Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = transverse excitation loads

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 16601 KB  
Article
Monte Carlo-Based Risk Analysis of Deep-Sea Mining Risers Under Vessel–Riser Coupling Effects
by Gang Wang, Hongshen Zhou and Qiong Hu
J. Mar. Sci. Eng. 2025, 13(9), 1663; https://doi.org/10.3390/jmse13091663 - 29 Aug 2025
Viewed by 1102
Abstract
In deep-sea mining operations, rigid risers operate in a complex and uncertain ocean environment where vessel–riser interactions present significant structural challenges. This study develops a coupled dynamic modeling framework that integrates vessel motions and environmental loads to evaluate the probabilistic risk of riser [...] Read more.
In deep-sea mining operations, rigid risers operate in a complex and uncertain ocean environment where vessel–riser interactions present significant structural challenges. This study develops a coupled dynamic modeling framework that integrates vessel motions and environmental loads to evaluate the probabilistic risk of riser failure. Using frequency-domain RAOs derived from AQWA and time-domain simulations in OrcaFlex 11.0, we analyze the riser’s effective tension, bending moment, and von Mises stress under a range of wave heights, periods, and directions, as well as varying current and wind speeds. A Monte Carlo simulation framework based on Latin hypercube sampling is used to generate 10,000 sea state scenarios. The response distributions are approximated using probability density functions to assess structural reliability, and global sensitivity is evaluated using a Sobol-based approach. Results show that the wave height and period are the primary drivers of riser dynamic response, both with sensitivity indices exceeding 0.7. Transverse wave directions exert stronger dynamic excitation, and the current speed notably affects the bending moment (sensitivity index = 0.111). The proposed methodology unifies a coupled time-domain simulation, environmental uncertainty analysis, and reliability assessment, enabling clear identification of dominant factors and distribution patterns of extreme riser responses. Additionally, the workflow offers practical guidance on key monitoring targets, alarm thresholds, and safe operation to support design and real-time decision-making. Full article
(This article belongs to the Special Issue Safety Evaluation and Protection in Deep-Sea Resource Exploitation)
Show Figures

Figure 1

26 pages, 4583 KB  
Article
Mathematical Modeling and Finite Element Simulation of the M8514-P2 Composite Piezoelectric Transducer for Energy Harvesting
by Demeke Girma Wakshume and Marek Łukasz Płaczek
Sensors 2025, 25(10), 3071; https://doi.org/10.3390/s25103071 - 13 May 2025
Cited by 2 | Viewed by 4546
Abstract
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small [...] Read more.
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small electronic devices, such as wireless sensors, where conventional power sources are inconvenient. The P2-type macro fiber composites (MFC-P2) are specifically designed for transverse energy harvesting applications. They offer high electric source capacitance and improved electric charge generation due to the strain developed perpendicularly to the voltage produced. The system is modeled analytically using Euler–Bernoulli beam theory and piezoelectric constitutive equations, capturing the electromechanical coupling in the d31 mode. Numerical simulations are conducted using COMSOL Multiphysics 6.29 to reduce the complexity of the mathematical model and analyze the effects of material properties, geometric configurations, and excitation conditions. The theoretical model is based on the transverse vibrations of a cantilevered beam using Euler–Bernoulli theory. The natural frequencies and mode shapes for the first four are determined. Depending on these, the resonance frequency, voltage, and power outputs are evaluated across a 12 kΩ resistive load. The results demonstrate that the energy harvester effectively operates near its fundamental resonant frequency of 10.78 Hz, achieving the highest output voltage of approximately 0.1952 V and a maximum power output of 0.0031 mW. The generated power is sufficient to drive ultra-low-power devices, validating the viability of MFC-based cantilever structures for autonomous energy harvesting systems. The application of piezoelectric phenomena and obtaining electrical energy from mechanical vibrations can be powerful solutions in such systems. The application of piezoelectric phenomena to convert mechanical vibrations into electrical energy presents a promising solution for self-powered mechatronic systems, enabling energy autonomy in embedded sensors, as well as being used for structural health monitoring applications. Full article
(This article belongs to the Special Issue Smart Sensors Based on Optoelectronic and Piezoelectric Materials)
Show Figures

Figure 1

23 pages, 6630 KB  
Article
Investigation into the Dynamic Parameter Characterization of Water-Lubricated Bearings Under Vibration Coupling
by Hongtao Zhu, Yong Jin, Qilin Liu, Wu Ouyang and Tao He
Lubricants 2025, 13(3), 123; https://doi.org/10.3390/lubricants13030123 - 14 Mar 2025
Cited by 2 | Viewed by 931
Abstract
This study aims to investigate the dynamic behavior of water-lubricated stern bearings during service. A transient rotor dynamics numerical model is developed to research the effects of operating conditions and critical structural parameters on the variation patterns of the dynamic characteristic coefficients and [...] Read more.
This study aims to investigate the dynamic behavior of water-lubricated stern bearings during service. A transient rotor dynamics numerical model is developed to research the effects of operating conditions and critical structural parameters on the variation patterns of the dynamic characteristic coefficients and journal orbit of WLBs. The main stiffness and damping formulas for dimensionless bearings are fitted based on numerical results. Additionally, the accuracy of the model calculations is experimentally verified on a water-lubricated bearing test rig. The results demonstrate that the variation trends of the main stiffness and main damping coefficients in the horizontal and vertical directions of the bearings are proportional to the external load and inversely proportional to the rotational speed. Under eccentric excitation, the dynamic characteristic coefficients of the bearings change periodically with time as an approximately sinusoidal function. With the increase in the bearing length-to-diameter ratio or the decrease in the radial clearance-to-radius ratio, the main stiffness and the main damping coefficients in the horizontal direction increase, while the main stiffness coefficient in the vertical direction decreases. This study provides theoretical support for modeling the transient transverse vibration of a propulsion shaft system. Full article
(This article belongs to the Special Issue Friction–Vibration Interactions)
Show Figures

Figure 1

18 pages, 10824 KB  
Article
Pattern-Reconfigurable, Vertically Polarized, Wideband Electrically Small Huygens Source Antenna
by Yunlu Duan, Ming-Chun Tang, Mei Li, Zhehao Zhang, Qingli Lin and Richard W. Ziolkowski
Electronics 2025, 14(3), 634; https://doi.org/10.3390/electronics14030634 - 6 Feb 2025
Viewed by 1429
Abstract
A pattern-reconfigurable, vertically polarized (VP), electrically small (ES), Huygens source antenna (HSA) is demonstrated. A custom-designed reconfigurable inverted-F structure is embedded in a hollowed-out cylindrical dielectric resonator (DR). It radiates VP electric dipole fields that excite the DR’s HEM11δ mode, which in [...] Read more.
A pattern-reconfigurable, vertically polarized (VP), electrically small (ES), Huygens source antenna (HSA) is demonstrated. A custom-designed reconfigurable inverted-F structure is embedded in a hollowed-out cylindrical dielectric resonator (DR). It radiates VP electric dipole fields that excite the DR’s HEM11δ mode, which in turn acts as an orthogonal magnetic dipole radiator. The HSA’s unidirectional properties are thus formed. It becomes low-profile and electrically small through a significant lowering of its operational frequency band by loading the DR’s top surface with a metallic disk. The entire 360° azimuth range is covered by each of the HSA’s four 90° reconfigurable states, emitting a unidirectional wide beam. A prototype was fabricated and tested. The measured results, which are in good agreement with their simulated values, demonstrate that the developed wideband Huygens source antenna, with its 0.085 λL low profile and its 0.20 λL × 0.20 λL compact transverse dimensions, hence, electrically small size with ka = 0.89, exhibits a wide 14.1% fractional impedance bandwidth and a 6.1 dBi peak realized gain in all four of its pattern-reconfigurable states. Full article
(This article belongs to the Special Issue Antennas for IoT Devices)
Show Figures

Figure 1

11 pages, 3614 KB  
Article
Theoretical Study on Transverse Mode Instability in Raman Fiber Amplifiers Considering Mode Excitation
by Shanmin Huang, Xiulu Hao, Haobo Li, Chenchen Fan, Xiao Chen, Tianfu Yao, Liangjin Huang and Pu Zhou
Micromachines 2024, 15(10), 1237; https://doi.org/10.3390/mi15101237 - 7 Oct 2024
Viewed by 1630
Abstract
Raman fiber lasers (RFLs), which are based on the stimulated Raman scattering effect, generate laser beams and offer distinct advantages such as flexibility in wavelength, low quantum defects, and absence from photo-darkening. However, as the power of the RFLs increases, heat generation emerges [...] Read more.
Raman fiber lasers (RFLs), which are based on the stimulated Raman scattering effect, generate laser beams and offer distinct advantages such as flexibility in wavelength, low quantum defects, and absence from photo-darkening. However, as the power of the RFLs increases, heat generation emerges as a critical constraint on further power scaling. This escalating thermal load might result in transverse mode instability (TMI), thereby posing a significant challenge to the development of RFLs. In this work, a static model of the TMI effect in a high-power Raman fiber amplifier based on stimulated thermal Rayleigh scattering is established considering higher-order mode excitation. The variations of TMI threshold power with different seed power levels, fundamental mode purities, higher-order mode losses, and fiber lengths are investigated, while a TMI threshold formula with fundamental mode pumping is derived. This work will enrich the theoretical model of TMI and extend its application scope in TMI mitigation strategies, providing guidance for understanding and suppressing TMI in the RFLs. Full article
(This article belongs to the Special Issue High Power Fiber Laser Technology)
Show Figures

Figure 1

26 pages, 6511 KB  
Article
Dynamic Response Analysis of Asphalt Pavement under Pavement-Unevenness Excitation
by Heng Liu, Xiaoge Liu, Ankang Wei and Yingchun Cai
Appl. Sci. 2024, 14(19), 8822; https://doi.org/10.3390/app14198822 - 30 Sep 2024
Cited by 1 | Viewed by 1730
Abstract
This paper investigates and analyzes the dynamic response of asphalt pavement under pavement-unevenness excitation based on an orthogonal vector function system and efficient DVP (dual variable and position) method. Firstly, starting from the pavement unevenness of the vehicle excitation source, the pavement-unevenness excitation [...] Read more.
This paper investigates and analyzes the dynamic response of asphalt pavement under pavement-unevenness excitation based on an orthogonal vector function system and efficient DVP (dual variable and position) method. Firstly, starting from the pavement unevenness of the vehicle excitation source, the pavement-unevenness excitation is established by using the filtered white-noise method, and the random load of the vehicle model is obtained by simulation. Then, based on the basic governing equation of the road-surface problem under the random load, the analytical solution of the road-surface mechanical response is obtained by using the orthogonal vector function system and DVP method. The effects of pavement-unevenness grade, vehicle speed, vehicle load, interlayer contact condition, and transverse isotropy on the mechanical response of the road surface are analyzed via the analytical results. The results show that DVP can effectively solve the dynamic response of pavements under the excitation of pavement unevenness; in addition, it can also be applied to certain situations, such as transverse isotropy of materials and interface conditions. The results show that the pavement unevenness does not affect the average stress and strain of each layer but has a significant effect on the peak value and dispersion degree. An increase in vehicle speed causes a peak in strain and a larger coefficient of variation. Poor bonding between interfaces can lead to increased stress and strain at the bottom of the surface layer. Full article
(This article belongs to the Special Issue Advanced Structural Health Monitoring in Civil Engineering)
Show Figures

Figure 1

16 pages, 6273 KB  
Article
Load Effect Analysis Method of Cable-Stayed Bridge for Long-Span Track Based on Adaptive Filtering Method
by Peng Ding, Xiaogang Li, Sheng Chen, Xiangsheng Huang, Xiaohu Chen and Yong Qi
Appl. Sci. 2024, 14(16), 7057; https://doi.org/10.3390/app14167057 - 12 Aug 2024
Cited by 1 | Viewed by 1995
Abstract
Aiming at the problems of large capacity, narrow transverse width, large excitation, high safety level, and difficulty in accurately grasping the working state of the cable-stayed bridge for the long-span track, this research obtains the structural response data in real time by establishing [...] Read more.
Aiming at the problems of large capacity, narrow transverse width, large excitation, high safety level, and difficulty in accurately grasping the working state of the cable-stayed bridge for the long-span track, this research obtains the structural response data in real time by establishing a health monitoring system. The adaptive filtering method was employed to separate the train load response and the temperature load response. Then, a train load effect analysis method based on the influence line and a temperature load effect analysis method based on the correlation were proposed to assess the operational status of the bridge in real time and objectively. The Chongqing Nanjimen Railway Track Bridge (hereinafter Chongqing Nanjimen track bridge) project was utilized as a case study to demonstrate the application of these methods. The results show that the adaptive filtering method can effectively separate the response of train and temperature loads. The normalized cross-correlation (NCC) results of the measured train load response and the influence line’s finite element calculation show a high degree of fit between the measured values and the theory, proving that no significant anomalies are found in the bridge. There is a strong correlation between the ambient temperature difference and the Pearson correlation coefficient of structural response, which indicates that the Chongqing Nanjimen track bridge is currently in normal working condition. Full article
Show Figures

Figure 1

20 pages, 7268 KB  
Article
Simulation and Experimental Study on Bridge–Vehicle Impact Coupling Effect under Pavement Local Deterioration
by Jiwei Zhong, Jiyuan Wang, Yuyin Jiang, Ruichang Li, Xiedong Zhang and Yingqi Liu
Buildings 2024, 14(7), 2218; https://doi.org/10.3390/buildings14072218 - 19 Jul 2024
Cited by 1 | Viewed by 1725
Abstract
With the rapid development of China’s transportation network, the demand for bridge construction is increasing, the traffic volume is increasing yearly, and the average vehicle speed and the frequency of overloaded vehicles crossing bridges are soaring. When a vehicle passes over a highway [...] Read more.
With the rapid development of China’s transportation network, the demand for bridge construction is increasing, the traffic volume is increasing yearly, and the average vehicle speed and the frequency of overloaded vehicles crossing bridges are soaring. When a vehicle passes over a highway bridge, it can easily form a coupling vibration between the vehicle and bridge due to the excitation of the expansion joint, the unevenness of the bridge deck, and the existing coating-hole. The impact effect is significant, which seriously affects the operation safety of both the vehicle and bridge, seriously damaging the service life of the bridge. Due to the influence of construction technology, it is common for the vibration to meet transverse and longitudinal expansion joints of a prefabricated girder bridge, where an aging bridge deck frequently results in bulges and potholes in asphalt pavement. The bridge vibration amplification effect under the dynamic load of heavy, high-speed vehicles is significant, and research about the large impact coefficient of bridges with local pavement deterioration is urgently needed. This study used SIMULINK simulation software and involved conducting several bridge model tests. Dynamic simulation analyses and running vehicle tests on scaled and real bridge models were carried out to study the coupling vibration response of bridge decks in the presence of different pothole sizes. The results show that the impact effect of low-speed vehicles passing through a larger-sized pothole is relatively significant, and the impact coefficient can be amplified to 214% of the original value under good road surfaces in extreme cases. The vehicle–bridge coupling impact effect of potholes is similar to bulges. This relevant work could provide suggestions for the operational performance evaluation and maintenance of bridges with local pavement deterioration. Full article
Show Figures

Figure 1

24 pages, 25621 KB  
Article
Numerical Investigation of Flame-Acoustic Interaction at Resonant and Non-Resonant Conditions in a Model Combustion Chamber
by Tim Horchler, Stefan Fechter and Justin Hardi
Aerospace 2024, 11(7), 556; https://doi.org/10.3390/aerospace11070556 - 5 Jul 2024
Viewed by 1545
Abstract
Despite considerable research effort in the past 60 years, the occurrence of combustion instabilities in rocket engines is still not fully understood. While the physical mechanisms involved have been studied separately and are well understood in a controlled environment, the exact interaction of [...] Read more.
Despite considerable research effort in the past 60 years, the occurrence of combustion instabilities in rocket engines is still not fully understood. While the physical mechanisms involved have been studied separately and are well understood in a controlled environment, the exact interaction of fluid dynamics, thermodynamics, chemical reactions, heat-release and acoustics, ultimately leading to instabilities, is not yet known. This paper focuses on the investigation of flame-acoustic interaction in a model combustion chamber using detached-eddy simulation (DES) methods. We present simulation results for a new load point of combustion chamber H from DLR Lampoldshausen and explore the flame response to resonant and non-resonant external excitation. In the first part of the paper, we use time-averaged results from a steady-state flow field without siren excitation to calculate the combustion chamber Helmholtz eigenmodes and compare them to the experimental results. The second part of the paper presents simulation results at a non-resonant excitation frequency. These results agree very well with the experimental results at the same condition, although the numerical simulation systematically overestimates the oscillation amplitudes. In the third part, we show that a simulation with resonant siren excitation can correctly reproduce the shift in eigenmode frequencies that is also seen in the experiments. Additionally, for this new load point, we confirm previous numerical results showing a strong influence of transversal excitation on the shape of the dense LOx cores. This work also proposes a bombing method for determining the resonant eigenmode frequencies based on an unexcited steady-state DES by simulating the decay of a strong artificial pressure pulse inside the combustion chamber. Full article
(This article belongs to the Special Issue Space Propulsion: Advances and Challenges (2nd Edition))
Show Figures

Figure 1

16 pages, 15883 KB  
Article
Effect of Stratified Flow on the Vibration of Anchor Cables in a Submerged Floating Tunnel
by Jiaming Xiong, Song Sang, Xiao Shi and Chaojie Gan
J. Mar. Sci. Eng. 2024, 12(4), 600; https://doi.org/10.3390/jmse12040600 - 30 Mar 2024
Cited by 1 | Viewed by 1454
Abstract
This study investigates the vertical-type submerged floating tunnel with anchor cables. Based on the characteristics of the anchor cables, the anchor cables are simplified as a nonlinear beam model with hinged ends. Disregarding the axial displacement of the tunnel body, the loads will [...] Read more.
This study investigates the vertical-type submerged floating tunnel with anchor cables. Based on the characteristics of the anchor cables, the anchor cables are simplified as a nonlinear beam model with hinged ends. Disregarding the axial displacement of the tunnel body, the loads will cause displacements in the x and z directions of the tunnel body. The vibrations of the anchor cables are decomposed into three directions, and the parameter excitation at the connection point between the anchor cables and the tunnel body is taken into account. The equations of motion for the three degrees of freedom of the anchor cables are established using Hamilton’s principle, and then the three equations are solved using the Galerkin method and the fourth-order Runge–Kutta method. The basic characteristics of an internal wave stratified flow acting on the anchor cables are considered, as well as the influence of the incident angle of the ocean currents on the three degrees of freedom of the anchor cables. The results indicate that (1) stratified flow weakens the first- and third-order vortex-induced vibrations of the anchor cables while enhancing the second-order vortex-induced vibrations. When considering the parameter excitation of the anchor cables, the first- and third-order vibrations are weakened, while the second-order vibration remains significant; (2) the first-order vibration of the anchor cables reaches its maximum value when the transverse oscillation frequency of the tunnel body is twice its natural frequency, and the second-order vibration of the anchor cables reaches its maximum value when the transverse oscillation frequency of the tunnel body is twice its natural frequency; (3) the downstream vibration of the anchor cables increases with the increase in the incident angle of the ocean currents, the cross-flow vibration of the anchor cables decreases with the increase in the incident angle of the ocean currents, and the axial vibration of the anchor cables reaches its maximum value when the incident angle of the ocean currents is 60 degrees; (4) stratified flow weakens the lock-in phenomenon of the anchor cables, and the influence of the 1/2 stratified flow on the vibrations of the anchor cables is greater than the influence of the 1/2 stratified flow. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 8867 KB  
Article
Influence of High-Frequency Ultrasonic Vibration Load on Pore-Fracture Structure in Hard Rock: A Study Based on 3D Reconstruction Technology
by Jianguo Zhang, Lei Zhang, Xufeng Wang, Zhijun Niu and Zhanbiao Yang
Materials 2024, 17(5), 1127; https://doi.org/10.3390/ma17051127 - 29 Feb 2024
Cited by 5 | Viewed by 1542
Abstract
Rock fracture is a macroscopic fracturing process resulting from the initiation and propagation of microscopic cracks. Therefore, it is crucial to comprehend the damage and fracture mechanism of rock under ultrasonic vibration by investigating the evolutionary pattern of the meso-pore fracture structure in [...] Read more.
Rock fracture is a macroscopic fracturing process resulting from the initiation and propagation of microscopic cracks. Therefore, it is crucial to comprehend the damage and fracture mechanism of rock under ultrasonic vibration by investigating the evolutionary pattern of the meso-pore fracture structure in response to high-frequency vibrational loads, as explored in this study. Standard red sandstone samples with a diameter of 50 mm and height of 100 mm were subjected to ultrasonic high-frequency vibration tests. NMR and CT scans were conducted on the rock samples at different stages of ultrasonic vibration excitation to obtain the corresponding transverse relaxation time (T2) spectra and CT scan images for each layer. The NMR test results revealed that smaller pores formed within the rock under high-frequency vibration loads, with a noticeable expansion observed in micropores. Three-dimensional reconstruction analysis based on two-dimensional CT images demonstrated an increase in pore count by 145.56%, 122.67%, and 98.87%, respectively, for the upper, middle, and lower parts of the rock after 120 s of ultrasonic vibration excitation; furthermore, the maximum pore volume increased by 239.42%, 109.16%, and 18.99%, respectively, for these regions during this period as well. These findings contribute towards a deeper understanding regarding the mechanisms underlying rock fragmentation when exposed to high-frequency vibrational loads. Full article
Show Figures

Figure 1

17 pages, 4852 KB  
Article
A Novel Compact Broadband Quasi-Twisted Branch Line Coupler Based on a Double-Layered Microstrip Line
by Fayyadh H. Ahmed, Rola Saad and Salam K. Khamas
Micromachines 2024, 15(1), 142; https://doi.org/10.3390/mi15010142 - 17 Jan 2024
Cited by 9 | Viewed by 2449
Abstract
A novel quasi-twisted miniaturized wideband branch line coupler (BLC) is proposed. The design is based on bisecting the conventional microstrip line BLC transversely and folding bisected sections on double-layered substrates with a common ground plane in between. The input and output terminals, each [...] Read more.
A novel quasi-twisted miniaturized wideband branch line coupler (BLC) is proposed. The design is based on bisecting the conventional microstrip line BLC transversely and folding bisected sections on double-layered substrates with a common ground plane in between. The input and output terminals, each with a length of λg/4, and the pair of quarter-wavelength horizontal parallel arms are converted into a Z-shaped meandered microstrip line in the designed structure. Conversely, the pair of quarter-wavelength vertical arms are halved into two lines and transformed into a periodically loaded slow-wave structure. The bisected parts of the BLC are placed on the opposite side of the doubled-layer substrate and connected through four vias passing through the common ground plane. This technique enabled a compact BLC size of 6.4 × 18 mm2, which corresponds to a surface area miniaturization by ~50% as compared to the classical BLC size of 10 × 23 mm2 at 6 GHz. Moreover, the attained relative bandwidth is 73.9% (4.6–10 GHz) for S11, S33, S21, and the phase difference between outputs (∠S21 − ∠S41). However, if a coupling parameter (S41) of up to −7.5 dB is considered, then the relative bandwidth reduces to 53.9% (4.6–10 GHz) for port 1 as the input. Similarly, for port 3 as the input, the obtained bandwidth is 75.8% (4.5–10 GHz) for S33, S11, S43, and the phase difference between outputs (∠S43 − ∠S23). Likewise, this bandwidth reduces to 56% (4.5–8 GHz) when a coupling parameter (S23) of up to −7.5 dB is considered. In contrast, the relative bandwidth for the ordinary BLC is 41% at the same resonant frequency. The circuit is constructed on a double-layered low-cost FR4 substrate with a relative permittivity of 4.3 and a loss tangent of 0.025. An isolation of −13 dB was realized in both S13 and S31 demonstrating an excellent performance. The transmission coefficients between input/output ports S21, S41, S23, and S43 are between −3.1 dB to −3.5 dB at a frequency of 6 GHz. Finally, the proposed BLC provides phase differences between output ports of 90.5° and 94.8° at a frequency of 6 GHz when the input ports 1 and 3 are excited, respectively. The presented design offers the potential of being utilized as a unit cell for building a Butler matrix (BM) for sub-6 GHz 5G beamforming networks. Full article
(This article belongs to the Special Issue Recent Advances in Electromagnetic Devices)
Show Figures

Figure 1

19 pages, 11153 KB  
Article
A Study on the Vibration Analysis of Thick-Walled, Fluid-Conveying Pipelines with Internal Hydrostatic Pressure
by Hongzhen Zhu and Jianghai Wu
J. Mar. Sci. Eng. 2023, 11(12), 2338; https://doi.org/10.3390/jmse11122338 - 11 Dec 2023
Cited by 11 | Viewed by 2223
Abstract
Pipelines are designed to carry seawater with hydrostatic pressure below sea level in the ship industry. Previously conducted studies have established the FSI (Fluid–Structure Interaction) equations for thin-walled, fluid-filled pipelines based on the Timoshenko beam model; these equations now need to be modified [...] Read more.
Pipelines are designed to carry seawater with hydrostatic pressure below sea level in the ship industry. Previously conducted studies have established the FSI (Fluid–Structure Interaction) equations for thin-walled, fluid-filled pipelines based on the Timoshenko beam model; these equations now need to be modified for analyzing the vibration characteristics of thick-walled pipelines with hydrostatic pressure. The vibration of thick-walled pressurized pipes is studied in this paper. Effective and accurate numerical methods for solving vibration responses to either harmonic excitation or a random load have been developed using the spectral element method and pseudo-excitation method. It is found that the thick-walled theory and the thin-walled theory differ in axial wave transmissions. The internal pressure mainly affects the transverse vibration, which results in an increase in the natural frequencies in the lower frequency domain, an increase in the vibration transmission in the assembled pipeline, and an increase in the displacements when subjected to random loads. Using relatively thicker pipelines and introducing flexible pipes may reduce the vibration transmission when subjected to internal pressure. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 8439 KB  
Article
An Axially Compressed Moving Nanobeam Based on the Nonlocal Couple Stress Theory and the Thermoelastic DPL Model
by Ahmed E. Abouelregal, S. S. Askar and Marin Marin
Mathematics 2023, 11(9), 2155; https://doi.org/10.3390/math11092155 - 4 May 2023
Cited by 15 | Viewed by 1931
Abstract
This article introduces a new model that can be used to describe elastic thermal vibrations caused by changes in temperature in elastic nanobeams in response to transverse external excitations. Using the idea of nonlocal elasticity and the dual-phase lagging thermoelastic model (DPL), the [...] Read more.
This article introduces a new model that can be used to describe elastic thermal vibrations caused by changes in temperature in elastic nanobeams in response to transverse external excitations. Using the idea of nonlocal elasticity and the dual-phase lagging thermoelastic model (DPL), the coupled equations of motion and heat transfer were derived to explain small-scale effects. Additionally, modified couple stress theory (MCST) and Euler–Bernoulli (EB) beam assumptions were considered. The proposed theory was verified by considering the thermodynamic response of nanobeams moving horizontally at a constant speed while one end is subjected to a periodic thermal load. The system of governing equations has been solved numerically with the help of Laplace transforms and one of the tested evolutionary algorithms. The effects of changing the nonlocal modulus, the magnitude of the external force, and the length scale parameter on the system fields were investigated. It is also shown how the behavior of the thermal nanobeam changes depending on the phase delay factors in addition to the horizontal velocity of the beam. To determine this model’s accuracy, its results were compared with the results of the classical continuity model and thermoelastic concepts. The numerical results show that when the nanobeam moves, the length scale can change the studied thermal and mechanical vibration wave patterns and physical fields. Additionally, during thermally stimulated vibrations, thermodynamic effects that have implications for the dynamic design and performance improvement of nanostructures must be considered. Full article
Show Figures

Figure 1

20 pages, 3123 KB  
Article
Longitudinal Seismic Analysis of Tunnels with Nonuniform Strata Considering the Effect of Karst
by Chenkai Han, Zhang Nan, Liangqing Wang, Shanbai Wu and Li Yong
Sustainability 2023, 15(6), 4992; https://doi.org/10.3390/su15064992 - 10 Mar 2023
Cited by 1 | Viewed by 2344
Abstract
The longitudinal direction of shield tunnels is prone to seismic damage due to excessive deformation under seismic action, especially in nonuniform stratum. In this paper, the longitudinal dynamic response of the tunnel under different seismic effects is calculated based on the longitudinal equivalent [...] Read more.
The longitudinal direction of shield tunnels is prone to seismic damage due to excessive deformation under seismic action, especially in nonuniform stratum. In this paper, the longitudinal dynamic response of the tunnel under different seismic effects is calculated based on the longitudinal equivalent stiffness model using the stratigraphic load model, and the seismic indexes such as longitudinal corner, tube sheet and joint bolt stresses are verified. The calculation results show that the longitudinal seismic weakness of the shield tunnel is in the interface between soft and hard strata and karst development. The longitudinal axial force of the structure is larger during the longitudinal excitation of seismic waves, and the maximum bending moment is mainly in the vertical plane, i.e., the vertical bending moment. The axial force of the tunnel is smaller during the transverse excitation of seismic waves. The maximum bending moment is mainly the bending moment in the horizontal plane, i.e., the transverse moment. The South Lake section of the Two Lakes Tunnel has good seismic performance in the event of a rare earthquake with a 50-year exceedance probability of 2%. The investigation can guide the seismic design of the South Lake section of the Two Lakes Tunnel. Full article
(This article belongs to the Special Issue Analysis and Modeling for Sustainable Geotechnical Engineering)
Show Figures

Figure 1

Back to TopTop