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Abstract: This article introduces a new model that can be used to describe elastic thermal vibrations
caused by changes in temperature in elastic nanobeams in response to transverse external excitations.
Using the idea of nonlocal elasticity and the dual-phase lagging thermoelastic model (DPL), the cou-
pled equations of motion and heat transfer were derived to explain small-scale effects. Additionally,
modified couple stress theory (MCST) and Euler–Bernoulli (EB) beam assumptions were considered.
The proposed theory was verified by considering the thermodynamic response of nanobeams moving
horizontally at a constant speed while one end is subjected to a periodic thermal load. The system of
governing equations has been solved numerically with the help of Laplace transforms and one of
the tested evolutionary algorithms. The effects of changing the nonlocal modulus, the magnitude of
the external force, and the length scale parameter on the system fields were investigated. It is also
shown how the behavior of the thermal nanobeam changes depending on the phase delay factors
in addition to the horizontal velocity of the beam. To determine this model’s accuracy, its results
were compared with the results of the classical continuity model and thermoelastic concepts. The
numerical results show that when the nanobeam moves, the length scale can change the studied
thermal and mechanical vibration wave patterns and physical fields. Additionally, during thermally
stimulated vibrations, thermodynamic effects that have implications for the dynamic design and
performance improvement of nanostructures must be considered.
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1. Introduction

Micro- and nanoelectromechanical systems (MEMS and NEMs) are two examples of
micro- and nanostructures and systems that have significantly benefited from technological
advancements in recent decades. It can be utilized in several fields, such as structural engi-
neering, mobility, power, aeronautics, and motors from MEMS and NEMS. Many nanoscale
and micromechanical devices also rely on it [1]. Nanoscale particles, nanosensors, and
nanobeams are building blocks for a wide range of nanostructured materials, micro- and
nanocatalysts, and robots at all scales. Nonetheless, classical continuum mechanics cannot
be used to examine such formations. For this reason, during the previous twenty years,
models have been developed to anticipate such structures by accounting for the size impact
of nanostructures [2]. Such a scenario precludes the application of classical continuity
mechanics concepts to the study of small-scale systems. Nanobeams are increasingly being
used in the scientific and technical communities because they are useful in atomic force
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microscopy, nanosensors, nanomotors, etc. The nanobeam resonator is an important part
of the architecture of microelectromechanical systems. Nanobeam resonators can also be
used for a variety of purposes, such as ultrasonic scanning, viscosity testing, etc.

Beams that rotate or move along an axis are fundamental to many mechanical and
aeronautical systems. There is a large variety of industrial and practical uses for axially
moving beams, including but not limited to chain drives, band saws, power transmission
belts, aerial cable tramways, textile fibers, and many more. Many recent scientific investiga-
tions have focused on the dynamics of axially moving structures. Due to their breadth of
practical use, the dynamic properties of axially translating beams have been the subject of
extensive research using both numerical and analytical methods. Additionally, excellent
mechanical and physical features have been demonstrated for nanoscale beams that move
in the axial direction. They are helpful in applications that are as diverse as high-velocity
vehicles, spacecraft antennas, and flexible nanorobotic manipulators.

Experiments show that mechanical properties change with size, which is a significant
factor in these sizes and applications. Because of the high cost, complexity, and time
commitment of controlled experiments, atomic and molecular dynamic simulations, and
the failure of the classical continuum theory to adequately characterize the effects of
size on the mechanical interactions of micron- or sub-micron-sized structures, a revised
classical contact mechanics theory is used. This theory is known as higher-order continuum
mechanics and is widely applied to reconstruct and describe such dynamical systems [3,4].
Academics from all over the world have made nonclassical continuum mechanics models in
recent decades to try to measure small-scale effects. Some examples are the strain gradient
(SG) model [5,6], the nonlocal elasticity concept [7–9], and the improved couple stress
theory (MCST) [10].

Yang et al. [10] introduced a modified pair stress theory, which is one of the concepts
of high-order continuity mechanics and is based on an MCST theory [11,12]. The first
SG hypothesis proposed by Mindlin [13] exclusively considers the first strain gradient.
The most comprehensive treatment of strain gradients, which includes both the first and
second gradients, was developed by Mindlin [14] a year later. The nonlocal theory takes
into account the long-range interatomic cohesive force but does not count it as one of the
microstructure influences. The improved MCST model includes an equilibrium condition
for a couple of moments, a symmetric couple stress tensor, and a single-length scale index,
all of which are significant benefits. By taking these requirements into account, the strain
energy function is independent of the stress tensor components, with the exception of strain
and symmetrical components. In this regard, the MCST theory stands out among the other
theories that take stiffness enhancement into account, such as the strain gradient theory,
the revised SG theory, the CST model, and the MCST model [15]. It is noted, however, that
this model accounts for the effect of nonlocality. Hence, the micro- and nano-properties of
materials vary greatly depending on size, and this is explained by two distinct theories: the
MCST concept and the nonlocal elasticity theory. As the mechanical behavior of FGP plates
is affected by both stiffness-softening and stiffness-hardening impacts, science needs to take
into account these descriptions of materials concurrently and construct a more accurate
size-dependent theory [16].

The MCST starts with a symmetric couple–stress tensor, which is linked to the symmet-
ric part of the curvature tensor. However, this assumption may break some of physics’ most
fundamental rules [17]. Consistent couple stress theory (CCST) was recently suggested by
Hadjesfandiari and Dargush [17,18]. They demonstrated that the couple–stress tensor is
asymmetric in nature. It was also conjugated with the asymmetric curvature tensor. The
CCST has not seen extensive implementation to date.

In recent years, many studies have been carried out on the deflection, torsion, buckling,
and resonance of nanoscale and microbeams using the above models. Using the MCST
theory, Babaei and Arabghahestani [19] analyzed the transverse vibrations of a revolving
micro-beam. Microbeams with minimal supports are modeled using Euler–Bernoulli and
Timoshenko beam concepts. To examine the bending and free vibration properties of
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elastically supported functionally graded (FG) nanoplates, Pham et al. [20] developed an
isogeometric investigation using the nonlocal MCST theory. Rahmani et al. [21] performed
a comprehensive analysis of the vibrations of spinning nanobeams on viscoelastic bases,
accounting for thermal effects using the MCS and Eringen’s nonlocal elasticity models.
This method successfully models the impacts of nonlocal stress and size. In order to better
understand how a Bernoulli–Euler beam is bent, Park and Gao [22] created a novel model
based on an updated version of the pair stress theory. A variational formulation is used
that is based on the idea of the least amount of total potential energy. Building on the
nonlocal theory of elasticity and the MCS theory, Qi et al. [23] introduced a non-Fourier
heat transfer model that takes into account the memory-dependent effect. This model is
used to describe thermoelastic responses in micro- and nanoscale systems. Abouelregal
and Sedighi [24] considered the Kelvin–Voigt viscoelastic model with fractional derivatives
to provide a theoretical foundation for understanding the thermophysical properties of a
moving viscoelastic nanobeam subject to a periodic thermal load. Using Eringen’s nonlocal
elastic model, the pair stress hypothesis, and the standard Euler–Bernoulli beam concept,
we can simulate the dynamic equation for a longitudinally movable nanobeam. Atta [25]
investigated the phenomenon of vibration in a nanobeam subjected to a time-varying heat
flow. The material characteristics of the nanobeam are anticipated to change throughout its
thickness according to a novel exponential distribution equation depending on the volume
percentages of metal and ceramic components. Kaur et al. [26] achieved state-of-the-art
results in the field of thermoelasticity, specifically with regard to micro- and nanobeams,
nanorods, and their associated conjugate models. They provided a synopsis of how many
important ideas have been used and where they have fallen short. Hosseini et al. [27] used
the nonlocal Mindlin plate assumption to test the sensitivity of a nanosensor made of a func-
tionally graded magneto-electro-elastic (FG-MEE) nanoplate with connected nanoparticles.
In this study, we use a power law distribution model to illustrate the thickness-dependent
changes in the FG-MEE nanoplate’s material properties. Chen et al. [28] also accounted for
the asymmetrical cross-ply of a trapezoidal carbon fiber-reinforced resin matrix composite
laminate plate. The bi-stable composite laminate plate has a trapezoidal shape, and all four
of its corners are assumed to be orthogonal to the assumed origin.

Xu et al. [29] developed a transient thermomechanical sliding framework for the
contact between elastic–plastic asperities to investigate the contact responses of micro-
roughness during sliding. Material properties and the impact of temperature and strain rate
interactions are considered. The nonlinear buckling behaviors of the restricted functionally
graded porous (FGP) lining with polyhedral forms reinforced by graphene platelets (GPLs)
were considered by Xiao et al. [30]. A stiff medium surrounds the polyhedral interior of the
FGP-GPL. The assumption is made that the lining and pipeline have a seamless interface.
Ye et al. [31] suggested a new approach called state damping control as an alternative
to the standard PID technique. The structure of air resistance serves as a model for the
suggested state damping regulation. The procedure is predicated on the principle that
adding resistance will facilitate system stabilization.

Biot [32] established the concept of classical thermoelasticity, which is based on
Fourier’s law and conventional elastic theory. Yet, according to Fourier’s law, the speed of
the thermal signal is unlimited, which contradicts our understanding of physics, especially
in light of the extremely short action time and enormous heat flux. Several scientists have
sought to improve upon Fourier’s law to address this issue. Using Fourier’s law and
the relaxation period, Cattaneo [33] and Vernotte [34] developed a hyperbolic version
of heat transfer in 1958. For this reason, the temperature gradient may have occurred
before the heat flow. Tzou [35–37] proposed two models to investigate this question, the
single-phase-lag and dual-phase-lag systems, and these models focus on the delay between
the onset of thermal equilibrium and the establishment of a stable temperature gradient.
These theories of heat transfer can predict the behavior of heat waves traveling at a limited
velocity. The Green–Lindsay theory [38], the Green–Naghdi theory [39,40], and the Lord
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and Shulman [41] theory are three examples of more extended thermoelastic theories that
have found widespread use.

From the above literature summary, it is observed that more work needs to be carried
out in order to better understand how changes in volume and temperature affect the soft-
ening toughness and strengthening elastic behaviors in nano- and microstructures. For this
reason, the purpose of this study is to introduce a new nonlocal model of thermoelasticity
by combining the nonlocal elasticity theory of Eringen with the two-phase lag theory in
addition to the MCS theory. An advantage of the new theory is that it has internal ma-
terial length scale coefficients and takes the effect of size into account, in contrast to the
classical BE beam model. Additionally, this proposed model is applied to understand how
small nanostructured thermoplastic structures that move at a constant speed behave under
external environmental conditions.

As a concrete example of a size-dependent thermoelasticity model, the thermody-
namic behavior of an axially moving nanobeam subjected to sinusoidal pulse heating has
been studied. Following the derivation of the governing equations, the Laplace trans-
form technique and its computational inversion are used to solve the systems. Variations
in non-dimensional lateral deformation, bending moment, changes in temperature, and
displacement were derived and graphically depicted. Regarding the thermodynamic
properties of the moving nanobeam, the influences of the length scale index, nonlocality
indicator, phase delay, and axial velocity of the beam were investigated. It was discov-
ered that the aforementioned factors significantly affect the toughness properties of the
nanobeams and their thermal response.

After the Introduction section, the outline of the present work is arranged as follows:
In Section 2, the governing partial differential equations of the dual theory of stress and the
nonlocal theory, as well as the generalized theory of thermoelasticity, are introduced. The
theoretical model of an axially moving nanobeam subjected to thermal loads is presented
in Section 3. In Section 4, to simplify the proposed problem, an analytical method for the
solution is presented in addition to dimensionless quantities. In order to solve the problem
and calculate different domain variables, the Laplace transform and inverse transform
approaches are used in the Section 5. In the Section 6, the validity of the proposed model
is validated by comparisons, parametric discussions, and numerical examples. The effect
of the nonlocal modulus, axial velocity, and material properties’ scale parameters on the
behavior of the studied domains was also studied. In the Section 7 of the manuscript, a
summary of the most important conclusions obtained from the discussion and analysis
is presented.

2. Governing Equations

Yang et al. [10] and Hadjesfandiari and Dargush [17], who built and proposed the
modified couple stress model (MSC), provided that the constitutive equation and the parts
of the rotation vector are determined by

mkl = 2l2µχkl , (1)

2χkl =
∂ωk
∂xl

+
∂ωl
∂xk

, (2)

2ωk = εkjiui,j, (3)

τkl = λεmmδkl + µεkl − γδklθ, (4)

2εkl =
∂uk
∂xl

+
∂ul
∂xk

. (5)
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In Equations (1)–(5), τkl and mkl are the stress and the couple stress (CS) tensors,
respectively; λ and µ are Lamé’s constants; uk are the displacements; εkl and ωk are the
strain and rotation fields, respectively; χkl denotes the curvature tensor; δkl is the Kronecker
delta. The parameter l is the length scale of the material and is related to the size influence.
Additionally, θ = T − T0 denotes the temperature difference, T represents the temperature
increment above the environmental temperature T0, and γ = αt(3λ + 2µ) = Eαt/(1− 2ν),
with αt being the coefficient of thermal expansion, E symbolizing Young’s modulus,
and ν signifying Poisson’s ratio. Constants λ and µ may be represented by equations
λ = νE

(1−2ν)(1+ν)
and µ = E

2(1+ν)
, respectively.

Eringen [7–9] first established the idea of nonlocal elasticity using an integral constitu-
tive equation, which might be written as follows [8,15].

σkl(x) =
∫

τkl(x′)K(|x− x′|, ξ)dV(x′), ∀x ∈ V,
µkl(x) =

∫
mkl(x′)K(|x− x′|, ξ)dV(x′), ∀x ∈ V,

(6)

In a body, at each given location x, the nonlocal stress tensor is denoted by σkl ,
K(|x− x′|, ξ) is the nonlocality modulus, and |x− x′| denotes the Euclidean (neighbor-
hood) distance. In addition, ξ = (e0a/
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are the internal
and exterior characteristic lengths, respectively.

Nonlocal elasticity is described by integral–partial differential equations; however,
Eringen [8] claims these may be reduced to standard differential equations under specific
conditions [15]. This differential relationship may then be written as

σkl − ξ
∂2σkl
∂x2

.

= τkl , (7)

µkl − ξ
∂2µkl
∂x2 = mkl (8)

The following equation is the heat transfer equation for an isotropic material according
to the modified DPL thermoelasticity model [42]:(

1 + τq
∂

∂t

)(
ρCE

∂θ

∂t
+ γT0

∂e
∂t
−Q

)
= K

(
1 + τθ

∂

∂t

)
∇2θ. (9)

where ρ is the density, CE denotes the specific heat, Q is the internal heat supply, and
e = εmm denotes the dilatation.

Parameters τθ and τq are the phase lags of the temperature gradient and heat flow,
respectively. The impacts of heat inertia and microstructural interactions are also considered
by introducing coefficients τq and τθ . According to Quintanilla and Racke [43], the system
is stable if τθ > 2τq and unstable if τθ < 2τq.

The system’s average temperature responds to a change in the heat flux vector if
τθ > τq, and the reverse is true if τθ < τq. In the limit when τθ = 0, the Lord and Shulman
theory can be attained. Equation (23) simplifies the conventional parabolic heat equation at
τθ = 0 = τq.

3. Problem Statement

A moving Euler–Bernoulli nanobeam, shown in Figure 1, will be considered with
length L and uniform cross-section A. To study the problem, a coordinate system (x, y, z)
will be used, where the x-axis coincides with the central axis of the unqualified beam at
first, and y is the neutral axis, while the axis z is the symmetry axis. The beam moves along
its axis at a speed of υ, and the beam is subject to an axial dynamic load. The bending
stiffness of the beam is EI, where I = bh3/12, b is the width, and h is the thickness.
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In the theory of Bernoulli and Euler beams, the displacement components are ad-
dressed by [44]

(u, v, w) =

(
zϕ(x, t) ≈ −z

∂w(x, t)
∂x

, 0, w(x, t)
)

, (10)

where u, v, and w represent the components of displacement vector in x, y, and z directions,
respectively. It can be shown that w(x, t) represents the beam’s deflection.

The following relations may be obtained using Equations (2), (3) and (10).

2χxy = −∂2w
∂x2 , ωy = −∂w

∂x
. (11)

Substituting Equation (11) into Equations (1) and (4) yields

τxx = −E
(

z
∂2w
∂x2 + αTθ

)
, mxy = −l2µ

∂2w
∂x2 . (12)

Following the Hamilton principle, the equation of the transverse vibration of
the traveling nanobeam subjected to a longitudinal load P(t) may be expressed as
follows [45,46].

∂2M
∂x2 + m0

(
∂2w
∂t2 + 2υ

∂2w
∂x∂t

+ υ2 ∂2w
∂x2

)
= −P

∂2w
∂x2 , m0 = ρA. (13)

In this equation, M(x, t) is the total bending moment. To calculate the resultant and a
couple of moments (Mx and Yxy), we use the given equations [10,17]:

Mx = b
∫ h/2
−h/2 zσxdz,

Yxy = b
∫ h/2
−h/2 mxydz,

(14)

Then, the total bending moment is given by

M = Mx + Yxy. (15)

The nonlocal constitutive relations (7) of the Euler–Bernoulli nanostructure can be
calculated as follows: (

1− ξ
∂2

∂x2

)
σx = τxx = −E

(
z

∂2w
∂x2 + αTθ

)
, (16)

(
1− ξ

∂2

∂x2

)
µxy = mxy = −l2µ

∂2w
∂x2 , (17)

where σx and µxy indicate the nonlocal thermal and couple stresses, respectively.
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After applying Equations (14)–(17), the equation for total moment M, which is pro-
vided in Equation (11), is simplified to

M(x, t)− ξ
∂2M(x, t)

∂x2 = −EI
(

∂2w
∂x2 + αT MT

)
− l2µA

∂2w
∂x2 . (18)

Moreover, MT stands for the thermal moment, which may be determined by the
following relation.

MT =
12
h3

∫ h/2

−h/2
θ(x, z, t)zdz. (19)

Motion Equation (13) can be reformulated in its present form by substituting Equation (18)
in Equation (13) to become[(

1 + ξm0υ2

EI + 6l2

h2(1+ν)
+ ξP

EI

)
∂4

∂x4 +
(

m0
EI

∂2

∂t2 +
2υm0

EI
∂2

∂x∂t

)(
ξ ∂2

∂x2 − 1
)]

w

−
(

m0υ2

EI + P
EI

)
∂2w
∂x2 + αT

∂2 MT
∂x2 = 0.

(20)

In addition, if we plug Equation (13) into Equation (18), we obtain the following.

M(x, t) = −ξm0

(
∂2w
∂t2 + 2υ ∂2w

∂x∂t + υ2 ∂2w
∂x2 + P

m0
∂2w
∂x2

)
−EI

((
1 + 6l2

h2(1+ν)

)
∂2w
∂x2 + αT MT

) (21)

If we substitute ξ = 0 in the previous equations, we return the original local equation
of motion for a moving Euler–Bernoulli beam.

By substituting Equation (10) into Equation (9), the following DPL heat transfer
equation is obtained when no external heat source is present.(

1 + τθ
∂

∂t

)
∂2θ

∂x2 +

(
1 + τθ

∂

∂t

)
∂2θ

∂z2 =

(
1 + τq

∂

∂t

)[
ρCE

K
∂θ

∂t
− γT0

K
z

∂3w
∂t∂x2

]
. (22)

4. Analytical Solution

It will be considered that relationships ∂θ(x,z,t)
∂z

∣∣∣
z=h/2

= 0 and ∂θ(x,z,t)
∂z

∣∣∣
z=−h/2

= 0 are

fulfilled since heat is not transferred between the top and bottom of the nanobeam, which is
isolated. Moreover, the nanoscale beam is skinny, and temperature changes (θ) sinusoidally
in the thickness direction (sin(πz/h)). As a result, the temperature function can be written
as the product of two functions: the first is sin(πz/h) as a function of z in u only, and the
second is a function Θ(x, t) of axial distance x and time t as follows.

θ(x, z, t) = Θ(x, t)sin(πz/h). (23)

Equation (23) is substituted into Equations (20) and (21), and after some algebraic
computations, we obtain the following:

M(x, t) = −ξm0
∂2w
∂t2 − 2υξm0

∂2w
∂x∂t − υ2ξm0

∂2w
∂x2 − ξP ∂2w

∂x2

−EI
(

S0
∂2w
∂x2 + 24αT

hπ2 Θ
) (24)

[(
S0 +

ξm0υ2

EI + ξP
EI

)
∂4

∂x4 +
(

m0
EI

∂2

∂t2 +
2υm0

EI
∂2

∂x∂t

)(
ξ ∂2

∂x2 − 1
)]

w

−
(

m0υ2

EI + P
EI

)
∂2w
∂x2 + 24αT

hπ2
∂2Θ
∂x2 = 0.

(25)

where S0 = 1 + 6l2

h2(1+ν)
.
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Multiplying Equation (22) by 12z/h3 and integrating w.r. into variable z over the
beam’s thickness from −h/2 to h/2 leads to(

1 + τθ
∂
∂t

)
∂2Θ
∂x2 − π2

h2

(
1 + τθ

∂
∂t

)
Θ

=
(

1 + τq
∂
∂t

)[
ρCE

K
∂Θ
∂t −

βT0π2h
24K

∂
∂t

(
∂2w
∂x2

)]
.

(26)

We utilize the following non-dimensional variables to simplify the calculation:

(x′, L′, u′, w′, z′) = ηc(x, L, u, w, z), Θ′ = 1
T0

Θ, σ′x = 1
E σx, P′ = 1

E P,

M′ = − 1
ηcEI M,

(
t′, t′0, τ′q, τ′θ

)
= ηc2(t, t0, τq, τθ

)
, υ′ = υ

c ,
(27)

where η = ρCE
K and c =

√
E
ρ .

In view of the use of Equation (27), Equations (24)–(26) can be presented in the
following forms. [(

S0 + ξυ2 + ξP
)

∂4

∂x4 +
12
h2

(
∂2

∂t2 + 2υ ∂2

∂x∂t

)(
ξ ∂2

∂x2 − 1
)]

w

− 12(υ2+P)
h2

∂2w
∂x2 + 24T0αT

hπ2
∂2Θ
∂x2 = 0

(28)

(
∂2Θ
∂x2 −

π2

h2

)(
1 + τθ

∂

∂t

)
Θ =

(
1 + τq

∂

∂t

)[
∂Θ
∂t
− γπ2h

24Kη

∂

∂t

(
∂2w
∂x2

)]
, (29)

M(x, t) = ξ
∂2w
∂t2 + 2υξ

∂2w
∂x∂t

+ ξ
(

υ2 + P
)∂2w

∂x2 + S0
∂2w
∂x2 +

24T0αT

hπ2 Θ. (30)

The primes have been excluded from the preceding equations for simplicity.
To find a solution to the problem at hand, it is necessary to take into account the

starting conditions and limits. It will be assumed that all initial conditions in this scenario
are homogeneous. The starting conditions will be as follows:

w(x, t)|t=0 = 0 =
∂w(x, t)

∂t

∣∣∣∣
t=0

, Θ(x, t)|t=0 = 0 =
∂Θ(x, t)

∂t

∣∣∣∣
t=0

. (31)

Moreover, the boundary conditions for the moving nanobeam are considered to
be clamped at both edges. The following mechanical constraints may be considered in
this case:

w(x, t)|x=0,L = 0,
∂w(x, t)

∂x

∣∣∣∣
x=0,L

= 0. (32)

It will be assumed that the first edge of the beam (x = 0) is thermally loaded, as in the
following equation:

θ(z, t)= θ0sin(pz) f (x, t) on x = 0, (33)

where θ0 is a constant. It will be assumed that the load is a variable sinusoidal pulse func-
tion denoted by f (x, t). This assumption is capable of being mathematically represented
as follows:

f (x, t) = f (t) = sin
(

π

t0
t
)

, 0 ≤ t ≤ t0 (34)

where t0 indicates the pulse width. Additionally, the other end of the beam (x = L) is
supposed to be insulated. In this case, the thermal boundary condition can be written
as follows:

∂Θ
∂x

∣∣∣∣
x=L

= 0. (35)
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In most of the previous literature, it was hypothesized that the axial force of transverse
excitation was either non-existent or constant. The axial force is often variable with time as
well as position. In the present work, it will be assumed that the dimensionless transverse
axial tension will be a time-varying function as in the following relation [47]:

P = Ps + PDcos(ωt). (36)

where ω is the loading frequency, and Ps and PD represent the static and dynamic
axial loads.

5. Solution Procedure

By using the initial condition from Equation (31) and the Laplace transform, the set
containing Equations (28)–(30) can be simplified into the following set of equations:

d4w
dx4 + A3

d3w
dx3 + A2

d2w
dx2 + A1

dw
dx

+ A0w = −B1
d2Θ
dx2 , (37)

−A4
d2w
dx2 =

d2Θ
dx2 − B2Θ, (38)

M(x, t) =
(

ξ
(

υ2 + P
)
+ S0

)d2w
dx2 + 2υsξ

dw
dx

+ ξs2w +
24T0αT

hπ2 Θ, (39)

where

A0 = 12s2

h2(S0+ξυ2+ξP)
, A1 = 2υA0

s , A2 = A0
(
s2ξ − υ2 − P

)
, A3 =

2υξ A0
s ,

B1 = 24T0αT
π2h(S0+ξυ2+ξP)

, B2 = π2

h2 +
s(1+τqs)

1+τθs , A4 =
sγπ2h(1+τqs)
24Kη(1+τθ s) , P = Ps

s + sPD
s2+ω2 .

(40)

Equations (37) and (38) can be doubled to obtain the following differential equation of
the sixth order:[

a6
d6

dx6 + a5
d5

dx5 + a3
d4

dx4 + a3
d3

dx3 + a2
d2

dx2 + a1
d

dx
+ a0

]{
w, Θ

}
, (41)

where
a5 = A3, a4 = −B1 A4 + A2, a3 = −B2 A3 + A1,

a2 = A0 − B2 A2, a1 = −B2 A1, a0 = −B2 A0.
(42)

The expression representing the answer to Equation (41) can be expressed as follows:

{
w, Θ

}
=

6

∑
j=1

{
Cj, C ′j

}
e
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time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 
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In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 
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In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 
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In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 
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In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 
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In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)
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isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 
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Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

3 + (

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

2 −

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

2)

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

+ (

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

1 −

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

1)

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

+

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

0 −

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

0 = 0,

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

3 + (

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

2 +

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

2)

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

2 + (

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

1 +

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

1)

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

+

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

0 +

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

0 = 0.
(46)

The solution to the above issue consists of six cubic equations, each of which must be
solved separately to obtain the six roots. Thus, in order to change Equation (44) into the form
of Equation (46), the parameters of the two equations must be equivalent. This results in
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𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

2 = a5
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transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 
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where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
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of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 
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5a4
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64 +
a4

4
4 + a5a3

2 −
3a4a2

5
8 − a2,
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The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
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2
0 =

a2
7

c2
1
,

a7 = a3a4
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a5a2

4
8 −

a3a2
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16 −
a5

5
128 −

a1
2 .

(47)

All six roots of Equation (46) can be obtained by solving for the unknown parameters
using the method shown above, which involves solving a cubic equation:

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
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Equation (45), can be factored into two cubic polynomial components, its solution is ob-
tained. The following cubic equations are obtained by equating these polynomial compo-
nents to zero: 𝓂 + (𝒷 − 𝒸 )𝓂 + (𝒷 − 𝒸 )𝓂 + 𝒷 − 𝒸 = 0,𝓂 + (𝒷 + 𝒸 )𝓂 + (𝒷 + 𝒸 )𝓂 + 𝒷 + 𝒸 = 0. (46)

The solution to the above issue consists of six cubic equations, each of which must be 
solved separately to obtain the six roots. Thus, in order to change Equation (44) into the 
form of Equation (46), the parameters of the two equations must be equivalent. This results 
in 𝒷 = 𝑎2 + 𝑎16 − 𝑎 𝑎4 , 𝒷 = 𝑎2 − 𝑎8 , 𝒷 = 𝑎2 , 𝒸 = 0,𝒸 = 5𝑎64 + 𝑎4 + 𝑎 𝑎2 − 3𝑎 𝑎8 − 𝑎 , 𝒸 = 𝑎𝑐 ,

𝑎 = 𝑎 𝑎4 + 3𝑎 𝑎16 − 𝑎 𝑎8 − 𝑎 𝑎16 − 𝑎128 − 𝑎2 .
 (47)

All six roots of Equation (46) can be obtained by solving for the unknown parameters 
using the method shown above, which involves solving a cubic equation: 𝓂 = 23 𝓅 sin( 𝓆 ), 𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )],𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], 𝓂 = 23 𝓅 sin( 𝓆 ),𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )], 𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], (48)

where 𝓅 = 3𝒸 − 3𝒷 ,  𝓆 = 13 sin 27𝒷 − 27𝑎2𝑝 ,
𝓅 = 3𝒸 + 3𝒷 ,  𝓆 = 13 sin 27𝒷 + 27𝑎2𝑝 . (49)

The compatibility between Equations (38) and (43) gives 𝐶 = 𝛽 𝒞 ,  𝛽 = − 𝐴 𝓂𝓂 − 𝐵 , 𝑗 = 1,2,3. (50)

With the help of the solution in (23), the expression for temperature 𝜃 inside the con-
verted domain can be found in the following form: 

𝜃(𝑥, 𝑧, 𝑠) = 𝛽 𝒞 𝑒𝓂 sin 𝜋𝑧ℎ  (51)

The axial displacement field can be produced after performing the Laplace transform 
and substituting Equation (43) in (6): 

�̄�(𝑥, , 𝑧, 𝑠) = −𝑧 𝑑𝑤(𝑥, 𝑠)𝑑𝑥 = −𝑧 𝓂 𝒞 𝑒𝓂 , (52)

With the assistance of Equation (43), we can write the bending moment that is given 
in Equation (39) as follows: 

𝑀(𝑥, 𝑠) = (𝜐 𝜉 + 𝜉𝑃 + 𝑆 )𝓂 + 2𝜐𝑠𝜉𝓂 + 𝜉𝑠 + 24𝑇 𝛼ℎ𝜋 𝛽 𝒞 𝑒𝓂 . (53)
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In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)
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where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 
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Equation (45), can be factored into two cubic polynomial components, its solution is ob-
tained. The following cubic equations are obtained by equating these polynomial compo-
nents to zero: 𝓂 + (𝒷 − 𝒸 )𝓂 + (𝒷 − 𝒸 )𝓂 + 𝒷 − 𝒸 = 0,𝓂 + (𝒷 + 𝒸 )𝓂 + (𝒷 + 𝒸 )𝓂 + 𝒷 + 𝒸 = 0. (46)

The solution to the above issue consists of six cubic equations, each of which must be 
solved separately to obtain the six roots. Thus, in order to change Equation (44) into the 
form of Equation (46), the parameters of the two equations must be equivalent. This results 
in 𝒷 = 𝑎2 + 𝑎16 − 𝑎 𝑎4 , 𝒷 = 𝑎2 − 𝑎8 , 𝒷 = 𝑎2 , 𝒸 = 0,𝒸 = 5𝑎64 + 𝑎4 + 𝑎 𝑎2 − 3𝑎 𝑎8 − 𝑎 , 𝒸 = 𝑎𝑐 ,

𝑎 = 𝑎 𝑎4 + 3𝑎 𝑎16 − 𝑎 𝑎8 − 𝑎 𝑎16 − 𝑎128 − 𝑎2 .
 (47)

All six roots of Equation (46) can be obtained by solving for the unknown parameters 
using the method shown above, which involves solving a cubic equation: 𝓂 = 23 𝓅 sin( 𝓆 ), 𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )],𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], 𝓂 = 23 𝓅 sin( 𝓆 ),𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )], 𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], (48)

where 𝓅 = 3𝒸 − 3𝒷 ,  𝓆 = 13 sin 27𝒷 − 27𝑎2𝑝 ,
𝓅 = 3𝒸 + 3𝒷 ,  𝓆 = 13 sin 27𝒷 + 27𝑎2𝑝 . (49)

The compatibility between Equations (38) and (43) gives 𝐶 = 𝛽 𝒞 ,  𝛽 = − 𝐴 𝓂𝓂 − 𝐵 , 𝑗 = 1,2,3. (50)

With the help of the solution in (23), the expression for temperature 𝜃 inside the con-
verted domain can be found in the following form: 

𝜃(𝑥, 𝑧, 𝑠) = 𝛽 𝒞 𝑒𝓂 sin 𝜋𝑧ℎ  (51)

The axial displacement field can be produced after performing the Laplace transform 
and substituting Equation (43) in (6): 

�̄�(𝑥, , 𝑧, 𝑠) = −𝑧 𝑑𝑤(𝑥, 𝑠)𝑑𝑥 = −𝑧 𝓂 𝒞 𝑒𝓂 , (52)

With the assistance of Equation (43), we can write the bending moment that is given 
in Equation (39) as follows: 

𝑀(𝑥, 𝑠) = (𝜐 𝜉 + 𝜉𝑃 + 𝑆 )𝓂 + 2𝜐𝑠𝜉𝓂 + 𝜉𝑠 + 24𝑇 𝛼ℎ𝜋 𝛽 𝒞 𝑒𝓂 . (53)
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and substituting Equation (43) in (6): 

�̄�(𝑥, , 𝑧, 𝑠) = −𝑧 𝑑𝑤(𝑥, 𝑠)𝑑𝑥 = −𝑧 𝓂 𝒞 𝑒𝓂 , (52)

With the assistance of Equation (43), we can write the bending moment that is given 
in Equation (39) as follows: 

𝑀(𝑥, 𝑠) = (𝜐 𝜉 + 𝜉𝑃 + 𝑆 )𝓂 + 2𝜐𝑠𝜉𝓂 + 𝜉𝑠 + 24𝑇 𝛼ℎ𝜋 𝛽 𝒞 𝑒𝓂 . (53)

1

)
+sin(

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 23 
 

 

Equation (45), can be factored into two cubic polynomial components, its solution is ob-
tained. The following cubic equations are obtained by equating these polynomial compo-
nents to zero: 𝓂 + (𝒷 − 𝒸 )𝓂 + (𝒷 − 𝒸 )𝓂 + 𝒷 − 𝒸 = 0,𝓂 + (𝒷 + 𝒸 )𝓂 + (𝒷 + 𝒸 )𝓂 + 𝒷 + 𝒸 = 0. (46)

The solution to the above issue consists of six cubic equations, each of which must be 
solved separately to obtain the six roots. Thus, in order to change Equation (44) into the 
form of Equation (46), the parameters of the two equations must be equivalent. This results 
in 𝒷 = 𝑎2 + 𝑎16 − 𝑎 𝑎4 , 𝒷 = 𝑎2 − 𝑎8 , 𝒷 = 𝑎2 , 𝒸 = 0,𝒸 = 5𝑎64 + 𝑎4 + 𝑎 𝑎2 − 3𝑎 𝑎8 − 𝑎 , 𝒸 = 𝑎𝑐 ,

𝑎 = 𝑎 𝑎4 + 3𝑎 𝑎16 − 𝑎 𝑎8 − 𝑎 𝑎16 − 𝑎128 − 𝑎2 .
 (47)

All six roots of Equation (46) can be obtained by solving for the unknown parameters 
using the method shown above, which involves solving a cubic equation: 𝓂 = 23 𝓅 sin( 𝓆 ), 𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )],𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], 𝓂 = 23 𝓅 sin( 𝓆 ),𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )], 𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], (48)

where 𝓅 = 3𝒸 − 3𝒷 ,  𝓆 = 13 sin 27𝒷 − 27𝑎2𝑝 ,
𝓅 = 3𝒸 + 3𝒷 ,  𝓆 = 13 sin 27𝒷 + 27𝑎2𝑝 . (49)

The compatibility between Equations (38) and (43) gives 𝐶 = 𝛽 𝒞 ,  𝛽 = − 𝐴 𝓂𝓂 − 𝐵 , 𝑗 = 1,2,3. (50)

With the help of the solution in (23), the expression for temperature 𝜃 inside the con-
verted domain can be found in the following form: 

𝜃(𝑥, 𝑧, 𝑠) = 𝛽 𝒞 𝑒𝓂 sin 𝜋𝑧ℎ  (51)

The axial displacement field can be produced after performing the Laplace transform 
and substituting Equation (43) in (6): 

�̄�(𝑥, , 𝑧, 𝑠) = −𝑧 𝑑𝑤(𝑥, 𝑠)𝑑𝑥 = −𝑧 𝓂 𝒞 𝑒𝓂 , (52)

With the assistance of Equation (43), we can write the bending moment that is given 
in Equation (39) as follows: 

𝑀(𝑥, 𝑠) = (𝜐 𝜉 + 𝜉𝑃 + 𝑆 )𝓂 + 2𝜐𝑠𝜉𝓂 + 𝜉𝑠 + 24𝑇 𝛼ℎ𝜋 𝛽 𝒞 𝑒𝓂 . (53)

1)],

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
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transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 
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of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)
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Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 
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Equation (45), can be factored into two cubic polynomial components, its solution is ob-
tained. The following cubic equations are obtained by equating these polynomial compo-
nents to zero: 𝓂 + (𝒷 − 𝒸 )𝓂 + (𝒷 − 𝒸 )𝓂 + 𝒷 − 𝒸 = 0,𝓂 + (𝒷 + 𝒸 )𝓂 + (𝒷 + 𝒸 )𝓂 + 𝒷 + 𝒸 = 0. (46)

The solution to the above issue consists of six cubic equations, each of which must be 
solved separately to obtain the six roots. Thus, in order to change Equation (44) into the 
form of Equation (46), the parameters of the two equations must be equivalent. This results 
in 𝒷 = 𝑎2 + 𝑎16 − 𝑎 𝑎4 , 𝒷 = 𝑎2 − 𝑎8 , 𝒷 = 𝑎2 , 𝒸 = 0,𝒸 = 5𝑎64 + 𝑎4 + 𝑎 𝑎2 − 3𝑎 𝑎8 − 𝑎 , 𝒸 = 𝑎𝑐 ,

𝑎 = 𝑎 𝑎4 + 3𝑎 𝑎16 − 𝑎 𝑎8 − 𝑎 𝑎16 − 𝑎128 − 𝑎2 .
 (47)

All six roots of Equation (46) can be obtained by solving for the unknown parameters 
using the method shown above, which involves solving a cubic equation: 𝓂 = 23 𝓅 sin( 𝓆 ), 𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )],𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], 𝓂 = 23 𝓅 sin( 𝓆 ),𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )], 𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], (48)

where 𝓅 = 3𝒸 − 3𝒷 ,  𝓆 = 13 sin 27𝒷 − 27𝑎2𝑝 ,
𝓅 = 3𝒸 + 3𝒷 ,  𝓆 = 13 sin 27𝒷 + 27𝑎2𝑝 . (49)

The compatibility between Equations (38) and (43) gives 𝐶 = 𝛽 𝒞 ,  𝛽 = − 𝐴 𝓂𝓂 − 𝐵 , 𝑗 = 1,2,3. (50)

With the help of the solution in (23), the expression for temperature 𝜃 inside the con-
verted domain can be found in the following form: 

𝜃(𝑥, 𝑧, 𝑠) = 𝛽 𝒞 𝑒𝓂 sin 𝜋𝑧ℎ  (51)

The axial displacement field can be produced after performing the Laplace transform 
and substituting Equation (43) in (6): 

�̄�(𝑥, , 𝑧, 𝑠) = −𝑧 𝑑𝑤(𝑥, 𝑠)𝑑𝑥 = −𝑧 𝓂 𝒞 𝑒𝓂 , (52)

With the assistance of Equation (43), we can write the bending moment that is given 
in Equation (39) as follows: 

𝑀(𝑥, 𝑠) = (𝜐 𝜉 + 𝜉𝑃 + 𝑆 )𝓂 + 2𝜐𝑠𝜉𝓂 + 𝜉𝑠 + 24𝑇 𝛼ℎ𝜋 𝛽 𝒞 𝑒𝓂 . (53)

1

[√
3cos(

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 23 
 

 

Equation (45), can be factored into two cubic polynomial components, its solution is ob-
tained. The following cubic equations are obtained by equating these polynomial compo-
nents to zero: 𝓂 + (𝒷 − 𝒸 )𝓂 + (𝒷 − 𝒸 )𝓂 + 𝒷 − 𝒸 = 0,𝓂 + (𝒷 + 𝒸 )𝓂 + (𝒷 + 𝒸 )𝓂 + 𝒷 + 𝒸 = 0. (46)

The solution to the above issue consists of six cubic equations, each of which must be 
solved separately to obtain the six roots. Thus, in order to change Equation (44) into the 
form of Equation (46), the parameters of the two equations must be equivalent. This results 
in 𝒷 = 𝑎2 + 𝑎16 − 𝑎 𝑎4 , 𝒷 = 𝑎2 − 𝑎8 , 𝒷 = 𝑎2 , 𝒸 = 0,𝒸 = 5𝑎64 + 𝑎4 + 𝑎 𝑎2 − 3𝑎 𝑎8 − 𝑎 , 𝒸 = 𝑎𝑐 ,

𝑎 = 𝑎 𝑎4 + 3𝑎 𝑎16 − 𝑎 𝑎8 − 𝑎 𝑎16 − 𝑎128 − 𝑎2 .
 (47)

All six roots of Equation (46) can be obtained by solving for the unknown parameters 
using the method shown above, which involves solving a cubic equation: 𝓂 = 23 𝓅 sin( 𝓆 ), 𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )],𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], 𝓂 = 23 𝓅 sin( 𝓆 ),𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )], 𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], (48)

where 𝓅 = 3𝒸 − 3𝒷 ,  𝓆 = 13 sin 27𝒷 − 27𝑎2𝑝 ,
𝓅 = 3𝒸 + 3𝒷 ,  𝓆 = 13 sin 27𝒷 + 27𝑎2𝑝 . (49)

The compatibility between Equations (38) and (43) gives 𝐶 = 𝛽 𝒞 ,  𝛽 = − 𝐴 𝓂𝓂 − 𝐵 , 𝑗 = 1,2,3. (50)

With the help of the solution in (23), the expression for temperature 𝜃 inside the con-
verted domain can be found in the following form: 

𝜃(𝑥, 𝑧, 𝑠) = 𝛽 𝒞 𝑒𝓂 sin 𝜋𝑧ℎ  (51)

The axial displacement field can be produced after performing the Laplace transform 
and substituting Equation (43) in (6): 

�̄�(𝑥, , 𝑧, 𝑠) = −𝑧 𝑑𝑤(𝑥, 𝑠)𝑑𝑥 = −𝑧 𝓂 𝒞 𝑒𝓂 , (52)

With the assistance of Equation (43), we can write the bending moment that is given 
in Equation (39) as follows: 

𝑀(𝑥, 𝑠) = (𝜐 𝜉 + 𝜉𝑃 + 𝑆 )𝓂 + 2𝜐𝑠𝜉𝓂 + 𝜉𝑠 + 24𝑇 𝛼ℎ𝜋 𝛽 𝒞 𝑒𝓂 . (53)

1

)
−sin(

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 23 
 

 

Equation (45), can be factored into two cubic polynomial components, its solution is ob-
tained. The following cubic equations are obtained by equating these polynomial compo-
nents to zero: 𝓂 + (𝒷 − 𝒸 )𝓂 + (𝒷 − 𝒸 )𝓂 + 𝒷 − 𝒸 = 0,𝓂 + (𝒷 + 𝒸 )𝓂 + (𝒷 + 𝒸 )𝓂 + 𝒷 + 𝒸 = 0. (46)

The solution to the above issue consists of six cubic equations, each of which must be 
solved separately to obtain the six roots. Thus, in order to change Equation (44) into the 
form of Equation (46), the parameters of the two equations must be equivalent. This results 
in 𝒷 = 𝑎2 + 𝑎16 − 𝑎 𝑎4 , 𝒷 = 𝑎2 − 𝑎8 , 𝒷 = 𝑎2 , 𝒸 = 0,𝒸 = 5𝑎64 + 𝑎4 + 𝑎 𝑎2 − 3𝑎 𝑎8 − 𝑎 , 𝒸 = 𝑎𝑐 ,

𝑎 = 𝑎 𝑎4 + 3𝑎 𝑎16 − 𝑎 𝑎8 − 𝑎 𝑎16 − 𝑎128 − 𝑎2 .
 (47)

All six roots of Equation (46) can be obtained by solving for the unknown parameters 
using the method shown above, which involves solving a cubic equation: 𝓂 = 23 𝓅 sin( 𝓆 ), 𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )],𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], 𝓂 = 23 𝓅 sin( 𝓆 ),𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )], 𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], (48)

where 𝓅 = 3𝒸 − 3𝒷 ,  𝓆 = 13 sin 27𝒷 − 27𝑎2𝑝 ,
𝓅 = 3𝒸 + 3𝒷 ,  𝓆 = 13 sin 27𝒷 + 27𝑎2𝑝 . (49)

The compatibility between Equations (38) and (43) gives 𝐶 = 𝛽 𝒞 ,  𝛽 = − 𝐴 𝓂𝓂 − 𝐵 , 𝑗 = 1,2,3. (50)

With the help of the solution in (23), the expression for temperature 𝜃 inside the con-
verted domain can be found in the following form: 

𝜃(𝑥, 𝑧, 𝑠) = 𝛽 𝒞 𝑒𝓂 sin 𝜋𝑧ℎ  (51)

The axial displacement field can be produced after performing the Laplace transform 
and substituting Equation (43) in (6): 

�̄�(𝑥, , 𝑧, 𝑠) = −𝑧 𝑑𝑤(𝑥, 𝑠)𝑑𝑥 = −𝑧 𝓂 𝒞 𝑒𝓂 , (52)

With the assistance of Equation (43), we can write the bending moment that is given 
in Equation (39) as follows: 

𝑀(𝑥, 𝑠) = (𝜐 𝜉 + 𝜉𝑃 + 𝑆 )𝓂 + 2𝜐𝑠𝜉𝓂 + 𝜉𝑠 + 24𝑇 𝛼ℎ𝜋 𝛽 𝒞 𝑒𝓂 . (53)

1)] ,

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 
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Equation (45), can be factored into two cubic polynomial components, its solution is ob-
tained. The following cubic equations are obtained by equating these polynomial compo-
nents to zero: 𝓂 + (𝒷 − 𝒸 )𝓂 + (𝒷 − 𝒸 )𝓂 + 𝒷 − 𝒸 = 0,𝓂 + (𝒷 + 𝒸 )𝓂 + (𝒷 + 𝒸 )𝓂 + 𝒷 + 𝒸 = 0. (46)

The solution to the above issue consists of six cubic equations, each of which must be 
solved separately to obtain the six roots. Thus, in order to change Equation (44) into the 
form of Equation (46), the parameters of the two equations must be equivalent. This results 
in 𝒷 = 𝑎2 + 𝑎16 − 𝑎 𝑎4 , 𝒷 = 𝑎2 − 𝑎8 , 𝒷 = 𝑎2 , 𝒸 = 0,𝒸 = 5𝑎64 + 𝑎4 + 𝑎 𝑎2 − 3𝑎 𝑎8 − 𝑎 , 𝒸 = 𝑎𝑐 ,

𝑎 = 𝑎 𝑎4 + 3𝑎 𝑎16 − 𝑎 𝑎8 − 𝑎 𝑎16 − 𝑎128 − 𝑎2 .
 (47)

All six roots of Equation (46) can be obtained by solving for the unknown parameters 
using the method shown above, which involves solving a cubic equation: 𝓂 = 23 𝓅 sin( 𝓆 ), 𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )],𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], 𝓂 = 23 𝓅 sin( 𝓆 ),𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )], 𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], (48)

where 𝓅 = 3𝒸 − 3𝒷 ,  𝓆 = 13 sin 27𝒷 − 27𝑎2𝑝 ,
𝓅 = 3𝒸 + 3𝒷 ,  𝓆 = 13 sin 27𝒷 + 27𝑎2𝑝 . (49)

The compatibility between Equations (38) and (43) gives 𝐶 = 𝛽 𝒞 ,  𝛽 = − 𝐴 𝓂𝓂 − 𝐵 , 𝑗 = 1,2,3. (50)

With the help of the solution in (23), the expression for temperature 𝜃 inside the con-
verted domain can be found in the following form: 

𝜃(𝑥, 𝑧, 𝑠) = 𝛽 𝒞 𝑒𝓂 sin 𝜋𝑧ℎ  (51)

The axial displacement field can be produced after performing the Laplace transform 
and substituting Equation (43) in (6): 

�̄�(𝑥, , 𝑧, 𝑠) = −𝑧 𝑑𝑤(𝑥, 𝑠)𝑑𝑥 = −𝑧 𝓂 𝒞 𝑒𝓂 , (52)

With the assistance of Equation (43), we can write the bending moment that is given 
in Equation (39) as follows: 

𝑀(𝑥, 𝑠) = (𝜐 𝜉 + 𝜉𝑃 + 𝑆 )𝓂 + 2𝜐𝑠𝜉𝓂 + 𝜉𝑠 + 24𝑇 𝛼ℎ𝜋 𝛽 𝒞 𝑒𝓂 . (53)
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containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 
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Equation (45), can be factored into two cubic polynomial components, its solution is ob-
tained. The following cubic equations are obtained by equating these polynomial compo-
nents to zero: 𝓂 + (𝒷 − 𝒸 )𝓂 + (𝒷 − 𝒸 )𝓂 + 𝒷 − 𝒸 = 0,𝓂 + (𝒷 + 𝒸 )𝓂 + (𝒷 + 𝒸 )𝓂 + 𝒷 + 𝒸 = 0. (46)

The solution to the above issue consists of six cubic equations, each of which must be 
solved separately to obtain the six roots. Thus, in order to change Equation (44) into the 
form of Equation (46), the parameters of the two equations must be equivalent. This results 
in 𝒷 = 𝑎2 + 𝑎16 − 𝑎 𝑎4 , 𝒷 = 𝑎2 − 𝑎8 , 𝒷 = 𝑎2 , 𝒸 = 0,𝒸 = 5𝑎64 + 𝑎4 + 𝑎 𝑎2 − 3𝑎 𝑎8 − 𝑎 , 𝒸 = 𝑎𝑐 ,

𝑎 = 𝑎 𝑎4 + 3𝑎 𝑎16 − 𝑎 𝑎8 − 𝑎 𝑎16 − 𝑎128 − 𝑎2 .
 (47)

All six roots of Equation (46) can be obtained by solving for the unknown parameters 
using the method shown above, which involves solving a cubic equation: 𝓂 = 23 𝓅 sin( 𝓆 ), 𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )],𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], 𝓂 = 23 𝓅 sin( 𝓆 ),𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )], 𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], (48)

where 𝓅 = 3𝒸 − 3𝒷 ,  𝓆 = 13 sin 27𝒷 − 27𝑎2𝑝 ,
𝓅 = 3𝒸 + 3𝒷 ,  𝓆 = 13 sin 27𝒷 + 27𝑎2𝑝 . (49)

The compatibility between Equations (38) and (43) gives 𝐶 = 𝛽 𝒞 ,  𝛽 = − 𝐴 𝓂𝓂 − 𝐵 , 𝑗 = 1,2,3. (50)

With the help of the solution in (23), the expression for temperature 𝜃 inside the con-
verted domain can be found in the following form: 

𝜃(𝑥, 𝑧, 𝑠) = 𝛽 𝒞 𝑒𝓂 sin 𝜋𝑧ℎ  (51)

The axial displacement field can be produced after performing the Laplace transform 
and substituting Equation (43) in (6): 

�̄�(𝑥, , 𝑧, 𝑠) = −𝑧 𝑑𝑤(𝑥, 𝑠)𝑑𝑥 = −𝑧 𝓂 𝒞 𝑒𝓂 , (52)

With the assistance of Equation (43), we can write the bending moment that is given 
in Equation (39) as follows: 

𝑀(𝑥, 𝑠) = (𝜐 𝜉 + 𝜉𝑃 + 𝑆 )𝓂 + 2𝜐𝑠𝜉𝓂 + 𝜉𝑠 + 24𝑇 𝛼ℎ𝜋 𝛽 𝒞 𝑒𝓂 . (53)
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In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 
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where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
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of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)
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The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 
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Equation (45), can be factored into two cubic polynomial components, its solution is ob-
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𝑎 = 𝑎 𝑎4 + 3𝑎 𝑎16 − 𝑎 𝑎8 − 𝑎 𝑎16 − 𝑎128 − 𝑎2 .
 (47)

All six roots of Equation (46) can be obtained by solving for the unknown parameters 
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The compatibility between Equations (38) and (43) gives 𝐶 = 𝛽 𝒞 ,  𝛽 = − 𝐴 𝓂𝓂 − 𝐵 , 𝑗 = 1,2,3. (50)

With the help of the solution in (23), the expression for temperature 𝜃 inside the con-
verted domain can be found in the following form: 

𝜃(𝑥, 𝑧, 𝑠) = 𝛽 𝒞 𝑒𝓂 sin 𝜋𝑧ℎ  (51)

The axial displacement field can be produced after performing the Laplace transform 
and substituting Equation (43) in (6): 

�̄�(𝑥, , 𝑧, 𝑠) = −𝑧 𝑑𝑤(𝑥, 𝑠)𝑑𝑥 = −𝑧 𝓂 𝒞 𝑒𝓂 , (52)

With the assistance of Equation (43), we can write the bending moment that is given 
in Equation (39) as follows: 

𝑀(𝑥, 𝑠) = (𝜐 𝜉 + 𝜉𝑃 + 𝑆 )𝓂 + 2𝜐𝑠𝜉𝓂 + 𝜉𝑠 + 24𝑇 𝛼ℎ𝜋 𝛽 𝒞 𝑒𝓂 . (53)
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using the method shown above, which involves solving a cubic equation: 𝓂 = 23 𝓅 sin( 𝓆 ), 𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )],𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], 𝓂 = 23 𝓅 sin( 𝓆 ),𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )], 𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], (48)

where 𝓅 = 3𝒸 − 3𝒷 ,  𝓆 = 13 sin 27𝒷 − 27𝑎2𝑝 ,
𝓅 = 3𝒸 + 3𝒷 ,  𝓆 = 13 sin 27𝒷 + 27𝑎2𝑝 . (49)

The compatibility between Equations (38) and (43) gives 𝐶 = 𝛽 𝒞 ,  𝛽 = − 𝐴 𝓂𝓂 − 𝐵 , 𝑗 = 1,2,3. (50)

With the help of the solution in (23), the expression for temperature 𝜃 inside the con-
verted domain can be found in the following form: 

𝜃(𝑥, 𝑧, 𝑠) = 𝛽 𝒞 𝑒𝓂 sin 𝜋𝑧ℎ  (51)

The axial displacement field can be produced after performing the Laplace transform 
and substituting Equation (43) in (6): 

�̄�(𝑥, , 𝑧, 𝑠) = −𝑧 𝑑𝑤(𝑥, 𝑠)𝑑𝑥 = −𝑧 𝓂 𝒞 𝑒𝓂 , (52)

With the assistance of Equation (43), we can write the bending moment that is given 
in Equation (39) as follows: 

𝑀(𝑥, 𝑠) = (𝜐 𝜉 + 𝜉𝑃 + 𝑆 )𝓂 + 2𝜐𝑠𝜉𝓂 + 𝜉𝑠 + 24𝑇 𝛼ℎ𝜋 𝛽 𝒞 𝑒𝓂 . (53)
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Equation (45), can be factored into two cubic polynomial components, its solution is ob-
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The solution to the above issue consists of six cubic equations, each of which must be 
solved separately to obtain the six roots. Thus, in order to change Equation (44) into the 
form of Equation (46), the parameters of the two equations must be equivalent. This results 
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With the help of the solution in (23), the expression for temperature 𝜃 inside the con-
verted domain can be found in the following form: 

𝜃(𝑥, 𝑧, 𝑠) = 𝛽 𝒞 𝑒𝓂 sin 𝜋𝑧ℎ  (51)

The axial displacement field can be produced after performing the Laplace transform 
and substituting Equation (43) in (6): 

�̄�(𝑥, , 𝑧, 𝑠) = −𝑧 𝑑𝑤(𝑥, 𝑠)𝑑𝑥 = −𝑧 𝓂 𝒞 𝑒𝓂 , (52)

With the assistance of Equation (43), we can write the bending moment that is given 
in Equation (39) as follows: 

𝑀(𝑥, 𝑠) = (𝜐 𝜉 + 𝜉𝑃 + 𝑆 )𝓂 + 2𝜐𝑠𝜉𝓂 + 𝜉𝑠 + 24𝑇 𝛼ℎ𝜋 𝛽 𝒞 𝑒𝓂 . (53)

2)],

(48)

where

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 23 
 

 

Equation (45), can be factored into two cubic polynomial components, its solution is ob-
tained. The following cubic equations are obtained by equating these polynomial compo-
nents to zero: 𝓂 + (𝒷 − 𝒸 )𝓂 + (𝒷 − 𝒸 )𝓂 + 𝒷 − 𝒸 = 0,𝓂 + (𝒷 + 𝒸 )𝓂 + (𝒷 + 𝒸 )𝓂 + 𝒷 + 𝒸 = 0. (46)

The solution to the above issue consists of six cubic equations, each of which must be 
solved separately to obtain the six roots. Thus, in order to change Equation (44) into the 
form of Equation (46), the parameters of the two equations must be equivalent. This results 
in 𝒷 = 𝑎2 + 𝑎16 − 𝑎 𝑎4 , 𝒷 = 𝑎2 − 𝑎8 , 𝒷 = 𝑎2 , 𝒸 = 0,𝒸 = 5𝑎64 + 𝑎4 + 𝑎 𝑎2 − 3𝑎 𝑎8 − 𝑎 , 𝒸 = 𝑎𝑐 ,

𝑎 = 𝑎 𝑎4 + 3𝑎 𝑎16 − 𝑎 𝑎8 − 𝑎 𝑎16 − 𝑎128 − 𝑎2 .
 (47)

All six roots of Equation (46) can be obtained by solving for the unknown parameters 
using the method shown above, which involves solving a cubic equation: 𝓂 = 23 𝓅 sin( 𝓆 ), 𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )],𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], 𝓂 = 23 𝓅 sin( 𝓆 ),𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )], 𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], (48)

where 𝓅 = 3𝒸 − 3𝒷 ,  𝓆 = 13 sin 27𝒷 − 27𝑎2𝑝 ,
𝓅 = 3𝒸 + 3𝒷 ,  𝓆 = 13 sin 27𝒷 + 27𝑎2𝑝 . (49)

The compatibility between Equations (38) and (43) gives 𝐶 = 𝛽 𝒞 ,  𝛽 = − 𝐴 𝓂𝓂 − 𝐵 , 𝑗 = 1,2,3. (50)

With the help of the solution in (23), the expression for temperature 𝜃 inside the con-
verted domain can be found in the following form: 

𝜃(𝑥, 𝑧, 𝑠) = 𝛽 𝒞 𝑒𝓂 sin 𝜋𝑧ℎ  (51)

The axial displacement field can be produced after performing the Laplace transform 
and substituting Equation (43) in (6): 

�̄�(𝑥, , 𝑧, 𝑠) = −𝑧 𝑑𝑤(𝑥, 𝑠)𝑑𝑥 = −𝑧 𝓂 𝒞 𝑒𝓂 , (52)

With the assistance of Equation (43), we can write the bending moment that is given 
in Equation (39) as follows: 

𝑀(𝑥, 𝑠) = (𝜐 𝜉 + 𝜉𝑃 + 𝑆 )𝓂 + 2𝜐𝑠𝜉𝓂 + 𝜉𝑠 + 24𝑇 𝛼ℎ𝜋 𝛽 𝒞 𝑒𝓂 . (53)

1 =
√

3

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 23 
 

 

In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

1 − 3
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Equation (45), can be factored into two cubic polynomial components, its solution is ob-
tained. The following cubic equations are obtained by equating these polynomial compo-
nents to zero: 𝓂 + (𝒷 − 𝒸 )𝓂 + (𝒷 − 𝒸 )𝓂 + 𝒷 − 𝒸 = 0,𝓂 + (𝒷 + 𝒸 )𝓂 + (𝒷 + 𝒸 )𝓂 + 𝒷 + 𝒸 = 0. (46)
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in 𝒷 = 𝑎2 + 𝑎16 − 𝑎 𝑎4 , 𝒷 = 𝑎2 − 𝑎8 , 𝒷 = 𝑎2 , 𝒸 = 0,𝒸 = 5𝑎64 + 𝑎4 + 𝑎 𝑎2 − 3𝑎 𝑎8 − 𝑎 , 𝒸 = 𝑎𝑐 ,

𝑎 = 𝑎 𝑎4 + 3𝑎 𝑎16 − 𝑎 𝑎8 − 𝑎 𝑎16 − 𝑎128 − 𝑎2 .
 (47)

All six roots of Equation (46) can be obtained by solving for the unknown parameters 
using the method shown above, which involves solving a cubic equation: 𝓂 = 23 𝓅 sin( 𝓆 ), 𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )],𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], 𝓂 = 23 𝓅 sin( 𝓆 ),𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )], 𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], (48)

where 𝓅 = 3𝒸 − 3𝒷 ,  𝓆 = 13 sin 27𝒷 − 27𝑎2𝑝 ,
𝓅 = 3𝒸 + 3𝒷 ,  𝓆 = 13 sin 27𝒷 + 27𝑎2𝑝 . (49)

The compatibility between Equations (38) and (43) gives 𝐶 = 𝛽 𝒞 ,  𝛽 = − 𝐴 𝓂𝓂 − 𝐵 , 𝑗 = 1,2,3. (50)

With the help of the solution in (23), the expression for temperature 𝜃 inside the con-
verted domain can be found in the following form: 

𝜃(𝑥, 𝑧, 𝑠) = 𝛽 𝒞 𝑒𝓂 sin 𝜋𝑧ℎ  (51)

The axial displacement field can be produced after performing the Laplace transform 
and substituting Equation (43) in (6): 

�̄�(𝑥, , 𝑧, 𝑠) = −𝑧 𝑑𝑤(𝑥, 𝑠)𝑑𝑥 = −𝑧 𝓂 𝒞 𝑒𝓂 , (52)

With the assistance of Equation (43), we can write the bending moment that is given 
in Equation (39) as follows: 

𝑀(𝑥, 𝑠) = (𝜐 𝜉 + 𝜉𝑃 + 𝑆 )𝓂 + 2𝜐𝑠𝜉𝓂 + 𝜉𝑠 + 24𝑇 𝛼ℎ𝜋 𝛽 𝒞 𝑒𝓂 . (53)
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𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 
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Equation (45), can be factored into two cubic polynomial components, its solution is ob-
tained. The following cubic equations are obtained by equating these polynomial compo-
nents to zero: 𝓂 + (𝒷 − 𝒸 )𝓂 + (𝒷 − 𝒸 )𝓂 + 𝒷 − 𝒸 = 0,𝓂 + (𝒷 + 𝒸 )𝓂 + (𝒷 + 𝒸 )𝓂 + 𝒷 + 𝒸 = 0. (46)

The solution to the above issue consists of six cubic equations, each of which must be 
solved separately to obtain the six roots. Thus, in order to change Equation (44) into the 
form of Equation (46), the parameters of the two equations must be equivalent. This results 
in 𝒷 = 𝑎2 + 𝑎16 − 𝑎 𝑎4 , 𝒷 = 𝑎2 − 𝑎8 , 𝒷 = 𝑎2 , 𝒸 = 0,𝒸 = 5𝑎64 + 𝑎4 + 𝑎 𝑎2 − 3𝑎 𝑎8 − 𝑎 , 𝒸 = 𝑎𝑐 ,

𝑎 = 𝑎 𝑎4 + 3𝑎 𝑎16 − 𝑎 𝑎8 − 𝑎 𝑎16 − 𝑎128 − 𝑎2 .
 (47)

All six roots of Equation (46) can be obtained by solving for the unknown parameters 
using the method shown above, which involves solving a cubic equation: 𝓂 = 23 𝓅 sin( 𝓆 ), 𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )],𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], 𝓂 = 23 𝓅 sin( 𝓆 ),𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )], 𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], (48)

where 𝓅 = 3𝒸 − 3𝒷 ,  𝓆 = 13 sin 27𝒷 − 27𝑎2𝑝 ,
𝓅 = 3𝒸 + 3𝒷 ,  𝓆 = 13 sin 27𝒷 + 27𝑎2𝑝 . (49)

The compatibility between Equations (38) and (43) gives 𝐶 = 𝛽 𝒞 ,  𝛽 = − 𝐴 𝓂𝓂 − 𝐵 , 𝑗 = 1,2,3. (50)

With the help of the solution in (23), the expression for temperature 𝜃 inside the con-
verted domain can be found in the following form: 

𝜃(𝑥, 𝑧, 𝑠) = 𝛽 𝒞 𝑒𝓂 sin 𝜋𝑧ℎ  (51)

The axial displacement field can be produced after performing the Laplace transform 
and substituting Equation (43) in (6): 

�̄�(𝑥, , 𝑧, 𝑠) = −𝑧 𝑑𝑤(𝑥, 𝑠)𝑑𝑥 = −𝑧 𝓂 𝒞 𝑒𝓂 , (52)

With the assistance of Equation (43), we can write the bending moment that is given 
in Equation (39) as follows: 

𝑀(𝑥, 𝑠) = (𝜐 𝜉 + 𝜉𝑃 + 𝑆 )𝓂 + 2𝜐𝑠𝜉𝓂 + 𝜉𝑠 + 24𝑇 𝛼ℎ𝜋 𝛽 𝒞 𝑒𝓂 . (53)
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In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 

containing Equations (28)–(30) can be simplified into the following set of equations: d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 d 𝑤d𝑥 + 𝐴 𝑑𝑤𝑑𝑥 + 𝐴 𝑤 = −𝐵 d Θd𝑥 , (37)

−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
𝐵 = 24𝑇 𝛼𝜋 ℎ(𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐵 = 𝜋ℎ + 𝑠 1 + 𝜏 𝑠1 + 𝜏 𝑠 , 𝐴 = 𝑠𝛾𝜋 ℎ 1 + 𝜏 𝑠24𝐾𝜂(1 + 𝜏 𝑠) , 𝑃 = 𝑃𝑠 + 𝑠𝑃𝑠 + 𝜔 . (40)

Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 
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Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)
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𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 
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Equation (45), can be factored into two cubic polynomial components, its solution is ob-
tained. The following cubic equations are obtained by equating these polynomial compo-
nents to zero: 𝓂 + (𝒷 − 𝒸 )𝓂 + (𝒷 − 𝒸 )𝓂 + 𝒷 − 𝒸 = 0,𝓂 + (𝒷 + 𝒸 )𝓂 + (𝒷 + 𝒸 )𝓂 + 𝒷 + 𝒸 = 0. (46)

The solution to the above issue consists of six cubic equations, each of which must be 
solved separately to obtain the six roots. Thus, in order to change Equation (44) into the 
form of Equation (46), the parameters of the two equations must be equivalent. This results 
in 𝒷 = 𝑎2 + 𝑎16 − 𝑎 𝑎4 , 𝒷 = 𝑎2 − 𝑎8 , 𝒷 = 𝑎2 , 𝒸 = 0,𝒸 = 5𝑎64 + 𝑎4 + 𝑎 𝑎2 − 3𝑎 𝑎8 − 𝑎 , 𝒸 = 𝑎𝑐 ,

𝑎 = 𝑎 𝑎4 + 3𝑎 𝑎16 − 𝑎 𝑎8 − 𝑎 𝑎16 − 𝑎128 − 𝑎2 .
 (47)

All six roots of Equation (46) can be obtained by solving for the unknown parameters 
using the method shown above, which involves solving a cubic equation: 𝓂 = 23 𝓅 sin( 𝓆 ), 𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )],𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], 𝓂 = 23 𝓅 sin( 𝓆 ),𝓂 = − 13 𝓅 [√3 cos( 𝓆 ) + sin( 𝓆 )], 𝓂 = 13 𝓅 [√3 cos( 𝓆 ) − sin( 𝓆 )], (48)

where 𝓅 = 3𝒸 − 3𝒷 ,  𝓆 = 13 sin 27𝒷 − 27𝑎2𝑝 ,
𝓅 = 3𝒸 + 3𝒷 ,  𝓆 = 13 sin 27𝒷 + 27𝑎2𝑝 . (49)

The compatibility between Equations (38) and (43) gives 𝐶 = 𝛽 𝒞 ,  𝛽 = − 𝐴 𝓂𝓂 − 𝐵 , 𝑗 = 1,2,3. (50)

With the help of the solution in (23), the expression for temperature 𝜃 inside the con-
verted domain can be found in the following form: 

𝜃(𝑥, 𝑧, 𝑠) = 𝛽 𝒞 𝑒𝓂 sin 𝜋𝑧ℎ  (51)

The axial displacement field can be produced after performing the Laplace transform 
and substituting Equation (43) in (6): 

�̄�(𝑥, , 𝑧, 𝑠) = −𝑧 𝑑𝑤(𝑥, 𝑠)𝑑𝑥 = −𝑧 𝓂 𝒞 𝑒𝓂 , (52)

With the assistance of Equation (43), we can write the bending moment that is given 
in Equation (39) as follows: 

𝑀(𝑥, 𝑠) = (𝜐 𝜉 + 𝜉𝑃 + 𝑆 )𝓂 + 2𝜐𝑠𝜉𝓂 + 𝜉𝑠 + 24𝑇 𝛼ℎ𝜋 𝛽 𝒞 𝑒𝓂 . (53)
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In most of the previous literature, it was hypothesized that the axial force of trans-
verse excitation was either non-existent or constant. The axial force is often variable with 
time as well as position. In the present work, it will be assumed that the dimensionless 
transverse axial tension will be a time-varying function as in the following relation [47]: 𝑃 = 𝑃 + 𝑃 cos(𝜔𝑡). (36)

where 𝜔 is the loading frequency, and 𝑃  and 𝑃  represent the static and dynamic axial 
loads. 

5. Solution Procedure 
By using the initial condition from Equation (31) and the Laplace transform, the set 
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where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
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Equations (37) and (38) can be doubled to obtain the following differential equation 
of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
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Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 

0+27a7
2p3

2

)
.

(49)

The compatibility between Equations (38) and (43) gives
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−𝐴 d 𝑤d𝑥 = d Θd𝑥 − 𝐵 Θ, (38)

𝑀(𝑥, 𝑡) = (𝜉(𝜐 + 𝑃) + 𝑆 ) d 𝑤d𝑥 + 2𝜐𝑠𝜉 𝑑𝑤𝑑𝑥 + 𝜉𝑠 𝑤 + 24𝑇 𝛼ℎ𝜋 Θ, (39)

where 𝐴 = 12𝑠ℎ (𝑆 + 𝜉𝜐 + 𝜉𝑃) , 𝐴 = 2𝜐𝐴𝑠 , 𝐴 = 𝐴 (𝑠 𝜉 − 𝜐 − 𝑃), 𝐴 = 2𝜐𝜉𝐴𝑠 ,    
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of the sixth order: 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 dd𝑥 + 𝑎 𝑑𝑑𝑥 + 𝑎 𝑤, Θ , (41)

where 𝑎 = 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 , 𝑎 = −𝐵 𝐴 + 𝐴 ,𝑎 = 𝐴 − 𝐵 𝐴 , 𝑎 = −𝐵 𝐴 , 𝑎 = −𝐵 𝐴 . (42)

The expression representing the answer to Equation (41) can be expressed as follows: 

𝑤, Θ = 𝒞 , 𝒞 𝑒𝓂 , (43)

where integral coefficients 𝒞   and 𝒞   were used, and constants 𝓂 ,  (𝑗 = 1,2, . . . ,6)  sat-
isfy the following polynomial 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 𝓂 + 𝑎 = 0. (44)

Kulkarni [48] developed a method for analyzing a six-degree polynomial problem 
into two cubic polynomials as components. Thus, the cubic polynomial is equal to zero 
and solved to give the six roots of the equivalent (44) in the roots. Importantly, when this 
method is used, the sum of the first three roots equals the sum of the last three roots. He 
established the prerequisites for the coefficients of such a solved equation. 

Initially, the following polynomial will be taken into account: (𝓂 + 𝒷 𝓂 + 𝒷 𝓂 + 𝒷 ) − (𝒸 𝓂 + 𝒸 𝓂 + 𝒸 ) = 0, (45)

In Equation (45), 𝒷  , 𝒷  , 𝒷  , 𝒸  , 𝒸  , and 𝒸   denote unknown coefficients in the 
component cubic and quadratic polynomials. If Equation (44), which can be written as 
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2
j − B2

, j = 1, 2, 3. (50)

With the help of the solution in (23), the expression for temperature θ inside the
converted domain can be found in the following form:

θ(x, z, s) =
6

∑
j=1

β jCje
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jxsin
(πz

h

)
(51)

The axial displacement field can be produced after performing the Laplace transform
and substituting Equation (43) in (6):

u(x, , z, s) = −z
dw(x, s)

dx
= −z

6

∑
j=1
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jx, (52)

With the assistance of Equation (43), we can write the bending moment that is given
in Equation (39) as follows:

M(x, s) =
6

∑
j=1

((
υ2ξ + ξP + S0

)
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Applying the Laplace transform to Equations (32)–(35), the boundary conditions of
the problem can be expressed as follows:

w(x, s)|x=0,L = 0, dw(x,s)
dx

∣∣∣
x=0,L

= 0,

Θ(x, s)
∣∣
x=0 = πt0

π2+t2
0s2 = G(s), dΘ(x,s)

dx

∣∣∣
x=L

= 0.
(54)

Using the boundary conditions (54), we may solve for the functions of interest by
substituting their solutions into the equations:

6
∑

j=1
e
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By solving this system of linear equations, we may determine the values of unknown
coefficients Ci, (i = 1, 2, . . . , 6). Here, the solution to the problem has been found in the
Laplace transform field, and the system’s different areas have been postponed.

To obtain the expressions of the studied domain variables in the time domain, the
Laplace transform of the transformed domains must be inverted. Obtaining these conver-
sions may be a tedious and long process. In this case, we use approximate methods and
numerical algorithms. In this denominator, the following Riemann sum approximation
formula will be used to invert any function f (x, s) in the Laplace domain to a function
f (x, t) in the time domain [49]:

f (x, t) =
eωt

t

[
1
2

Re[F(x, ω)] + Re
N

∑
ϕ=0

(
F
(

x, ω +
iϕπ

t

)
(−1)n

)]
. (56)

Many numerical tests prove that the value of ω must satisfy ω ≈ 4.7/t to obtain better
accuracy in the rounding process. The software used for numerical calculations in this
work is Mathematica.

6. Numerical Outcomes and Discussion

This section will compute and examine the numerical outcomes for the deflection,
w; temperature change, θ; flexural moment, M; and displacement u obtained in earlier
sections of the paper. The modified couple stress (MCS) model will study the influences
of parameters such as material length, nonlocality, time delay, and pulse width on field
variables. While performing numerical calculations, the properties of the nickel (Ni)
nanobeams will be taken into account and are as follows [23]:

E = 210 GPa, ρ = 8900 kg/m3, CE = 438 J/(kg·K), T0 = 300 K,
αT = 13× 10−6K−1, ν = 0.31, K = 92 W/(m·K).

Calculations were performed to determine the numerical outcomes of non-dimensional
thermo-physical fields, and the numerical values were generated based on the application of
the non-dimensional physical parameters that were shown in Equation (29). All nanobeam
lengths are taken to be dimensionless and will be given values of L = 1, h = 0.1, b = 0.05,
and z = h/6. Additionally, the values of non-dimensional temporal parameters will be
taken as t = 0.12, τq = 0.2, and τθ = 0.1. Calculations and discussions are provided for
three situations and examined in detail.

In the first scenario, we will look at how the behavior of thermophysical domains
when the value of the dimensionless nonlocal parameter ξ is changed. These changes and
numerical values will be represented in Figures 2–5 in the case of applying the theory
of couple stress (MCS). Two possible values of the nonlocal coefficient other than zero,
ξ = 0.001 and ξ = 0.003, will be taken into account for comparison and analysis. For the
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sake of comparison, it should be noted that the value of ξ = 0 represents the case of the
local thermoelasticity model, which does not include the effect of a small length. Other
non-zero values of this parameter refer to the nonlocal thermoelasticity theory. To obtain
numerical results in this situation, it will be assumed that the pulse width parameter, as
well as the phase delay parameters, and the axial velocity of the beam, are unchanged
(t0 = 0.1, τq = 0.2, τθ = 0.1, and υ = 1.2).
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From the graphs, it can be concluded that the impact of damping resulting from the
nonlocal coefficient is remarkably prominent in all studied fields of physics. As the nonlocal
factor is altered, the influence of responses on the beam may be observed more clearly. In
addition, the effect of thermal vibration on the nanobeams becomes apparent when one
of their edges is subjected to sinusoidally varying temperatures. In the same respect, the
nonlocal properties of the nanobeams decrease with the increase in the nonlocal parameter
of the nanobeam and vice versa. The study written in the literature [50] agrees well with
these results.

It should be noted that this model explains the effects of nonlocality within nanostruc-
tures. For this reason, the micro- and nanoscale properties of small-scale elastic materials
are explained in two different ways by the MCS theory and the concept of nonlocal elasticity.
As a result of this theory’s findings, different formulations of beams and structures that
depend on their size have been made to accurately show how size affects them [15]. As
a result, there is an urgent need in the scientific community to simultaneously consider
both physical explanations in order to create a more robust size-based model to predict
the mechanical response of nanobeams that accounts for the effects of both softening and
hardening stiffness.

Adding the idea of a nonlocal effect to the governing equations could lead to a decrease
in stiffness, as shown in [51], or an increase in stiffness, as shown in [52]. According
to [53,54], the current study discovers that as the value of the nonlocal constant increases,
the flexural stiffness of moving nanobeams decreases dramatically.

Figure 2 presents the variations in lateral deflection w of the nanobeam with changing
axial distances. Based on the above, it is noted that the boundary conditions are met at
both ends of the beam, x = 0 and x = L, where lateral deviation w begins and always
ends at zero. This confirms the accuracy of the obtained results. On the other hand, it was
discovered that lateral deviation w reaches its maximum value at a distance close to the
edge of the first nanobeam and then decreases with the increase in length x. The reason for
this is the presence of variable sinusoidal heating at that edge. It is noteworthy from the
diagram that increasing the value of the nonlocal parameter causes deviation x to propagate
slower and disappear more quickly. Nonlocal effects usually produce more pronounced
vibration signals, unlike those obtained using the traditional vibrational notion.

It is shown in Figure 3 that changes in the values of nonlocal factors (ξ) have little effect
on temperature profile θ. This conclusion is consistent with many studies, as indicated
in [55,56]. It is also clear from the diagram that as distance x increases in a direction opposite
to the direction in which the heat wave travels away from the source, temperature decreases,
which means that the spread of heat waves is limited. This observation contrasts with
the traditional models of thermoelasticity, which predict infinite propagation speeds for
thermal signals. On the other hand, these results confirm the importance of the proposed
model in solving such physical conflicts.
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Figure 4 depicts the variations of the axial displacement u within the range of
x ∈ [0, 1] at the instantaneous time, t = 0.12, for different values of the nonlocal coef-
ficient (ξ = 0, 0.001 and 0.003). In the schematic diagram, it is clear that displacement
u starts with small values and increases rapidly to absolute values with an increasing
beam length and then gradually decreases until it vanishes inside the medium. Notable
in this figure is that deformation u was significantly affected by the nonlocal parameter
change. It is observed that with increasing nonlocal values, distortion decreases. This is
because the nonlocal indicator has a damping impact on the structure’s stiffness and is
even more significant when employed to couple stress. Accordingly, a distinction must be
made between local and nonlocal thermoelastic models in consideration.

It can be observed in Figure 5 how bending moment M changes with the variety of
nonlocal parameter values and the change in distance. It can be observed from Figure 5 that
bending moment M starts with a value of zero at the first edge of the beam, x = 0, increases
to a constant maximum value at a distance close to it, and then gradually decreases to zero
again. In Figure 5, it can be observed that M is very sensitive to changes in the nonlocal
parameter. This is due to the effect of hardening the stiffness of the length scale parameter,
which corresponds with [57]. Suppose one looks at the numerical numbers displayed in
Figure 5. In that case, one can see that the microstructure influence, here demonstrated
by the couple stress effect, significantly increases the stiffness of the system, resulting in
a significant reduction in bending moment M. This is why classical continuity models
are insufficient for describing the patterns of microstructure behavior due to the lack of
size-dependent variables. Nonclassical continuum models show that NEMS will have a
particular set of physical properties and mechanical responses at the nanoscale and that
minor effects in lattice dynamics are caused by the crystal’s structure [58].

The second case from the discussion describes and analyzes how phase delays affect
the change in the thermophysical fields under study. In this case, the other parameters
are kept constant at ξ = 0.001, t0 = 0.1, and υ = 1.2. Figures 6–9 display the expected
results for the system fields in the case of three different thermoelasticity theories derived
from the suggested theory or that considered special examples of the current two-phase lag
concept. The results of the conventional idea of thermoelasticity (CTE) can be obtained by
setting τq = 0 = τθ , while the predictions of Lord Shulman’s theory (LS) take τθ = 0 and
τq = 0.2. Finally, in the case of Tzou’s extended theory of thermoelasticity, values τθ = 0.1
and τq = 0.2 will be considered.
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Figures 6–9 show how the behavior of the non-dimensional physical domains of the
beam varies depending on the thermal model used. From the different shapes of curves, it
can be observed that the phase delay factors (τq and τθ) greatly affect how thermal physical
quantities are distributed. The numerical results show that the classical thermoelastic model
(CTE) has different values for the studied distributions than the other generalized thermal
models. It also turns out that mechanical and thermal distributions do not disappear
quickly inside the medium compared to other models. Extended theories of thermoelasticity
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were created to avoid the unrealistic physics predictions of the thermodynamic theory of
thermoelasticity, according to which thermal signals move at an infinitely fast rate.

From the figures, it can be further concluded that the mechanical distributions move
through the medium with a finite velocity according to the generalized thermoelastic
theories (DPL and LS). Despite the difference in absolute values, most of the time, theories
and models behave similarly. The results show that the theory of extended thermoelasticity
is more in line with experimental findings for the material. The two-phase thermoelastic
model also predicts that waves will travel at a limited rate within elastic media. It was
further found that the heat flow phase delay and temperature gradient delay significantly
affect the behavior of all domain variables. The presence of the temperature-gradient-
induced heat flow phase delay, which is distinct from conventional Fourier diffusion,
reduces the sharp wave velocity in the medium.

In the third case, the influences of the nanobeam’s axial velocity (υ) on temperature
change, flexural moment, axial displacement, and nonlocal thermal deflection are studied.
In this case, different values of the axial velocities of the nanobeam (υ = 1.2, 1.3, and 1.4) will
be taken when other effective physical parameters are fixed. The curves in Figures 10–13
show how the axial velocity affects the moving nanobeams’ mechanical and thermal
vibration properties. It is clear from the different figures that the mechanical fields, such as
thermal deflection, axial deformation, and bending moment, increase with the increase in
axial velocity while temperature decreases. From the different figures, it is clear how the
changes in the behavior of the magnitudes of the fields correspond with the changes in the
speed of movement (υ) of the nanobeam and how these changes are susceptible.
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The obtained results for a constant-velocity moving Euler–Bernoulli nanobeam and its
corresponding results show good agreement with respect to behavior despite the different
magnitudes. For example, when comparing the results of this work with those presented
in references [59,60], it is possible to note the agreement between them. This behavioral
agreement can confirm the current results’ validity and the proposed model’s accuracy.
A sizeable transverse displacement may occur in the nanobeam under the action of axial
velocity in a direction perpendicular to the speed, causing thermal and mechanical vibra-
tions [61]. As a result, unwanted noise can occur, limiting the structure’s ability to be used
effectively, causing system stress, or driving a drop in quality. This is why such events must
be considered in the industrial process to prevent stress or the performance degradation of
the nanostructure due to deformations.

Because it does not consider small-size impacts, the traditional continuous theory
of elasticity cannot describe dynamic vibrations in small beams and structures or predict
how micromechanical systems with small dimensions will behave. In this last case of the
discussion, the results of the modified couple stress model (MCS) will be compared with
those of the conventional continuum theory. Comparing the couple stress theory with
other classical models has two benefits. First, only one length scale parameter appears in
the constituent equations. Secondly, the asymmetric bending and the pair stress tensor
will be considered. Figures 14–17 show the numerical results for domain variables under
the MCS theory based on nonlocal Einstein elasticity. The results are then compared with
each other and with the classical concept of continuum elasticity. The numerical results
and graphs show how changing the material length scale parameter of the beam can
change the patterns of entire physical fields and thermal and mechanical waves of the
moving nanobeam.
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Using the MCS concept, we obtain S0 = 1+ 6
(
l2/h2)/(1 + ν) when length scale index

l is more significant than zero. Without the influence of the microscopic scale (l = 0), we set
S0 = 1. Moreover, constants, ϑ, t0, ξ, τq, and τθ are effective parameters. The domains taken
into account are profoundly affected by the temporal scale parameter of the MCS theory.
These results demonstrate that thinner nanobeams bend more severely than thicker ones
due to the size effect. From the different forms of system domains, the numerical results
in the MCS theory model show that the experimental values closely match. In contrast,
Eringen’s nonlocal elasticity theory results are different [62]. As a result, the dynamic
and thermodynamic behaviors of micro- and nanobeams can be accurately modeled by
the revised MCS theory [2]. Additionally, from these illustrations, we can see that as the
dimensionless length scale parameter increases, the size of the studied domains decreases,
but it increases when the nonlocal parameter increases. The simulation results are in line
with the pattern observed in refs. [22,63] and indicate that the smallest parameter value has
the most significant impact on deformation and thermal deflection.

The thermodynamic stability studies of micro- or nanostructures subjected to time-
dependent transverse external excitation are essential when researching the design and
development of novel NEMS or MEMS devices. Figures 18–21 show the effects of various
transversal external stimuli on the group of studied physical fields. The responses of
the checked domains will be validated by static (Ps), dynamic (PDcos(ωt)), and external
transverse stimulation with amplitude (P = Ps + PDcos(ωt)). This part of the study will
show how the axial tension force affects how the different domains in the moving nanobeam
behave. Three other axial induction formula cases will be considered depending on the
values of constants Ps and PD: static, dynamic, or both.
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In the different cases, the importance of axial force components Ps = 0.8 and PD = 0.6
are considered, with the angular frequency of the applied transverse excitation remaining
constant (ω = 0.3). In this scenario, phase delay parameters τq and τθ are assumed to
remain constant along with nonlocal factor ξ = 0.0011, axial motion velocity υ = 1.2, pulse
width t0 = 0.1, and other effective constants.

The graphs show how the axial tension force significantly affects different thermo-
physical fields’ behavior inside the nanobeam. Whether this external induction is static,
dynamic, or both, it demonstrates the sensitivity of these fields to such changes. The
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curves of the analyzed fields display the same behavior in several scenarios to vary-
ing degrees. It is also evident from these graphs that the magnitudes of some areas in-
crease under static external axial transverse excitation while others decrease with dynamic
transverse excitation.

7. Conclusions

This paper explores the effects of several size-dependent elements that have been
disregarded by conventional continuum mechanics but are essential to consider in the
context of micro- and nanostructures. It also describes how the parameters of the phase
delay and the change in the horizontal velocity of the nanobeam affect the behavior of
the variables being investigated. Additionally, time-varying axial loads on the nanobeams
were taken into account. Using the nonlocal modified couple stress (MCS) model and the
generalized thermoelasticity theory with two delay phase parameters (DPL model), it was
possible to obtain the transverse vibration equation of horizontally moving nanobeams
with a constant speed. The following conclusions were reached from the results obtained
and the accompanying discussions:

• The salient influence of the nonlocal coefficient on the behavior of all thermo-
physical domains;

• Changing the movement speed leads to significant changes in the different transverse
oscillatory profiles, while the temperature change is slight.

• Performing mechanical and thermal vibration analysis on systems and nanostructures
is crucial to ensuring system integrity and stability. It can thus be used to improve the
mechanical properties of core components in MEMS and NEMS.

• It was found that the thermal waves move at limited speeds in the generalized thermal
model compared to the traditional Fourier model.

• The length scale of a moving nanobeam can change the patterns of its thermal and
mechanical vibrations and the patterns of the physical fields that make it up.

• By considering the combined effects of nanostructure motion, size dependence, and si-
nusoidal thermal pulsation, the results generated in this work are more comprehensive
than those of previous corresponding studies.

• Design engineers working on micro- and nano-electromechanical systems may find
the offered numerical solutions helpful.
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