invasion using scratch wound-healing and Transwell assays, and examined metastatic potential in vivo using a splenic injection mouse model. Treatment with the anti-CD26 antibody significantly increased the expression of the epithelial marker E-cadherin and reduced levels of EMT-inducing transcription factors, including ZEB1, Twist1, and Snail1, at the mRNA and protein levels. Functional assays revealed that the antibody markedly inhibited cell migration and invasion in vitro without exerting cytotoxic effects. Furthermore, systemic administration of the anti-CD26 antibody significantly suppressed the formation of liver metastases in vivo. These findings suggest that CD26 may contribute to the regulation of EMT and metastatic behavior in colorectal cancer. Our data highlight the potential therapeutic utility of CD26-targeted antibody therapy for suppressing EMT-associated phenotypes and metastatic progression. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Colorectal Cancer: 4th Edition)
Show Figures

Figure 1

27 pages, 6405 KiB  
Article
PDMS Membranes Drilled by Proton Microbeam Writing: A Customizable Platform for the Investigation of Endothelial Cell–Substrate Interactions in Transwell-like Devices
by Vita Guarino, Giovanna Vasco, Valentina Arima, Rosella Cataldo, Alessandra Zizzari, Elisabetta Perrone, Giuseppe Gigli and Maura Cesaria
J. Funct. Biomater. 2025, 16(8), 274; https://doi.org/10.3390/jfb16080274 - 28 Jul 2025
Viewed by 922
Abstract
Cell migration assays provide valuable insights into pathological conditions, such as tumor metastasis and immune cell infiltration, and the regenerative capacity of tissues. In vitro tools commonly used for cell migration studies exploit commercial transwell systems, whose functionalities can be improved through engineering [...] Read more.
Cell migration assays provide valuable insights into pathological conditions, such as tumor metastasis and immune cell infiltration, and the regenerative capacity of tissues. In vitro tools commonly used for cell migration studies exploit commercial transwell systems, whose functionalities can be improved through engineering of the pore pattern. In this context, we propose the fabrication of a transwell-like device pursued by combining the proton beam writing (PBW) technique with wet etching onto thin layers of polydimethylsiloxane (PDMS). The resulting transwell-like device incorporates a PDMS membrane with finely controllable pore patterning that was used to study the arrangement and migration behavior of HCMEC/D3 cells, a well-established human brain microvascular endothelial cell model widely used to study vascular maturation in the brain. A comparison between commercial polycarbonate membranes and the PBW-holed membranes highlights the impact of the ordering of the pattern and porosity on cellular growth, self-organization, and transmigration by combining fluorescent microscopy and advanced digital processing. Endothelial cells were found to exhibit distinctive clustering, alignment, and migratory behavior close to the pores of the designed PBW-holed membrane. This is indicative of activation patterns associated with cytoskeletal remodeling, a critical element in the angiogenic process. This study stands up as a novel approach toward the development of more biomimetic barrier models (such as organ-on-chips). Full article
(This article belongs to the Collection Feature Papers in Biomaterials for Healthcare Applications)
Show Figures

Figure 1

17 pages, 4009 KiB  
Article
Investigation of the Impact of miRNA-7151 and a Mutation in Its Target Gene lncRNA KCNQ1OT1 on the Pathogenesis of Preeclampsia
by Wuqian Wang, Xiaojia Wu, Jianmei Gu, Luan Chen, Weihua Zhang, Xiaofang Sun, Shengying Qin and Ping Tang
Biomedicines 2025, 13(8), 1813; https://doi.org/10.3390/biomedicines13081813 - 24 Jul 2025
Viewed by 310
Abstract
Background: Preeclampsia (PE) is a pregnancy-specific disease and hypertensive disorder with a multifactorial pathogenesis involving complex molecular regulatory networks. Recent studies highlight the critical role of non-coding RNAs, particularly miRNAs and lncRNAs, in PE development. This study investigates the molecular interaction between [...] Read more.
Background: Preeclampsia (PE) is a pregnancy-specific disease and hypertensive disorder with a multifactorial pathogenesis involving complex molecular regulatory networks. Recent studies highlight the critical role of non-coding RNAs, particularly miRNAs and lncRNAs, in PE development. This study investigates the molecular interaction between miR-7151-5p and the lncRNA KCNQ1OT1 and their functional contributions to PE pathogenesis. Methods: An integrative approach combining RNAhybrid-based bioinformatics, dual-luciferase reporter assays, qRT-PCR, Transwell migration and invasion assays, and RNA sequencing was employed to characterize the binding between miR-7151-5p and KCNQ1OT1 and assess their influence on trophoblast cell function and gene expression. Results: A bioinformatic analysis predicted a stable binding site between miR-7151-5p and KCNQ1OT1 (minimum free energy: –37.3 kcal/mol). The dual-luciferase reporter assay demonstrated that miR-7151-5p directly targets KCNQ1OT1, leading to suppressed transcriptional activity. In HTR8/SVneo cells, miR-7151-5p overexpression significantly downregulated both KCNQ1OT1 and Notch1 mRNA, whereas its inhibition showed no significant changes, suggesting additional regulatory mechanisms of Notch1 expression. Transwell assays indicated that miR-7151-5p overexpression suppressed trophoblast cell migration and invasion, whereas its inhibition enhanced these cellular behaviors. RNA-seq analysis further revealed that miR-7151-5p overexpression altered key signaling pathways, notably the TGF-β pathway, and significantly modulates PE-associated genes, including PLAC1, ANGPTL6, HIRA, GLA, HSF1, and BAG6. Conclusions: The regulatory effect of miR-7151-5p on KCNQ1OT1, along with its influence on trophoblast cell dynamics via Notch1 and TGF-β signaling pathways, highlights its role in PE pathogenesis and supports its potential as a biomarker in early PE screening. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 7456 KiB  
Article
Eurycomanone Blocks TGF-β1-Induced Epithelial-to-Mesenchymal Transition, Migration, and Invasion Pathways in Human Non-Small Cell Lung Cancer Cells by Targeting Smad and Non-Smad Signaling
by Pratchayanon Soddaen, Kongthawat Chairatvit, Pornsiri Pitchakarn, Tanongsak Laowanitwattana, Arisa Imsumran and Ariyaphong Wongnoppavich
Int. J. Mol. Sci. 2025, 26(15), 7120; https://doi.org/10.3390/ijms26157120 - 23 Jul 2025
Viewed by 275
Abstract
Non-small cell lung cancer (NSCLC) is a predominant form of lung cancer that is often diagnosed at an advanced metastatic stage. The processes of cancer cell migration and invasion involve epithelial-to-mesenchymal transition (EMT), which is crucial for metastasis. Targeting cancer aggressiveness with effective [...] Read more.
Non-small cell lung cancer (NSCLC) is a predominant form of lung cancer that is often diagnosed at an advanced metastatic stage. The processes of cancer cell migration and invasion involve epithelial-to-mesenchymal transition (EMT), which is crucial for metastasis. Targeting cancer aggressiveness with effective plant compounds has gained attention as a potential adjuvant therapy. Eurycomanone (ECN), a bioactive quassinoid found in the root of Eurycoma longifolia Jack, has demonstrated anti-cancer activity against various carcinoma cell lines, including human NSCLC cells. This study aimed to investigate the in vitro effects of ECN on the migration and invasion of human NSCLC cells and to elucidate the mechanisms by which ECN modulates the EMT in these cells. Non-toxic doses (≤IC20) of ECN were determined using the MTT assay on two human NSCLC cell lines: A549 and Calu-1. The results from wound healing and transwell migration assays indicated that ECN significantly suppressed the migration of both TGF-β1-induced A549 and Calu-1 cells. ECN exhibited a strong anti-invasive effect, as its non-toxic doses significantly suppressed the TGF-β1-induced invasion of NSCLC cells through Matrigel and decreased the secretion of MMP-2 from these cancer cells. Furthermore, ECN could affect the TGF-β1-induced EMT process in various ways in NSCLC cells. In TGF-β1-induced A549 cells, ECN significantly restored the expression of E-cadherin by inhibiting the Akt signaling pathway. Conversely, in Calu-1, ECN reduced the aggressive phenotype by decreasing the expression of the mesenchymal protein N-cadherin and inhibiting the TGF-β1/Smad pathway. In conclusion, this study demonstrated the anti-invasive activity of eurycomanone from E. longifolia Jack in human NSCLC cells and provided insights into its mechanism of action by suppressing the effects of TGF-β1 signaling on the EMT program. These findings offer scientific evidence to support the potential of ECN as an alternative therapy for metastatic NSCLC. Full article
(This article belongs to the Special Issue Natural Products with Anti-Inflammatory and Anticancer Activity)
Show Figures

Figure 1

13 pages, 4295 KiB  
Article
Chelerythrine Inhibits TGF-β-Induced Epithelial–Mesenchymal Transition in A549 Cells via RRM2
by Jinlong Liu, Mengran Xu, Liu Han, Yuxuan Rao, Haoming Han, Haoran Zheng, Jinying Wu and Xin Sun
Pharmaceuticals 2025, 18(7), 1036; https://doi.org/10.3390/ph18071036 - 12 Jul 2025
Viewed by 383
Abstract
Background: The mechanisms underlying the metastasis of non-small-cell lung cancer (NSCLC) have long been a focal point of medical research. The anti-tumor effects of chelerythrine (CHE) have been confirmed; however, its ability to inhibit tumor metastasis and the underlying mechanisms remain unknown. The [...] Read more.
Background: The mechanisms underlying the metastasis of non-small-cell lung cancer (NSCLC) have long been a focal point of medical research. The anti-tumor effects of chelerythrine (CHE) have been confirmed; however, its ability to inhibit tumor metastasis and the underlying mechanisms remain unknown. The aim of this study was to investigate the inhibitory effects and molecular mechanisms of CHE on transforming growth factor-beta (TGF-β)-induced epithelial–mesenchymal transition (EMT). Methods: Wound healing and Transwell assays were employed to evaluate TGF-β-induced migration in A549 cells and the inhibitory effects of CHE. Ribonucleotide reductase subunit M2 (RRM2) expression levels were detected via Western blot and immunofluorescence staining. Western blot and RT-qPCR were used to examine the expression levels of EMT-related markers. Animal experiments were conducted to analyze the role of RRM2 in the CHE inhibition of TGF-β-induced lung cancer metastasis. Results: This study found that TGF-β treatment enhanced the metastasis of A549 cells, while CHE inhibited the expression of TGF-β-induced EMT-related transcription factors by RRM2, thereby suppressing tumor cell migration (p < 0.05). Furthermore, the oral administration of CHE inhibited the metastasis of A549 cells to the lungs from the tail vein in mice, consistent with in vitro findings. Despite the high doses of CHE used, there was no evidence of toxicity. Conclusions: Our data reveal the mechanism of the anti-metastatic effects of CHE on TGF-β-induced EMT and indicate that CHE can be used as an effective anti-tumor treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

15 pages, 3414 KiB  
Article
Dual Inhibition of SRC Family Kinases and Sorafenib Enhances Anti-Tumor Activity in Hepatocellular Carcinoma Cells
by Loraine Kay Cabral, Cyrollah Disoma, Paola Tarchi, Korri Elvanita El-Khobar, Agustiningsih Agustiningsih, Francesco Dituri, Claudio Tiribelli and Caecilia Sukowati
Int. J. Mol. Sci. 2025, 26(13), 6506; https://doi.org/10.3390/ijms26136506 - 6 Jul 2025
Viewed by 1100
Abstract
Hepatocellular carcinoma (HCC) remains a major clinical challenge due to its high recurrence rate and limited response to monotherapies, such as sorafenib—the standard first-line therapy for advanced HCC. This is partly attributed to its cellular heterogeneity. Increasing evidence implies SRC family kinase (SFK) [...] Read more.
Hepatocellular carcinoma (HCC) remains a major clinical challenge due to its high recurrence rate and limited response to monotherapies, such as sorafenib—the standard first-line therapy for advanced HCC. This is partly attributed to its cellular heterogeneity. Increasing evidence implies SRC family kinase (SFK) activation in HCC progression, highlighting the potential of SRC-targeted therapies. In this study, we observed that SRC and YES1 were significantly upregulated in clinical HCC specimens compared to its adjacent non-tumoral tissues (p < 0.001), suggesting relevance as therapeutic targets. High SRC expression was noticed in patients with poor prognosis, as confirmed in TCGA cohort. To evaluate the efficacy of dual targeting, we assessed the combination between SRC inhibitors, saracatinib and dasatinib, with sorafenib in six hepatic cell models, representing both S1 and S2 subtypes. Cytotoxicity assays demonstrated reduced cell viability with the combination therapies compared to either monotherapy, irrespective of the HCC subtype. Wound healing and Transwell migration assays revealed inhibition of cell migration and invasion following combination treatment, underscoring its potential to suppress metastatic behavior. RT-qPCR analysis further confirmed downregulation of the expression of MMP2 and MMP9, genes associated with HCC cell invasion. Additionally, combined therapies decreased VEGFA and HIF1A expression compared to sorafenib alone, suggesting a potential to counteract the adaptive resistance mechanisms of cells to sorafenib. In summary, the combination of SFK inhibitors with sorafenib significantly enhances anti-tumor activity, offering a promising strategy to address HCC cellular heterogeneity and improve treatment efficacy. Full article
Show Figures

Figure 1

17 pages, 4243 KiB  
Article
Molecular Target Identification of Gossypol Against Cervical Cancer Based on Target Fishing Technology
by Jinyan Li, Rayisa Asat, Wenying Li, Parwen Parhat, Yue Ma, Yinglan Ma and Min Li
Pharmaceutics 2025, 17(7), 861; https://doi.org/10.3390/pharmaceutics17070861 - 30 Jun 2025
Viewed by 323
Abstract
Objectives: This study aims to investigate the impact of Gossypol on human cervical cancer cells and elucidate its mechanism of action to establish a foundation for further clinical investigations. Methods: Cell proliferation, migration, and invasion were evaluated through CCK−8, wound healing, [...] Read more.
Objectives: This study aims to investigate the impact of Gossypol on human cervical cancer cells and elucidate its mechanism of action to establish a foundation for further clinical investigations. Methods: Cell proliferation, migration, and invasion were evaluated through CCK−8, wound healing, and Transwell assays. Fe3O4-BP-Gossypol (Fe3O4@Gossypol) conjugates were synthesized by linking Fe3O4 with Gossypol using benzophenone crosslinking. Successful conjugation was confirmed through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet–visible spectrophotometry (UV-Vis). Subsequent to co-incubation with HeLa cell lysates, Fe3O4@Gossypol complexes facilitated the magnetic enrichment and purification of target proteins, which were identified using high-resolution mass spectrometry (HR-MS). The identified targets underwent KEGG pathway and GO analyses, followed by molecular docking with Gossypol. HeLa cells were exposed to Gossypol at concentrations of 7.48, 14.96, and 29.92 μmol·L−1 for 48 h, and protein expression levels were quantified via Western blotting. Results: Gossypol notably suppressed cervical cancer cell proliferation, migration, and invasion. The integration of target fishing, network pharmacology, and molecular docking highlighted PIK3R2, MAPK1, and GRB2 as potential therapeutic targets. Western blot analysis revealed a dose-dependent reduction in PIK3R2, GRB2, and MAPK1 expression in Gossypol-treated groups compared to controls (p < 0.05). Conclusions: Gossypol may exhibit anti-cervical cancer effects by modulating the PI3K/AKT signaling pathway. Full article
Show Figures

Graphical abstract

16 pages, 4729 KiB  
Article
Transcriptomic and Functional Validation Reveals PAQR3/P6-55 as Potential Therapeutic Targets in Colon Cancer
by Xue You, Yikuo Gai, Ziyun Wang, Yanqi Wang, Jingran Ye, Yujia Cao, Hengshuo Zhang, Ziyi Zhang and Ying Feng
Biology 2025, 14(7), 780; https://doi.org/10.3390/biology14070780 - 27 Jun 2025
Viewed by 359
Abstract
Colon cancer is one of the leading malignant tumors worldwide, and the membrane protein PAQR3 has been identified as a tumor suppressor in multiple cancers. Notably, the peptide synthesized from 6 to 55 amino acids at the N-terminal of PAQR3 (P6-55) has been [...] Read more.
Colon cancer is one of the leading malignant tumors worldwide, and the membrane protein PAQR3 has been identified as a tumor suppressor in multiple cancers. Notably, the peptide synthesized from 6 to 55 amino acids at the N-terminal of PAQR3 (P6-55) has been shown to effectively inhibit the growth of gastric cancer cells. This study aims to elucidate the mechanism of PAQR3 and explore its therapeutic potential in colon cancer. CCK8 cell viability assays, colony formation assays, and transwell migration assays were employed to systematically assess the inhibitory effects of PAQR3 on the proliferation and migration of colon cancer cells. Furthermore, we confirmed that P6-55 exhibits functional similarities to PAQR3, effectively inhibiting the growth of colon cancer in vitro and in vivo. RNA sequencing revealed that PAQR3 suppresses tumor growth via the PI3K-AKT signaling pathway, providing a strong theoretical foundation for therapeutic strategies targeting PAQR3/P6-55. In conclusion, our findings highlight the therapeutic potential of PAQR3/P6-55 as novel colon cancer inhibitors. Full article
Show Figures

Figure 1

15 pages, 6351 KiB  
Article
IGFBP2 Modulates Trophoblast Function and Epithelial–Mesenchymal Transition in Preeclampsia via the PI3K/AKT Signaling Pathway
by Shengping Meng, Yanping Qin, Chunyan Lyu and Sumei Wang
Curr. Issues Mol. Biol. 2025, 47(7), 478; https://doi.org/10.3390/cimb47070478 - 20 Jun 2025
Viewed by 396
Abstract
Background: Preeclampsia (PE) is a deadly obstetric complication in pregnant women leading to escalated rates of maternal and fetal mortality. Current research indicates that inadequate invasion of extravillous trophoblasts (EVTs) is a primary factor associated with the pathogenesis of PE. Insulin-like growth factor [...] Read more.
Background: Preeclampsia (PE) is a deadly obstetric complication in pregnant women leading to escalated rates of maternal and fetal mortality. Current research indicates that inadequate invasion of extravillous trophoblasts (EVTs) is a primary factor associated with the pathogenesis of PE. Insulin-like growth factor binding protein 2 (IGFBP2) plays a significant role in promoting cell migration, invasion, and angiogenesis. Researchers aim to investigate the clinical significance and elucidate the molecular mechanisms of IGFBP2 in the pathogenesis of preeclampsia. Methods: This study included 40 pregnant women categorized into 20 PE patients and 20 healthy controls. Expression levels of the mRNA were quantified using real-time quantitative polymerase chain reaction (qRT-PCR), and protein levels were assessed through Western blotting and immunofluorescence techniques. Moreover, the gain- and loss-of-function assays were conducted in human trophoblast cell line HTR-8/SVneo, and cellular models exhibiting overexpression and the knockdown of IGFBP2 were established. The proliferation, migration, and invasion of HTR-8/Svneo cells were determined using CCK8, wound-healing, and transwell assays, respectively. Results: The IGFBP2 was significantly downregulated, and the EMT was suppressed in the placental tissues of the PE patients. Functional experiments demonstrated that IGFBP2 enhanced the proliferation, invasion, and EMT of trophoblast cells activated through the PI3K/AKT signaling pathway. Conclusion: Our findings indicated that IGFBP2 enhances the proliferation, invasion, and EMT of trophoblast cells by activating the PI3K/AKT signaling pathway, serving as a potential therapeutic target in PE patients. Full article
Show Figures

Graphical abstract

15 pages, 4938 KiB  
Article
Isoquercitrin Suppresses Esophageal Squamous Cell Carcinoma (ESCC) by Inducing Excessive Autophagy and Promoting Apoptosis via the AKT/mTOR Signaling Pathway
by Zhibin Liu, Ke Huang, Hai Huang, Eungyung Kim, Hyeonjin Kim, Chae Yeon Kim, Dong Joon Kim, Sang In Lee, Sangsik Kim, Do Yoon Kim, Kangdong Liu, Zae Young Ryoo, Mee-Hyun Lee, Lei Ma and Myoung Ok Kim
Antioxidants 2025, 14(6), 694; https://doi.org/10.3390/antiox14060694 - 8 Jun 2025
Viewed by 705
Abstract
Esophageal squamous cell carcinoma (ESCC), one of the most frequent malignant tumors of the digestive system, is marked by a poor prognosis and high mortality rate. There is a critical need for effective therapeutic strategies with minimal side effects. Isoquercitrin (IQ) is a [...] Read more.
Esophageal squamous cell carcinoma (ESCC), one of the most frequent malignant tumors of the digestive system, is marked by a poor prognosis and high mortality rate. There is a critical need for effective therapeutic strategies with minimal side effects. Isoquercitrin (IQ) is a natural compound with potent antioxidant properties in cancer and cardiovascular diseases. However, its specific effects and mechanisms in ESCC remain largely unexplored. This study aims to investigate the effects of IQ in ESCC cells and elucidate the mechanisms underlying its therapeutic effects. Specifically, its impact on cell proliferation, colony formation, migration, and invasion was assessed using cell viability assay, morphology, transwell, and colony formation assays. The effects on apoptosis were evaluated by flow cytometry, while immunofluorescence (IF) staining and Western blotting were performed to confirm the underlying mechanisms. The in vivo anti-cancer effects of IQ were then evaluated using a xenograft tumor model. Our results demonstrate that IQ inhibits ESCC cell growth and colony formation while promoting its apoptosis by enhancing caspase activation and downregulating Bcl-2 expression. Furthermore, IQ suppresses cell migration by modulating the epithelial–mesenchymal transition-related proteins. Additionally, IQ induces excessive autophagy by promoting reactive oxygen species accumulation and inhibiting the AKT/mTOR signaling pathway. Importantly, IQ effectively reduces tumor growth in vivo, highlighting its potential as a therapeutic agent for ESCC. Full article
(This article belongs to the Special Issue Redox Signaling in Cancer: Mechanisms and Therapeutic Opportunities)
Show Figures

Figure 1

20 pages, 5042 KiB  
Article
Antitumor Effect of Curcumin, D6 Turmeric, and Hydrochloride Mitoxantrone on Canine and Human Urothelial Cancer Cells
by Thayná Oliveira da Silva, Luís Gustavo Ramos de Moraes Calheiros, Felipe Barbosa, Fernanda Bueno Morrone, Liliana Rockenbach, Patrícia de Faria Lainetti, Antonio Fernando Leis Filho, Márcio de Carvalho, Carlos Eduardo Fonseca-Alves and Renée Laufer Amorim
Animals 2025, 15(11), 1589; https://doi.org/10.3390/ani15111589 - 29 May 2025
Viewed by 605
Abstract
Bladder urothelial carcinoma (UC) is an aggressive malignancy in both humans and dogs, with limited treatment options. Owing to their biological and environmental similarities with humans, dogs serve as a valuable model for UC research. Standard treatments, including surgery, chemotherapy, and anti-inflammatory agents, [...] Read more.
Bladder urothelial carcinoma (UC) is an aggressive malignancy in both humans and dogs, with limited treatment options. Owing to their biological and environmental similarities with humans, dogs serve as a valuable model for UC research. Standard treatments, including surgery, chemotherapy, and anti-inflammatory agents, have shown limited efficacy. Curcumin, a bioactive compound derived from turmeric, has demonstrated anticancer properties, but its potential in canine UC remains poorly understood. In this study, we evaluated the effects of curcumin, D6 turmeric, and mitoxantrone hydrochloride on canine and human UC cell lines. Cell viability was assessed via the MTT assay, apoptosis via flow cytometry, and gene expression (β-catenin, β1-integrin, CDH1, MMP-2, MMP-9, and TIMP-2) via quantitative PCR. Migration capacity was analyzed using a Transwell assay. Curcumin and D6 turmeric reduced cell viability and migration, while mitoxantrone hydrochloride exhibited strong cytotoxicity, especially in canine cells. Curcumin also induced apoptosis and modulated genes involved in epithelial–mesenchymal transition and invasion. The interindividual differences in response suggest underlying genetic variability and highlight the need for personalized therapeutic approaches. These findings suggest that curcumin and D6 turmeric hold promise as complementary therapies for canine UC, justifying further in vivo investigations. Full article
Show Figures

Figure 1

16 pages, 3615 KiB  
Article
Targeting RPLP2 Triggers DLBCL Ferroptosis by Decreasing FXN Expression
by Jiaxing Guo, Bokang Yan, Lingshu Li, Yuanhao Peng, Weiwei Lai and Chanjuan Shen
Biomedicines 2025, 13(6), 1320; https://doi.org/10.3390/biomedicines13061320 - 28 May 2025
Viewed by 472
Abstract
Background/Objectives: Ribosomal Protein Lateral Stalk Subunit P2 (RPLP2), an important ribosomal protein, is mainly involved in modulating protein synthesis and plays an essential role in the carcinogenesis of many cancers. However, its precise impact on diffuse large B-cell lymphoma (DLBCL) remains unknown. Methods: [...] Read more.
Background/Objectives: Ribosomal Protein Lateral Stalk Subunit P2 (RPLP2), an important ribosomal protein, is mainly involved in modulating protein synthesis and plays an essential role in the carcinogenesis of many cancers. However, its precise impact on diffuse large B-cell lymphoma (DLBCL) remains unknown. Methods: This study utilized siRNA to knock down RPLP2, aiming to investigate its role in DLBCL progression. RT-qPCR and immunohistochemistry (IHC) were employed to assess RPLP2 and frataxin (FXN) expression levels in DLBCL. CCK8 and colony formation assays measured cell proliferation inhibition upon RPLP2 deletion, while transwell migration assays analyzed reduced cell motility. Lipid ROS and iron assays quantified ferroptosis markers to elucidate RPLP2’s regulation of FXN-mediated ferroptosis. Xenograft mouse models validated tumor suppression effects in vivo. Results: Here, we reveal that elevated RPLP2 expression is significantly correlated to unfavorable prognosis in DLBCL patients. In addition, we demonstrate that RPLP2 deletion dramatically reduces the cell proliferation and migration of DLBCL. Besides, knockdown of RPLP2 triggers ferroptosis via regulating ferroptosis suppressor FXN activity. Moreover, we discover that Destruxin b could target RPLP2 to suppress the development of DLBCL. Lastly, the combination of Destruxin b with Dox remarkably improves the anti-tumor effect. Conclusions: In general, the present study reveals the oncogenic role of RPLP2 in DLBCL, uncovers an unrecognized regulatory axis of ferroptosis, and identifies a specific inhibitor targeting RPLP2 to restrain DLBCL progression, suggesting that RPLP2 could be a potential target for DLBCL treatment. Full article
(This article belongs to the Special Issue The Role of Iron in Human Diseases)
Show Figures

Figure 1

22 pages, 12709 KiB  
Article
IGF2BP3 Modulates mRNA Splicing and Stability to Promote Trophoblast Progression via Interaction with PDE3A and Suppression by miR-196a-5p in Preeclampsia
by Chunyan Li, Pingpo Ming, Cuifang Fan, Jiao Chen and Jing Yang
Biomedicines 2025, 13(6), 1268; https://doi.org/10.3390/biomedicines13061268 - 22 May 2025
Viewed by 617
Abstract
Background: Preeclampsia (PE) is a pregnancy-specific disorder and a leading cause of maternal and fetal morbidity and mortality. Impaired trophoblast invasion is a hallmark of PE, and alternative splicing (AS) is crucial for trophoblast differentiation and placental development. However, the exact mechanisms of [...] Read more.
Background: Preeclampsia (PE) is a pregnancy-specific disorder and a leading cause of maternal and fetal morbidity and mortality. Impaired trophoblast invasion is a hallmark of PE, and alternative splicing (AS) is crucial for trophoblast differentiation and placental development. However, the exact mechanisms of AS in PE remain poorly understood. Methods: To elucidate AS-mediated regulatory pathways in PE, a total of 38 fresh-frozen placental samples, including 13 pre-eclampsia samples and 25 normal control samples, were collected from Renmin Hospital of Wuhan University between 1 February and 30 July 2022. We performed transcriptome sequencing of seven PE and seven normal placentas to identify differentially spliced events. After quality control and adapter trimming, raw sequencing reads were aligned to the human reference genome using STAR. Differential exon usage was analyzed using DEXSeq (version 1.36.0), and exons with an adjusted p-value < 0.05 and a fold change greater than 2 or less than 0.5 were considered significantly differentially spliced. Functional assays, including CCK8, colony formation, and cell cycle analyses, were conducted to assess trophoblast proliferation, whereas wound healing and Transwell assays were used to evaluate trophoblast migration and invasion using the HTR-8/SVneo cell line. RNA immunoprecipitation sequencing (RIP-seq) and RNA stability assays were employed to investigate mRNA interactions and stability. Results: Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) emerged as a key RNA-binding protein associated with alternative splicing regulation, intersecting both AS-related candidate genes and known splicing factors, although it is not a classical splicing factor itself. IGF2BP3 overexpression markedly enhanced HTR-8/SVneo trophoblast proliferation, migration, and invasion while suppressing ROS activation. RNA-seq, RIP-seq, and RNA stability assays revealed that IGF2BP3 directly interacts with and enhances the stability of PDE3A mRNA. Functional rescue experiments confirmed that PDE3A knockdown partially abrogated IGF2BP3-mediated trophoblast progression. Furthermore, miR-196a-5p was identified as a negative regulator of IGF2BP3 via miRNA inhibitor/mimic transfection, qRT-PCR, and functional assays, confirming that miR-196a-5p overexpression downregulates IGF2BP3, thereby impairing trophoblast migration and proliferation. Notably, restoring IGF2BP3 expression reversed these inhibitory effects. Conclusions: Our findings reveal a previously unrecognized regulatory axis in PE in which miR-196a-5p suppresses IGF2BP3 expression, leading to PDE3A mRNA destabilization and impaired trophoblast function. This study offers mechanistic insights into PE pathogenesis and identifies IGF2BP3 as a potential therapeutic target. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

21 pages, 4696 KiB  
Article
Mechanism of Curcumol Targeting the OTUB1/TGFBI Ubiquitination Pathway in the Inhibition of Angiogenesis in Colon Cancer
by Yimiao Zhu, Wenya Wu, Dahai Hou, Yu Zhao, Jinshu Ye, Lizong Shen, Tong Zhao and Xiaoyu Wu
Int. J. Mol. Sci. 2025, 26(10), 4899; https://doi.org/10.3390/ijms26104899 - 21 May 2025
Cited by 1 | Viewed by 671
Abstract
Tumor angiogenesis and metastasis are critical processes in the progression of colon carcinoma. Curcumol, a bioactive sesquiterpenoid derived from curcuma, exhibits anti-angiogenic properties, though its underlying mechanisms remain unclear. In this study, an HT-29 xenograft mouse model demonstrated that curcumol combined with oxaliplatin [...] Read more.
Tumor angiogenesis and metastasis are critical processes in the progression of colon carcinoma. Curcumol, a bioactive sesquiterpenoid derived from curcuma, exhibits anti-angiogenic properties, though its underlying mechanisms remain unclear. In this study, an HT-29 xenograft mouse model demonstrated that curcumol combined with oxaliplatin significantly suppressed tumor growth (Ki67↓) and microvessel density (CD31↓). In vitro assays revealed that curcumol dose dependently inhibited proliferation (MTT), migration (Transwell), and tube formation (CAM assay) in Caco-2/HT-29 and HUVEC cells. Mechanistically, curcumol downregulated OTUB1 expression, promoting TGFB1 degradation via the ubiquitin–proteasome pathway. OTUB1 overexpression activated the TGFB1/VEGF axis, enhancing cell invasiveness and angiogenesis—effects reversed by high-dose curcumol. These findings identify the OTUB1-TGFB1/VEGF axis as a key target of curcumol in inhibiting colon cancer angiogenesis, elucidating its anti-tumor mechanism and offering a novel therapeutic strategy for targeted treatment. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

21 pages, 6710 KiB  
Article
HNF4α-Mediated LINC02560 Promotes Papillary Thyroid Carcinoma Progression by Targeting the miR-505-5p/PDE4C Axis
by Yongcheng Su, Beibei Xu, Chunyi Gao, Wenbin Pei, Miaomiao Ma, Wenqing Zhang, Tianhui Hu, Fuxing Zhang and Shaoliang Zhang
Biomolecules 2025, 15(5), 630; https://doi.org/10.3390/biom15050630 - 28 Apr 2025
Viewed by 606
Abstract
Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid malignancy, and its progression is closely associated with patient outcomes. This study investigated the role of the long non-coding RNA LINC02560 in the pathogenesis and aggressiveness of PTC through cell culture, transfection, [...] Read more.
Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid malignancy, and its progression is closely associated with patient outcomes. This study investigated the role of the long non-coding RNA LINC02560 in the pathogenesis and aggressiveness of PTC through cell culture, transfection, RT-qPCR, Western blot analysis, and various functional assays, such as MTT, EdU, colony formation, wound healing, and Transwell migration assays. Our results revealed a significant upregulation of LINC02560 in PTC tissues, correlating with poor prognosis in affected patients. Functional analyses demonstrated that silencing of LINC02560 markedly inhibited the proliferation, migration, and invasion of the PTC cell lines, KTC-1, and BCPAP, whereas overexpression promoted these aggressive traits. Mechanistically, LINC02560 acted as a competitive endogenous RNA, sponging miR-505-5p and alleviating its suppression on PDE4C degradation, thereby activating the P-AKT and epithelial–mesenchymal transition (EMT) signaling pathways. Additionally, HNF4α was identified as a transcription factor capable of enhancing the expression of LINC02560. In conclusion, our findings elucidate the critical HNF4α/LINC02560/miR-505-5p/PDE4C axis in PTC pathology, presenting this regulatory network as a promising biomarker combination and potential therapeutic target to improve patient outcomes and survival rates, warranting further clinical investigation to validate these insights and support the development of targeted therapies in PTC management. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Graphical abstract

Back to TopTop