Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (717)

Search Parameters:
Keywords = transmission control protocol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1370 KiB  
Article
Airborne-Platform-Assisted Transmission and Control Separation for Multiple Access in Integrated Satellite–Terrestrial Networks
by Chaoran Huang, Xiao Ma, Xiangren Xin, Weijia Han and Yanjie Dong
Sensors 2025, 25(15), 4732; https://doi.org/10.3390/s25154732 (registering DOI) - 31 Jul 2025
Abstract
Currently, the primary random access protocol for satellite communications is Irregular Repetition Slotted ALOHA (IRSA). This protocol leverages interference cancellation and burst repetition based on probabilistic distributions, achieving up to 80% channel utilization in practical use. However, it faces three significant issues: (1) [...] Read more.
Currently, the primary random access protocol for satellite communications is Irregular Repetition Slotted ALOHA (IRSA). This protocol leverages interference cancellation and burst repetition based on probabilistic distributions, achieving up to 80% channel utilization in practical use. However, it faces three significant issues: (1) low channel utilization with smaller frame sizes; (2) drastic performance degradation under heavy load, where channel utilization can be lower than that of traditional Slotted ALOHA; and (3) even under optimal load and frame sizes, up to 20% of the valuable satellite channel resources are still wasted despite reaching up to 80% channel utilization. In this paper, we propose the Separated Transmission and Control ALOHA (STCA) protocol, which introduces a space–air–ground layered network and separates the access control process from the satellite to an airborne platform, thus preventing collisions in satellite channels. Additionally, the airborne-platform estimates the load to ensure maximum access rates. Simulation results demonstrate that the STCA protocol significantly outperforms the IRSA protocol in terms of channel utilization. Full article
Show Figures

Figure 1

15 pages, 694 KiB  
Article
Mind the Gap: Knowledge, Attitudes and Practices Regarding Equine Piroplasmosis in Portugal
by Ana Cabete, Elisa Bettencourt, Ludovina Padre and Jacinto Gomes
Parasitologia 2025, 5(3), 38; https://doi.org/10.3390/parasitologia5030038 - 28 Jul 2025
Viewed by 80
Abstract
Equine piroplasmosis (EP) is a tick-borne disease caused by Theileria equi, Theileria haneyi and Babesia caballi. It affects equids, representing significant health and economic concerns for the equine industry. EP is endemic in Portugal, so developing and implementing preventive strategies is [...] Read more.
Equine piroplasmosis (EP) is a tick-borne disease caused by Theileria equi, Theileria haneyi and Babesia caballi. It affects equids, representing significant health and economic concerns for the equine industry. EP is endemic in Portugal, so developing and implementing preventive strategies is essential. Accessing veterinarians’ knowledge, attitudes and practices (KAP) through a survey is a suitable approach, and no such studies have been conducted in Portugal until now. A KAP survey was applied to 41 Portuguese equine vets, representing mainly the Alentejo region. The average knowledge score went from medium to high, correctly identifying the causative agents, transmission routes and clinical signs. Knowledge gaps mostly concerned the identification of T. haneyi as an agent, transplacental transmission, duration of infection and diagnostic methods. Reported practices were appropriate overall, including enhancing breeders’ awareness of the disease and its prevention. Diagnostic and treatment protocols were generally consistent with current recommendations; however, these protocols are not yet fully standardized. Our findings highlight key areas where increasing expertise is needed and could serve as a foundation for future evidence-based guidelines to improve EP control in Portugal. Full article
(This article belongs to the Special Issue New Insights on Veterinary Parasites)
Show Figures

Figure 1

15 pages, 1570 KiB  
Article
Benzalkonium Chloride Significantly Improves Environmental DNA Detection from Schistosomiasis Snail Vectors in Freshwater Samples
by Raquel Sánchez-Marqués, Pablo Fernando Cuervo, Alejandra De Elías-Escribano, Alberto Martínez-Ortí, Patricio Artigas, Maria Cecilia Fantozzi, Santiago Mas-Coma and Maria Dolores Bargues
Trop. Med. Infect. Dis. 2025, 10(8), 201; https://doi.org/10.3390/tropicalmed10080201 - 22 Jul 2025
Viewed by 191
Abstract
Urogenital schistosomiasis, caused by Schistosoma haematobium and transmitted by Bulinus snails, affects approximately 190 million individuals globally and remains a major public health concern. Effective surveillance of snail vectors is critical for disease control, but traditional identification methods are time-intensive and require specialized [...] Read more.
Urogenital schistosomiasis, caused by Schistosoma haematobium and transmitted by Bulinus snails, affects approximately 190 million individuals globally and remains a major public health concern. Effective surveillance of snail vectors is critical for disease control, but traditional identification methods are time-intensive and require specialized expertise. Environmental DNA (eDNA) detection using qPCR has emerged as a promising alternative for large-scale vector surveillance. To prevent eDNA degradation, benzalkonium chloride (BAC) has been proposed as a preservative, though its efficacy with schistosomiasis snail vectors has not been evaluated. This study tested the impact of BAC (0.01%) on the stability of Bulinus truncatus eDNA under simulated field conditions. Water samples from aquaria with varying snail densities (0.5–30 snails/L) were stored up to 42 days with BAC. eDNA detection via qPCR and multivariable linear mixed regression analysis revealed that BAC enhanced eDNA stability. eDNA was detectable up to 42 days in samples with ≥1 snail/L and up to 35 days at 0.5 snails/L. Additionally, a positive correlation between snail density and eDNA concentration was observed. These findings support the development of robust eDNA sampling protocols for field surveillance, enabling effective monitoring in remote areas and potentially distinguishing between low- and high-risk schistosomiasis transmission zones. Full article
Show Figures

Figure 1

39 pages, 2628 KiB  
Article
A Decentralized Multi-Venue Real-Time Video Broadcasting System Integrating Chain Topology and Intelligent Self-Healing Mechanisms
by Tianpei Guo, Ziwen Song, Haotian Xin and Guoyang Liu
Appl. Sci. 2025, 15(14), 8043; https://doi.org/10.3390/app15148043 - 19 Jul 2025
Viewed by 421
Abstract
The rapid growth in large-scale distributed video conferencing, remote education, and real-time broadcasting poses significant challenges to traditional centralized streaming systems, particularly regarding scalability, cost, and reliability under high concurrency. Centralized approaches often encounter bottlenecks, increased bandwidth expenses, and diminished fault tolerance. This [...] Read more.
The rapid growth in large-scale distributed video conferencing, remote education, and real-time broadcasting poses significant challenges to traditional centralized streaming systems, particularly regarding scalability, cost, and reliability under high concurrency. Centralized approaches often encounter bottlenecks, increased bandwidth expenses, and diminished fault tolerance. This paper proposes a novel decentralized real-time broadcasting system employing a peer-to-peer (P2P) chain topology based on IPv6 networking and the Secure Reliable Transport (SRT) protocol. By exploiting the global addressing capability of IPv6, our solution simplifies direct node interconnections, effectively eliminating complexities associated with Network Address Translation (NAT). Furthermore, we introduce an innovative chain-relay transmission method combined with distributed node management strategies, substantially reducing reliance on central servers and minimizing deployment complexity. Leveraging SRT’s low-latency UDP transmission, packet retransmission, congestion control, and AES-128/256 encryption, the proposed system ensures robust security and high video stream quality across wide-area networks. Additionally, a WebSocket-based real-time fault detection algorithm coupled with a rapid fallback self-healing mechanism is developed, enabling millisecond-level fault detection and swift restoration of disrupted links. Extensive performance evaluations using Video Multi-Resolution Fidelity (VMRF) metrics across geographically diverse and heterogeneous environments confirm significant performance gains. Specifically, our approach achieves substantial improvements in latency, video quality stability, and fault tolerance over existing P2P methods, along with over tenfold enhancements in frame rates compared with conventional RTMP-based solutions, thereby demonstrating its efficacy, scalability, and cost-effectiveness for real-time video streaming applications. Full article
Show Figures

Figure 1

12 pages, 2399 KiB  
Case Report
Chronic Leptospirosis in a Breeding Bull: A Case Report
by Gabrita De Zan, Antonio Carminato, Monia Cocchi, Giacomo Catarin, Irene Pascuci, Laura Lucchese, Laura Bellinati, Letizia Ceglie, Elisa Mazzotta, Mario D’Incau, Martina Ustulin, Laura Grassi and Alda Natale
Microorganisms 2025, 13(7), 1695; https://doi.org/10.3390/microorganisms13071695 - 18 Jul 2025
Viewed by 321
Abstract
Leptospirosis is a (re-)emerging and global zoonotic disease. Given the complex host-pathogen interaction and the numerous environmental risk factors related to the transmission, a One Health approach to both disease prevention and control is needed. Occurring at the human–cattle–environment interfaces, bovine leptospirosis represents [...] Read more.
Leptospirosis is a (re-)emerging and global zoonotic disease. Given the complex host-pathogen interaction and the numerous environmental risk factors related to the transmission, a One Health approach to both disease prevention and control is needed. Occurring at the human–cattle–environment interfaces, bovine leptospirosis represents a zoonotic risk for the professionals in the field, besides being a potential cause of significant economic losses due to the bovine reproductive disorders. Although climatic change is a potential factor in exacerbating the risk of leptospirosis in Europe, this disease remains largely neglected, with several knowledge gaps in research, investigations, and diagnosis of bovine genital leptospirosis syndrome across the continent. The present report describes the results of the diagnostic investigations on a case of chronic bovine leptospirosis in a breeding bull. Following the seroconversion to Leptospira Sejroe var Hardjo after the arrival of the animal in a quarantine facility, a monitoring plan including both serological/molecular analyses and a therapeutic protocol was undertaken. The bull exhibited a persistent seroconversion and a repeated positivity for Leptospira to real-time PCR in urine samples, indicative of a chronic shedder pattern. This report emphasizes the diagnostic and management challenges in the context of such a complex but frequently overlooked disease. Full article
(This article belongs to the Special Issue Advances in the Research on Leptospira and Leptospirosis)
Show Figures

Figure 1

21 pages, 1088 KiB  
Review
Veterinary Clinics as Reservoirs for Pseudomonas aeruginosa: A Neglected Pathway in One Health Surveillance
by George Cosmin Nadăş, Alice Mathilde Manchon, Cosmina Maria Bouari and Nicodim Iosif Fiț
Antibiotics 2025, 14(7), 720; https://doi.org/10.3390/antibiotics14070720 - 17 Jul 2025
Viewed by 466
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen with significant clinical relevance in both human and veterinary medicine. Despite its well-documented role in hospital-acquired infections in human healthcare settings, its persistence and transmission within veterinary clinics remain underexplored. This review highlights the overlooked [...] Read more.
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen with significant clinical relevance in both human and veterinary medicine. Despite its well-documented role in hospital-acquired infections in human healthcare settings, its persistence and transmission within veterinary clinics remain underexplored. This review highlights the overlooked status of veterinary facilities as environmental reservoirs and amplification points for multidrug-resistant (MDR) P. aeruginosa, emphasizing their relevance to One Health surveillance. We examine the bacterium’s environmental survival strategies, including biofilm formation, resistance to disinfectants, and tolerance to nutrient-poor conditions that facilitate the long-term colonization of moist surfaces, drains, medical equipment, and plumbing systems. Common transmission vectors are identified, including asymptomatic animal carriers, contaminated instruments, and the hands of veterinary staff. The review synthesizes current data on antimicrobial resistance in environmental isolates, revealing frequent expression of efflux pumps and mobile resistance genes, and documents the potential for zoonotic transmission to staff and pet owners. Key gaps in environmental monitoring, infection control protocols, and genomic surveillance are identified, with a call for standardized approaches tailored to the veterinary context. Control strategies, including mechanical biofilm disruption, disinfectant cycling, effluent monitoring, and staff hygiene training, are evaluated for feasibility and impact. The article concludes with a One Health framework outlining cross-species and environmental transmission pathways. It advocates for harmonized surveillance, infrastructure improvements, and intersectoral collaboration to reduce the risk posed by MDR P. aeruginosa within veterinary clinical environments and beyond. By addressing these blind spots, veterinary facilities can become proactive partners in antimicrobial stewardship and global resistance mitigation. Full article
Show Figures

Figure 1

16 pages, 1251 KiB  
Article
Enhanced Detection of Intrusion Detection System in Cloud Networks Using Time-Aware and Deep Learning Techniques
by Nima Terawi, Huthaifa I. Ashqar, Omar Darwish, Anas Alsobeh, Plamen Zahariev and Yahya Tashtoush
Computers 2025, 14(7), 282; https://doi.org/10.3390/computers14070282 - 17 Jul 2025
Viewed by 311
Abstract
This study introduces an enhanced Intrusion Detection System (IDS) framework for Denial-of-Service (DoS) attacks, utilizing network traffic inter-arrival time (IAT) analysis. By examining the timing between packets and other statistical features, we detected patterns of malicious activity, allowing early and effective DoS threat [...] Read more.
This study introduces an enhanced Intrusion Detection System (IDS) framework for Denial-of-Service (DoS) attacks, utilizing network traffic inter-arrival time (IAT) analysis. By examining the timing between packets and other statistical features, we detected patterns of malicious activity, allowing early and effective DoS threat mitigation. We generate real DoS traffic, including normal, Internet Control Message Protocol (ICMP), Smurf attack, and Transmission Control Protocol (TCP) classes, and develop nine predictive algorithms, combining traditional machine learning and advanced deep learning techniques with optimization methods, including the synthetic minority sampling technique (SMOTE) and grid search (GS). Our findings reveal that while traditional machine learning achieved moderate accuracy, it struggled with imbalanced datasets. In contrast, Deep Neural Network (DNN) models showed significant improvements with optimization, with DNN combined with GS (DNN-GS) reaching 89% accuracy. However, we also used Recurrent Neural Networks (RNNs) combined with SMOTE and GS (RNN-SMOTE-GS), which emerged as the best-performing with a precision of 97%, demonstrating the effectiveness of combining SMOTE and GS and highlighting the critical role of advanced optimization techniques in enhancing the detection capabilities of IDS models for the accurate classification of various types of network traffic and attacks. Full article
Show Figures

Figure 1

20 pages, 1609 KiB  
Article
Research on Networking Protocols for Large-Scale Mobile Ultraviolet Communication Networks
by Leitao Wang, Zhiyong Xu, Jingyuan Wang, Jiyong Zhao, Yang Su, Cheng Li and Jianhua Li
Photonics 2025, 12(7), 710; https://doi.org/10.3390/photonics12070710 - 14 Jul 2025
Viewed by 217
Abstract
Ultraviolet (UV) communication, characterized by non-line-of-sight (NLOS) scattering, holds substantial potential for enabling communication networking in unmanned aerial vehicle (UAV) formations within strong electromagnetic interference environments. This paper proposes a networking protocol for large-scale mobile ultraviolet communication networks (LSM-UVCN). In large-scale networks, the [...] Read more.
Ultraviolet (UV) communication, characterized by non-line-of-sight (NLOS) scattering, holds substantial potential for enabling communication networking in unmanned aerial vehicle (UAV) formations within strong electromagnetic interference environments. This paper proposes a networking protocol for large-scale mobile ultraviolet communication networks (LSM-UVCN). In large-scale networks, the proposed protocol establishes multiple non-interfering transmission paths based on a connection matrix simultaneously, ensuring reliable space division multiplexing (SDM) and optimizing the utilization of network channel resources. To address frequent network topology changes in mobile scenarios, the protocol employs periodic maintenance of the connection matrix, significantly reducing the adverse impacts of node mobility on network performance. Simulation results demonstrate that the proposed protocol achieves superior performance in large-scale mobile UV communication networks. By dynamically adjusting the connection matrix update frequency, it adapts to varying node mobility intensities, effectively minimizing control overhead and data loss rates while enhancing network throughput. This work underscores the protocol’s adaptability to dynamic network environments, providing a robust solution for high-reliability communication requirements in complex electromagnetic scenarios, particularly for UAV swarm applications. The integration of SDM and adaptive matrix maintenance highlights its scalability and efficiency, positioning it as a viable technology for next-generation wireless communication systems in challenging operational conditions. Full article
(This article belongs to the Special Issue Free-Space Optical Communication and Networking Technology)
Show Figures

Figure 1

26 pages, 3905 KiB  
Article
Data Collection and Remote Control of an IoT Electronic Nose Using Web Services and the MQTT Protocol
by Juan J. Pérez-Solano and Antonio Ruiz-Canales
Sensors 2025, 25(14), 4356; https://doi.org/10.3390/s25144356 - 11 Jul 2025
Viewed by 287
Abstract
An electronic nose is a device capable of characterizing samples of substances and products by their aroma. The development of such devices relies on a series of non-specific sensors that react to gases and generate different signals, which can be used for compound [...] Read more.
An electronic nose is a device capable of characterizing samples of substances and products by their aroma. The development of such devices relies on a series of non-specific sensors that react to gases and generate different signals, which can be used for compound identification and sample classification. The deployment of such devices often requires the possibility of having remote access over the Internet to manage their operation and to collect the sampled data. In this context, the application of web technologies to the monitoring and supervision of these systems connected to the Internet, which can be considered as an Internet of Things (IoT) device, offers the advantage of not requiring the development of client-side applications. Users can employ a browser to connect to the IoT device and monitor or control its operation. Moreover, web design enables the development of cross-platform web monitoring systems. In addition, the inclusion of the MQTT protocol and the utilization of a virtual private network (VPN) enable a secure transmission and collection of the sampled data. In this work, all these technologies have been applied in the development of a system to manage and collect data to monitor rot in lemons treated with sodium benzoate before harvest. Full article
(This article belongs to the Special Issue Electronic Nose and Artificial Olfaction)
Show Figures

Figure 1

19 pages, 5895 KiB  
Article
Receptor-Mediated SPION Labeling of CD4+ T Cells for Longitudinal MRI Tracking of Distribution Following Systemic Injection in Mouse
by Yu Ping, Songyue Han, Brock Howerton, Francesc Marti, Jake Weeks, Roberto Gedaly, Reuben Adatorwovor and Fanny Chapelin
Nanomaterials 2025, 15(14), 1068; https://doi.org/10.3390/nano15141068 - 10 Jul 2025
Viewed by 466
Abstract
Tracking T cells in vivo using MRI is a major challenge due to the difficulty of labeling these non-phagocytic cells with a sufficient contrast agent to generate a detectable signal change. In this study, we explored CD4-Superparamagnetic iron oxide nanoparticles (SPION), which is [...] Read more.
Tracking T cells in vivo using MRI is a major challenge due to the difficulty of labeling these non-phagocytic cells with a sufficient contrast agent to generate a detectable signal change. In this study, we explored CD4-Superparamagnetic iron oxide nanoparticles (SPION), which is commonly used in magnetic cell sorting, as a potential receptor-mediated, specific CD4+ T cell MRI labeling agent. We optimized the labeling protocol for maximal CD4+ cell labeling and viability. Cell health was confirmed with trypan blue assay, and labeling efficacy was confirmed with Prussian blue staining, transmission electron microscopy, and MRI of labeled cell pellets. Key cell functionality was assessed by flow cytometry. Next, CD4-SPION-labeled T cells or unlabeled T cells were delivered via intravenous injection in naïve mice. Liver MRIs pre-, 24 h, and 72 h post-T cell injection were performed to determine in vivo tracking ability. Our results show that CD4-SPION induces significant attenuation of T2 signals in a concentration-dependent manner, confirming their potential as an effective MRI contrast agent. In vitro, analyses showed that CD4+ T cells were able to uptake CD4-SPION without affecting cellular activity and key functions, as evidenced by Prussian blue staining and flow cytometric analysis of IL-2 receptor and the IL-7 receptor α-chains, CD69 upregulation, and IFN-γ secretion. In vivo, systemically distributed CD4-SPION-labeled T cells could be tracked in the liver at 24 and 72 h after injection, contrary to controls. Histological staining of tissue sections validated the findings. Our results showed that SPION CD4+ T cell sorting coupled with longitudinal MR imaging is a valid method to track CD4+ T cells in vivo. This safe, specific, and sensitive approach will facilitate the use of SPION as an MRI contrast agent in clinical practice, allowing for non-invasive tracking of adoptive cell therapies in multiple disease conditions. Full article
Show Figures

Figure 1

21 pages, 518 KiB  
Study Protocol
Development and Implementation of a Core Training Protocol: Effects on Muscle Activation, Hypertrophy, Balance, and Quality of Life in Recreationally Active Adults
by Ioannis Tsartsapakis, Aglaia Zafeiroudi, Ioannis Trigonis, Christos Lyrtzis and Konstantinos Astrapellos
Methods Protoc. 2025, 8(4), 77; https://doi.org/10.3390/mps8040077 - 8 Jul 2025
Viewed by 737
Abstract
Core stability is fundamental to posture, balance, and force transmission throughout the kinetic chain. Although traditionally associated with athletic performance, emerging research highlights its broader applicability to recreational fitness. This study investigates the effects of an eight-week core training program on muscle hypertrophy, [...] Read more.
Core stability is fundamental to posture, balance, and force transmission throughout the kinetic chain. Although traditionally associated with athletic performance, emerging research highlights its broader applicability to recreational fitness. This study investigates the effects of an eight-week core training program on muscle hypertrophy, static balance, and neuromuscular control in recreationally active, non-athletic adults. Participants will undertake a structured intervention comprising progressive triads targeting core stability, strength, and power. Assessment methods include surface electromyography (EMG), ultrasound imaging, three-dimensional force plates, Kinovea motion analysis, and the Satisfaction With Life Scale (SWLS) questionnaire. Expected outcomes include enhanced core muscle activation, improved static balance, and increased core-generated force during overhead medicine ball slam trials. Additionally, the intervention aims to facilitate hypertrophy of the transverse abdominis, internal oblique, and lumbar multifidus muscles, contributing to spinal resilience and motor control. This protocol bridges gaps in core training methodologies and advances their scalability for recreational populations. The proposed model offers a structured, evidence-informed framework for improving core activation, postural stability, muscle adaptation, movement efficiency, and perceived quality of life in recreationally active individuals. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
Show Figures

Figure 1

16 pages, 2468 KiB  
Article
Temperature State Awareness-Based Energy-Saving Routing Protocol for Wireless Body Area Network
by Yu Mu, Guoqiang Zheng, Xintong Wang, Mengting Zhu and Huahong Ma
Appl. Sci. 2025, 15(13), 7477; https://doi.org/10.3390/app15137477 - 3 Jul 2025
Viewed by 281
Abstract
As an emerging information technology, Wireless Body Area Networks (WBANs) provide a lot of convenience for the development of the medical field. A WBAN is composed of many miniature sensor nodes in the form of an ad hoc network, which can realize remote [...] Read more.
As an emerging information technology, Wireless Body Area Networks (WBANs) provide a lot of convenience for the development of the medical field. A WBAN is composed of many miniature sensor nodes in the form of an ad hoc network, which can realize remote medical monitoring. However, the data transmission between sensor nodes in the WBAN not only consumes the energy of the node but also causes the temperature of the node to rise, thereby causing human tissue damage. Therefore, in response to the energy consumption problem in the Wireless Body Area Network and the hot node problem in the transmission path, this paper proposes a temperature state awareness-based energy-saving routing protocol (TSAER). The protocol senses the temperature state of nodes and then calculates the data receiving probability of nodes in different temperature state intervals. A benefit function based on several parameters such as the residual energy of the node, the distance to sink, and the probability of receiving data was constructed. The neighbor node with the maximum benefit function was selected as the best forwarding node, and the data was forwarded. The simulation results show that compared with the existing M-ATTEPMT and iM-SIMPLE protocols, TSAER effectively prolongs the network lifetime and controls the formation of hot nodes in the network. Full article
Show Figures

Figure 1

20 pages, 1517 KiB  
Article
Development of a Linking System Between Vehicle’s Computer and Alexa Auto
by Jaime Paúl Ayala Taco, Kimberly Sharlenka Cerón, Alfredo Leonel Bautista, Alexander Ibarra Jácome and Diego Arcos Avilés
Designs 2025, 9(4), 84; https://doi.org/10.3390/designs9040084 - 2 Jul 2025
Viewed by 353
Abstract
The integration of intelligent voice-control systems represents a critical pathway for enhancing driver comfort and reducing cognitive distraction in modern vehicles. Currently, voice assistants capable of accessing real-time vehicular data (e.g., engine parameters) or controlling actuators (e.g., door locks) remain exclusive to premium [...] Read more.
The integration of intelligent voice-control systems represents a critical pathway for enhancing driver comfort and reducing cognitive distraction in modern vehicles. Currently, voice assistants capable of accessing real-time vehicular data (e.g., engine parameters) or controlling actuators (e.g., door locks) remain exclusive to premium brands. While aftermarket solutions like Amazon’s Echo Auto provide multimedia functionality, they lack access to critical vehicle systems. To address this gap, we develop a novel architecture leveraging the OBD-II port to enable voice-controlled telematics and actuation in mass-production vehicles. Our system interfaces with a Toyota Hilux (2020) and Mazda CX-3 SUV (2021), utilizing an MCP2515 CAN controller for engine control unit (ECU) communication, an Arduino Nano for data processing, and an ESP01 Wi-Fi module for cloud transmission. The Blynk IoT platform orchestrates data flow and provides user interfaces, while a Voiceflow-programmed Alexa skill enables natural language commands (e.g., “unlock doors”) via Alexa Auto. Experimental validation confirms the successful real-time monitoring of engine variables (coolant temperature, air–fuel ratio, ignition timing) and secure door-lock control. This work demonstrates that high-end vehicle capabilities—previously restricted to luxury segments—can be effectively implemented in series-production automobiles through standardized OBD-II protocols and IoT integration, establishing a scalable framework for next-generation in-vehicle assistants. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

25 pages, 2065 KiB  
Article
Lower-Latency Screen Updates over QUIC with Forward Error Correction
by Nooshin Eghbal and Paul Lu
Future Internet 2025, 17(7), 297; https://doi.org/10.3390/fi17070297 - 30 Jun 2025
Viewed by 276
Abstract
There are workloads that do not need the total data ordering enforced by the Transmission Control Protocol (TCP). For example, Virtual Network Computing (VNC) has a sequence of pixel-based updates in which the order of rectangles can be relaxed. However, VNC runs over [...] Read more.
There are workloads that do not need the total data ordering enforced by the Transmission Control Protocol (TCP). For example, Virtual Network Computing (VNC) has a sequence of pixel-based updates in which the order of rectangles can be relaxed. However, VNC runs over the TCP and can have higher latency due to unnecessary blocking to ensure total ordering. By using Quick UDP Internet Connections (QUIC) as the underlying protocol, we are able to implement a partial order delivery approach, which can be combined with Forward Error Correction (FEC) to reduce data latency. Our earlier work on consistency fences provides a mechanism and semantic foundation for partial ordering. Our new evaluation on the Emulab testbed, with two different synthetic workloads for streaming and non-streaming updates, shows that our partial order and FEC strategy can reduce the blocking time and inter-delivery time of rectangles compared to total delivery. For one workload, partially ordered data with FEC can reduce the 99-percentile message-blocking time to 0.4 ms versus 230 ms with totally ordered data. That workload was with 0.5% packet loss, 100 ms Round-Trip Time (RTT), and 100 Mbps bandwidth. We study the impact of varying the packet-loss rate, RTT, bandwidth, and CCA and demonstrate that partial order and FEC latency improvements grow as we increase packet loss and RTT, especially with the emerging Bottleneck Bandwidth and Round-Trip propagation time (BBR) congestion control algorithm. Full article
Show Figures

Figure 1

28 pages, 854 KiB  
Review
H5N1 Avian Influenza: A Narrative Review of Scientific Advances and Global Policy Challenges
by Alison Simancas-Racines, Claudia Reytor-González, Melannie Toral and Daniel Simancas-Racines
Viruses 2025, 17(7), 927; https://doi.org/10.3390/v17070927 - 29 Jun 2025
Viewed by 731
Abstract
The H5N1 avian influenza virus continues to evolve into genetically diverse and highly pathogenic clades with increased potential for cross-species transmission. Recent scientific advances have included the development of next-generation vaccine platforms, promising antiviral compounds, and more sensitive diagnostic tools, alongside strengthened surveillance [...] Read more.
The H5N1 avian influenza virus continues to evolve into genetically diverse and highly pathogenic clades with increased potential for cross-species transmission. Recent scientific advances have included the development of next-generation vaccine platforms, promising antiviral compounds, and more sensitive diagnostic tools, alongside strengthened surveillance systems in both animals and humans. However, persistent structural challenges hinder global readiness. Vaccine production is heavily concentrated in high-income countries, limiting equitable access during potential pandemics. Economic and logistical barriers complicate the implementation of control strategies such as vaccination, culling, and compensation schemes. Gaps in international coordination, public communication, and standardization of protocols further exacerbate vulnerabilities. Although sustained human-to-human transmission has not been documented, the severity of confirmed infections and the rapid global spread among wildlife and domestic animals underscore the urgent need for robust preparedness. International organizations have called for comprehensive pandemic response plans, enhanced multisectoral collaboration, and investment in targeted research. Priorities include expanding surveillance to asymptomatic animal hosts, evaluating viral shedding and transmission routes, and developing strain-specific and universal vaccines. Strengthening global cooperation and public health infrastructure will be critical to mitigate the growing threat of H5N1 and reduce the risk of a future influenza pandemic. Full article
(This article belongs to the Special Issue Controlling Zoonotic Viral Diseases from One Health Perspective 2025)
Show Figures

Figure 1

Back to TopTop