H5N1 Avian Influenza: A Narrative Review of Scientific Advances and Global Policy Challenges
Abstract
1. Introduction
2. Biological and Epidemiological Characteristics of H5N1
2.1. Genetic Evolution and Viral Adaptability
2.2. Pathogenesis and Clinical Manifestations of H5N1 Infection in Humans
- Systemic viral dissemination beyond the respiratory tract (unlike seasonal influenza).
- Higher and prolonged viral replication resulting in direct cytolytic damage.
- Differences in tissue tropism of H5N1 viruses compared to seasonal strains.
- Exaggerated host immune responses triggered by H5N1 infection.
2.3. Pathogenesis and Clinical Manifestations of H5N1 Infection in Animals
2.4. Transmission Dynamics and Zoonotic Potential
2.5. Virulence, Case Fatality, and Global Spread
3. Scientific Advances in the Control and Prevention of H5N1
3.1. Vaccination Strategies and Immunization Efforts
3.1.1. Development of Human Vaccines: Current Progress
3.1.2. Development of Animal Vaccines: Current Progress
3.1.3. Challenges in Production, Distribution, and Global Accessibility
3.2. Surveillance Systems and Early Detection
3.2.1. Molecular and Serological Diagnostic Techniques
3.2.2. Implementation of Early Warning Systems
- Ongoing clinical evaluation of affected birds and necropsies to identify characteristic signs.
- Immediate epidemiological analysis to identify transmission routes and contact networks.
- Collection of biological samples and submission to reference laboratories for confirmation.
3.2.3. The Role of International Surveillance Networks
3.3. Biosecurity Measures and Containment Strategies
- Outbreak Zone: This includes poultry farms within a 1 km radius of the index case. In this area, drastic containment actions are recommended, such as depopulation and culling of affected flocks, to minimize viral spread and safeguard animal health [20].
- Observation and Surveillance Zone: Extending from 3 to 10 km beyond the outbreak center, this zone must follow strict containment protocols, such as prohibiting poultry transport and temporarily closing markets and shops selling live birds or eggs within the affected area [20].
3.3.1. Trade Regulations and Restrictions on Live Poultry Transport
3.3.2. Economic and Food Security Implications
3.4. Antiviral Therapies and Human Treatment Options
3.4.1. Current Antiviral Treatments (Oseltamivir, Zanamivir)
3.4.2. Emerging Research on Novel Therapeutic Approaches
3.4.3. Natural Medicine Against Influenza: The Role of Antioxidants and Immunomodulators
3.4.4. Antiviral-Resistance Concerns
4. Global Policy Challenges and Response to H5N1
4.1. International Cooperation and Governance Gaps
4.2. Economic and Trade Barriers
4.3. Public Perception, Misinformation, and Risk Communication
4.4. Inequities in Resource Allocation
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Charostad, J.; Rezaei Zadeh Rukerd, M.; Mahmoudvand, S.; Bashash, D.; Hashemi, S.M.A.; Nakhaie, M.; Zandi, K. A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: An imminent threat at doorstep. Travel Med. Infect. Dis. 2023, 55, 102638. [Google Scholar] [CrossRef] [PubMed]
- Plaza, P.I.; Gamarra-Toledo, V.; Rodríguez Euguí, J.; Lambertucci, S.A. Recent Changes in Patterns of Mammal Infection with Highly Pathogenic Avian Influenza A(H5N1) Virus Worldwide. Emerg. Infect. Dis. 2024, 30, 444. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Davis, W.W. The need for a One Health approach for influenza surveillance. Lancet Glob. Health 2022, 10, e1078–e1079. [Google Scholar] [CrossRef]
- Adlhoch, C.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Marangon, S.; Niqueux, É.; Staubach, C.; Terregino, C.; Muñoz Guajardo, I.; Chuzhakina, K.; et al. Avian influenza overview June–September 2022. EFSA J. 2022, 20, e07597. [Google Scholar] [PubMed]
- Shi, J.; Zeng, X.; Cui, P.; Yan, C.; Chen, H. Alarming situation of emerging H5 and H7 avian influenza and effective control strategies. Emerg. Microbes Infect. 2023, 12, 2155072. [Google Scholar] [CrossRef]
- Virus A(H5N1) de la Influenza Aviar Altamente Patógeno: Recomendaciones Provisionales Para la Prevención, el Monitoreo y Las Investigaciones de Salud Pública Influenza Aviar CDC. Available online: https://espanol.cdc.gov/bird-flu/prevention/hpai-interim-recommendations.html (accessed on 23 April 2025).
- Mukerjee, N.; Maitra, S.; Mukherjee, D.; Ghosh, A.; Alexiou, A.T.; Thorat, N.D. Harnessing PROTACs to combat H5N1 influenza: A new frontier in viral destruction. J. Med. Virol. 2024, 96, e29926. [Google Scholar] [CrossRef]
- Wille, M.; Barr, I.G. Resurgence of avian influenza virus. Science 2022, 376, 459–460. [Google Scholar] [CrossRef]
- Animal Production and Health Division (NSA). Available online: https://www.fao.org/agriculture/animal-production-and-health/en/ (accessed on 23 April 2025).
- Leung, K.; Lam, T.T.Y.; Wu, J.T. Controlling avian influenza. BMJ 2023, 380, 560. [Google Scholar] [CrossRef]
- Vreman, S.; Kik, M.; Germeraad, E.; Heutink, R.; Harders, F.; Spierenburg, M.; Engelsma, M.; Rijks, J.; van den Brand, J.; Beerens, N. Zoonotic Mutation of Highly Pathogenic Avian Influenza H5N1 Virus Identified in the Brain of Multiple Wild Carnivore Species. Pathogens 2023, 12, 168. [Google Scholar] [CrossRef]
- Agüero, M.; Monne, I.; Sánchez, A.; Zecchin, B.; Fusaro, A.; Ruano, M.J.; Del Valle Arrojo, M.; Fernández-Antonio, R.; Souto, A.M.; Tordable, P.; et al. Highly pathogenic avian influenza A(H5N1) virus infection in farmed minks, Spain, October 2022. Eurosurveillance 2023, 28, 2300001. [Google Scholar] [CrossRef]
- Swayne, D.E.; Sims, L.D.; Brown, I.; Harder, T.; Stegeman, A.; Abolnik, C.; Delgado, M.; Awada, L.; Pavade, G.; Torres, G. Strategic challenges in the global control of high pathogenicity avian influenza. Rev. Sci. Tech. 2024, 89–102. [Google Scholar]
- Cargnin Faccin, F.; Perez, D.R. Pandemic preparedness through vaccine development for avian influenza viruses. Hum. Vaccines Immunother. 2024, 20, 2347019. [Google Scholar] [CrossRef] [PubMed]
- Centers Disease Control and Prevention. CDC. Situación Actual de la Gripe Aviar en Las Aves Silvestres Influenza Aviar (Gripe). 2022. Available online: https://www.cdc.gov/bird-flu/situation-summary/index.html (accessed on 22 May 2025).
- Butt, S.L.; Nooruzzaman, M.; Covaleda, L.M.; Diel, D.G. Hot topic: Influenza A H5N1 virus exhibits a broad host range, including dairy cows. JDS Commun. 2024, 5 (Suppl. S1), S13–S19. [Google Scholar] [CrossRef]
- Shu, Y.; McCauley, J. GISAID: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 2017, 22, 30494. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.J. A review of avian influenza in different bird species. Vet. Microbiol. 2000, 74, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992, 56, 152–179. [Google Scholar] [CrossRef]
- Simancas-Racines, A.; Cadena-Ullauri, S.; Guevara-Ramírez, P.; Zambrano, A.K.; Simancas-Racines, D. Avian Influenza: Strategies to Manage an Outbreak. Pathogens 2023, 12, 610. [Google Scholar] [CrossRef]
- Walker, J.A.; Molloy, S.S.; Thomas, G.; Sakaguchi, T.; Yoshida, T.; Chambers, T.M.; Kawaoka, Y. Sequence specificity of furin, a proprotein-processing endoprotease, for the hemagglutinin of a virulent avian influenza virus. J. Virol. 1994, 68, 1213–1218. [Google Scholar] [CrossRef]
- Bestle, D.; Limburg, H.; Kruhl, D.; Harbig, A.; Stein, D.A.; Moulton, H.; Matrosovich, M.; Abdelwhab, E.M.; Stech, J.; Böttcher-Friebertshäuser, E. Hemagglutinins of Avian Influenza Viruses Are Proteolytically Activated by TMPRSS2 in Human and Murine Airway Cells. J. Virol. 2021, 95, 10–128. [Google Scholar] [CrossRef]
- Bertram, S.; Glowacka, I.; Steffen, I.; Kühl, A.; Pöhlmann, S. Novel insights into proteolytic cleavage of influenza virus hemagglutinin. Rev. Med. Virol. 2010, 20, 298–310. [Google Scholar] [CrossRef]
- Stieneke-Gröber, A.; Vey, M.; Angliker, H.; Shaw, E.; Thomas, G.; Roberts, C.; Klenk, H.D.; Garten, W. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J. 1992, 11, 2407–2414. [Google Scholar] [CrossRef]
- The Lancet Infectious Diseases. What is the pandemic potential of avian influenza A(H5N1)? Lancet Infect. Dis. 2024, 24, 437. [Google Scholar] [CrossRef]
- Nuñez, I.A.; Ross, T.M. A.; Ross, T.M. A review of H5Nx avian influenza viruses. In Therapeutic Advances in Vaccines and Immunotherapy; SAGE Publications Ltd.: London, UK, 2019; Volume 7, Available online: https://journals.sagepub.com/doi/10.1177/2515135518821625 (accessed on 22 April 2025).
- The Lancet Microbe. Avian influenza: The need to apply experience. In The Lancet Microbe; Elsevier Ltd.: Amsterdam, The Netherlands, 2022; Volume 3, p. 553. [Google Scholar]
- To, K.K.W.; Chan, J.F.W.; Chen, H.; Li, L.; Yuen, K.Y. Personal View The emergence of infl uenza A H7N9 in human beings 16 years after infl uenza A H5N1: A tale of two cities avian infl uenza viruses. Lancet Infect. Dis. 2013, 13, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Adlhoch, C.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Marangon, S.; Niqueux, É.; Staubach, C.; Terregino, C.; Aznar, I.; Muñoz Guajardo, I.; et al. Avian influenza overview December 2021–March 2022. EFSA J. 2022, 20, e07289. [Google Scholar]
- Zhang, G.; Shi, Y.; Ge, H.; Wang, Y.; Lu, L.; Jiang, S.; Wang, Q. Genomic signatures and host adaptation of H5N1 clade 2.3.4.4b: A call for global surveillance and multi-target antiviral strategies. Curr. Res. Microb. Sci. 2025, 8, 100377. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.M.; Siegers, J.Y.; Wei, X.; Aziz, A.; Deng, Y.M.; Yann, S.; Bun, C.; Bunnary, S.; Izzard, L.; Hak, M.; et al. Detection of Clade 2.3.4.4b Avian Influenza A(H5N8) Virus in Cambodia, 2021. Emerg. Infect. Dis. 2023, 29, 170–174. [Google Scholar] [CrossRef] [PubMed]
- King, J.; Schulze, C.; Engelhardt, A.; Hlinak, A.; Lennermann, S.L.; Rigbers, K.; Skuballa, J.; Staubach, C.; Mettenleiter, T.C.; Harder, T.; et al. Novel HPAIV H5N8 Reassortant (Clade 2.3.4.4b) Detected in Germany. Available online: https://www.oie.int/en/animal-health-in- (accessed on 22 April 2025).
- Peacock, T.P.; Moncla, L.; Dudas, G.; Vaninsberghe, D.; Sukhova, K.; Lloyd-Smith, J.O.; Worobey, M.; Lowen, A.C.; Nelson, M.I. The global H5N1 influenza panzootic in mammals. Nature 2025, 637, 304–313. [Google Scholar] [CrossRef]
- Chang, N.; Zhang, C.; Mei, X.; Du, F.; Li, J.; Zhang, L.; Du, H.; Yun, F.; Aji, D.; Shi, W.; et al. Novel reassortment 2.3.4.4b H5N8 highly pathogenic avian influenza viruses circulating in Xinjiang, China. Prev. Vet. Med. 2022, 199, 105564. [Google Scholar] [CrossRef]
- Krammer, F.; Hermann, E.; Rasmussen, A.L. Highly pathogenic avian influenza H5N1: History, current situation, and outlook. J. Virol. 2025, 99, e02209-24. [Google Scholar] [CrossRef]
- Kandeil, A.; Patton, C.; Jones, J.C.; Jeevan, T.; Harrington, W.N.; Trifkovic, S.; Seiler, J.P.; Fabrizio, T.; Woodard, K.; Turner, J.C.; et al. Rapid evolution of A(H5N1) influenza viruses after intercontinental spread to North America. Nat. Commun. 2023, 14, 3082. [Google Scholar] [CrossRef]
- Swayne, D.; Sims, L. Avian Influenza. In Veterinary Vaccines: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2025; pp. 229–251. Available online: https://www.ncbi.nlm.nih.gov/books/NBK553072/ (accessed on 24 April 2025).
- Peiris, J.S.M.; Hui, K.P.Y.; Yen, H.L. Host response to Influenza virus: Protection versus immunopathology. Curr. Opin. Immunol. 2010, 22, 475–481. [Google Scholar] [CrossRef]
- Peiris, J.S.M.; Cheung, C.Y.; Leung, C.Y.H.; Nicholls, J.M. Innate immune responses to influenza A H5N1: Friend or foe? Trends Immunol. 2009, 30, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Buchy, P.; Mardy, S.; Vong, S.; Toyoda, T.; Aubin, J.T.; Miller, M.; Touch, S.; Sovann, L.; Dufourcq, J.-B.; Richner, B.; et al. Influenza A/H5N1 virus infection in humans in Cambodia. J. Clin. Virol. 2007, 39, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Chutinimitkul, S.; Bhattarakosol, P.; Srisuratanon, S.; Eiamudomkan, A.; Kongsomboon, K.; Damrongwatanapokin, S.; Chaisingh, A.; Suwannakarn, K.; Chieochansin, T.; Theamboonlers, A.; et al. H5N1 Influenza A Virus and Infected Human Plasma. Emerg. Infect. Dis. 2006, 12, 1041. [Google Scholar] [CrossRef] [PubMed]
- de Jong, M.D.; Bach, V.C.; Phan, T.Q.; Vo, M.H.; Tran, T.T.; Nguyen, B.H.; Beld, M.; Le, T.P.; Truong, H.K.; Nguyen, V.V.C.; et al. Fatal Avian Influenza A (H5N1) in a Child Presenting with Diarrhea Followed by Coma. N. Engl. J. Med. 2005, 352, 686–691. [Google Scholar] [CrossRef]
- Ng, W.F.; To, K.F.; Lam, W.W.L.; Ng, T.K.; Lee, K.C. The comparative pathology of severe acute respiratory syndrome and avian influenza A subtype H5N1-A review. Hum. Pathol. 2006, 37, 381–390. [Google Scholar] [CrossRef]
- Ng, W.F.; To, K.F. Pathology of human H5N1 infection: New findings. Lancet 2007, 370, 1106–1108. [Google Scholar] [CrossRef]
- Peiris, J.S.M.; Yu, W.C.; Leung, C.W.; Cheung, C.Y.; Ng, W.F.; Nicholls, J.M.; Ng, T.K.; Chan, K.H.; Lai, S.T.; Lim, W.L.; et al. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 2004, 363, 617–619. [Google Scholar] [CrossRef]
- To, K.F.; Chan, P.K.; Chan, K.F.; Lee, W.K.; Lam, W.Y.; Wong, K.F.; Tang, N.L.; Tsang, D.N.; Sung, R.Y.; Buckley, T.A.; et al. Pathology of fatal human infection associated with avian influenza A H5N1 virus. J. Med. Virol. 2001, 63, 242–246. [Google Scholar] [CrossRef]
- Uyeki, T.M.; Peiris, M. Novel Avian Influenza A Virus Infections of Humans. Infect. Dis. Clin. N. Am. 2019, 33, 907–932. [Google Scholar] [CrossRef]
- Hsieh, Y.-C.; Wu, T.-Z.; Liu, D.-P.; Shao, P.-L.; Chang, L.-Y.; Lu, C.-Y.; Lee, C.-Y.; Huang, F.-Y.; Huang, L.-M. Influenza pandemics: Past, present and future. J. Formos. Med. Assoc. 2006, 105, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Martin-Loeches, I.; Rodriguez, A.; Bonastre, J.; Zaragoza, R.; Sierra, R.; Marques, A.; Juliá-Narvaez, J.; Diaz, E.; Rello, J.; H1N1 SEMICYUC Working Group. Severe pandemic (H1N1)v influenza A infection: Report on the first deaths in Spain. Respirology 2011, 16, 78–85. [Google Scholar] [CrossRef]
- Tian, J.; Bai, X.; Li, M.; Zeng, X.; Xu, J.; Li, P.; Wang, M.; Song, X.; Zhao, Z.; Tian, G.; et al. Highly Pathogenic Avian Influenza Virus (H5N1) Clade 2.3.4.4b Introduced by Wild Birds, China, 2021. Emerg. Infect. Dis. 2023, 29, 1367–1375. [Google Scholar] [CrossRef]
- Xie, Z.; Yang, J.; Jiao, W.; Li, X.; Iqbal, M.; Liao, M.; Dai, M. Clade 2.3.4.4b highly pathogenic avian influenza H5N1 viruses: Knowns, unknowns, and challenges. Mukhopadhyay S, editor. J. Virol. 2025, 99, e00424-24. [Google Scholar] [CrossRef]
- Jourdain, E.; Gunnarsson, G.; Wahlgren, J.; Latorre-Margalef, N.; Bröjer, C.; Sahlin, S.; Svensson, L.; Waldenström, J.; Lundkvist, A.; Olsen, B. Influenza virus in a natural host, the mallard: Experimental infection data. PLoS ONE 2010, 5, e8935. [Google Scholar] [CrossRef] [PubMed]
- Fereidouni, S.R.; Grund, C.; Häuslaigner, R.; Lange, E.; Wilking, H.; Harder, T.C.; Beer, M.; Starick, E. Dynamics of specific antibody responses induced in mallards after infection by or immunization with low pathogenicity avian influenza viruses. Avian Dis. 2010, 54, 79–85. [Google Scholar] [CrossRef]
- Abolnik, C.; Phiri, T.; Peyrot, B.; de Beer, R.; Snyman, A.; Roberts, D.; Ludynia, K.; Jordaan, F.; Maartens, M.; Ismail, Z.; et al. The Molecular Epidemiology of Clade 2.3.4.4B H5N1 High Pathogenicity Avian Influenza in Southern Africa, 2021–2022. Viruses 2023, 15, 1383. [Google Scholar] [CrossRef] [PubMed]
- Bergervoet, S.A.; Pritz-Verschuren, S.B.E.; Gonzales, J.L.; Bossers, A.; Poen, M.J.; Dutta, J.; Khan, Z.; Kriti, D.; van Bakel, H.; Bouwstra, R.; et al. Circulation of low pathogenic avian influenza (LPAI) viruses in wild birds and poultry in the Netherlands, 2006–2016. Sci. Rep. 2019, 9, 13681. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Alqhtani, A.H.; Swelum, A.A.; Salem, H.M.; Elbestawy, A.R.; Noreldin, A.E.; Babalghith, A.O.; Khafaga, A.F.; Hassan, M.I.; et al. The relationship among avian influenza, gut microbiota and chicken immunity: An updated overview. Poult. Sci. 2022, 101, 102021. [Google Scholar] [CrossRef]
- Nuñez, I.A.; Ross, T.M. A review of H5Nx avian influenza viruses. Ther. Adv. Vaccines Immunother. 2019, 7, 2515135518821625. [Google Scholar] [CrossRef]
- Kanaujia, R.; Bora, I.; Ratho, R.K.; Thakur, V.; Mohi, G.K.; Thakur, P. Avian influenza revisited: Concerns and constraints. Virusdisease 2022, 33, 456–465. [Google Scholar] [CrossRef]
- Wong, S.S.Y.; Yuen, K.Y. Avian influenza virus infections in humans. Chest 2006, 129, 156–168. [Google Scholar] [CrossRef]
- Gambaryan, A.S.; Tuzikov, A.B.; Bovin, N.V.; Yamnikova, S.S.; Lvov, D.K.; Webster, R.G.; Matrosovich, M.N. Differences between influenza virus receptors on target cells of duck and chicken and receptor specificity of the 1997 H5N1 chicken and human influenza viruses from Hong Kong. Avian Dis. 2003, 47, 1154–1160. [Google Scholar] [CrossRef] [PubMed]
- Rebel, J.M.; Peeters, B.; Fijten, H.; Post, J.; Cornelissen, J.; Vervelde, L. Highly pathogenic or low pathogenic avian influenza virus subtype H7N1 infection in chicken lungs: Small differences in general acute responses. Vet. Res. 2011, 42, 10. [Google Scholar] [CrossRef] [PubMed]
- Ruan, T.; Sun, Y.; Zhang, J.; Sun, J.; Liu, W.; Prinz, R.A.; Peng, D.; Liu, X.; Xu, X. H5N1 infection impairs the alveolar epithelial barrier through intercellular junction proteins via Itch-mediated proteasomal degradation. Commun. Biol. 2022, 5, 186. [Google Scholar] [CrossRef]
- Dai, M.; Zhu, S.; An, Z.; You, B.; Li, Z.; Yao, Y.; Nair, V.; Liao, M. Dissection of key factors correlating with H5N1 avian influenza virus driven inflammatory lung injury of chicken identified by single-cell analysis. PLoS Pathog. 2023, 19, e1011685. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, J.H.; Fouchier, R.A.M.; Lewis, N. Highly Pathogenic Avian Influenza Viruses at the Wild–Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses 2021, 13, 212. [Google Scholar] [CrossRef]
- Yu, D.; Xiang, G.; Zhu, W.; Lei, X.; Li, B.; Meng, Y.; Yang, L.; Jiao, H.; Li, X.; Huang, W.; et al. The re-emergence of highly pathogenic avian influenza H7N9 viruses in humans in mainland China, 2019. Eurosurveillance 2019, 24, 1900273. [Google Scholar] [CrossRef]
- FAO. Preparándose Para La Influenza Aviar Altamente Patógena. In FAO Producción Y Sanidad Animal; FAO: Rome, Italy, 2007; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/5d150f99-74c7-434b-be19-0f73a90f3f61/content (accessed on 24 April 2025).
- Herfst, S.; Schrauwen, E.J.A.; Linster, M.; Chutinimitkul, S.; De Wit, E.; Munster, V.J.; Sorrell, E.M.; Bestebroer, T.M.; Burke, D.F.; Smith, D.J.; et al. Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets. Science 2012, 336, 1534–1541. [Google Scholar] [CrossRef]
- Imai, M.; Watanabe, T.; Hatta, M.; Das, S.C.; Ozawa, M.; Shinya, K.; Zhong, G.; Hanson, A.; Katsura, H.; Watanabe, S.; et al. Experimental adaptation of an influenza H5 haemagglutinin (HA) confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 2012, 486, 420–428. [Google Scholar] [CrossRef]
- Caserta, L.C.; Frye, E.A.; Butt, S.L.; Laverack, M.; Nooruzzaman, M.; Covaleda, L.M.; Thompson, A.C.; Koscielny, M.P.; Cronk, B.; Johnson, A.; et al. Spillover of highly pathogenic avian influenza H5N1 virus to dairy cattle. Nature 2024, 634, 669–676. [Google Scholar] [CrossRef]
- Elsmo, E.J.; Wünschmann, A.; Beckmen, K.B.; Broughton-Neiswanger, L.E.; Buckles, E.L.; Ellis, J.; Fitzgerald, S.D.; Gerlach, R.; Hawkins, S.; Ip, H.S.; et al. Highly Pathogenic Avian Influenza A(H5N1) Virus Clade 2.3.4.4b Infections in Wild Terrestrial Mammals, United States, 2022. Emerg. Infect. Dis. 2023, 29, 2451. [Google Scholar] [CrossRef] [PubMed]
- Leguia, M.; Garcia-Glaessner, A.; Muñoz-Saavedra, B.; Juarez, D.; Barrera, P.; Calvo-Mac, C.; Jara, J.; Silva, W.; Ploog, K.; Amaro, L.; et al. Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru. Nat. Commun. 2023, 14, 5489. [Google Scholar] [CrossRef] [PubMed]
- Burrough, E.R.; Magstadt, D.R.; Petersen, B.; Timmermans, S.J.; Gauger, P.C.; Zhang, J.; Siepker, C.; Mainenti, M.; Li, G.; Thompson, A.C.; et al. Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b Virus Infection in Domestic Dairy Cattle and Cats, United States, 2024. Emerg. Infect. Dis. 2024, 30, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, A.; Naguib, M.M.; Nogales, A.; Barre, R.S.; Stewart, J.P.; García-Sastre, A.; Martinez-Sobrido, L. Avian influenza A (H5N1) virus in dairy cattle: Origin, evolution, and cross-species transmission. mBio 2024, 15, e02542-24. [Google Scholar] [CrossRef]
- Floyd, T.; Banyard, A.C.; Lean, F.Z.X.; Byrne, A.M.P.; Fullick, E.; Whittard, E.; Mollett, B.C.; Bexton, S.; Swinson, V.; Macrelli, M.; et al. Encephalitis and Death in Wild Mammals at a Rehabilitation Center after Infection with Highly Pathogenic Avian Influenza A(H5N8) Virus, United Kingdom. Emerg. Infect. Dis. 2021, 27, 2856–2863. [Google Scholar] [CrossRef]
- Falchieri, M.; Reid, S.M.; Dastderji, A.; Cracknell, J.; Warren, C.J.; Mollett, B.C.; Peers-Dent, J.; Schlachter, A.-L.D.; Mcginn, N.; Hepple, R.; et al. Rapid mortality in captive bush dogs (Speothos venaticus) caused by influenza A of avian origin (H5N1) at a wildlife collection in the United Kingdom. Emerg. Microbes Infect. 2024, 13, 2361792. [Google Scholar] [CrossRef]
- Rijks, J.M.; Hesselink, H.; Lollinga, P.; Wesselman, R.; Prins, P.; Weesendorp, E.; Engelsma, M.; Heutink, R.; Harders, F.; Kik, M.; et al. Highly Pathogenic Avian Influenza A(H5N1) Virus in Wild Red Foxes, the Netherlands, 2021. Emerg. Infect. Dis. 2021, 27, 2960–2962. [Google Scholar] [CrossRef]
- Tammiranta, N.; Isomursu, M.; Fusaro, A.; Nylund, M.; Nokireki, T.; Giussani, E.; Zecchin, B.; Terregino, C.; Gadd, T. Highly pathogenic avian influenza A (H5N1) virus infections in wild carnivores connected to mass mortalities of pheasants in Finland. Infect. Genet. Evol. 2023, 111, 105423. [Google Scholar] [CrossRef]
- DDomańska-Blicharz, K.; Świętoń, E.; Świątalska, A.; Monne, I.; Fusaro, A.; Tarasiuk, K.; Wyrostek, K.; Styś-Fijoł, N.; Giza, A.; Pietruk, M.; et al. Outbreak of highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus in cats, Poland, June to July 2023. Eurosurveillance 2023, 28, 2300366. [Google Scholar] [CrossRef]
- South Korea Detects H5N1 Bird Flu in Two Cats at Shelter Reuters. Available online: https://www.reuters.com/business/healthcare-pharmaceuticals/south-korea-detects-h5n1-bird-flu-two-cats-shelter-2023-07-26/ (accessed on 21 April 2025).
- Cita Sugerida: Organización Panamericana de la Salud/Organización Mundial de la de la. Available online: https://www.paho.org (accessed on 28 April 2025).
- World Health Organization. Influenza at the Human-Animal Interface; WOAH: Paris, France, 2025; Available online: https://cdn.who.int/media/docs/default-source/influenza/human-animal-interface-risk-assessments/influenza-at-the-human-animal-interface-summary-and-assessment--from-13-december-2024-to-20-january-2025.pdf?sfvrsn=aff4e6b9_3&download=true (accessed on 28 April 2025).
- World Organisation for Animal Health. High Pathogenicity Avian Influenza (HPAI); 2025. Available online: https://scar.org/library-data/avian-flu (accessed on 21 April 2025).
- Pfeiffer, D.U.; Brown, I.; Fouchier, R.A.; Gaidet, N.; Guberti, V.; Harder, T.; Langston, R.; Soares Magalhaes, R.J. Opinion of the Scientific Panel Animal Health and Welfare (AHAW) related with the Migratory Birds and their Possible Role in the Spread of Highly Pathogenic Avian Influenza. EFSA J. 2006, 4, 357. [Google Scholar]
- Nypaver, C.; Dehlinger, C.; Carter, C. Influenza and Influenza Vaccine: A Review. J. Midwifery Womens Health 2021, 66, 45–53. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Kam, Y.W. Insights from Avian Influenza: A Review of Its Multifaceted Nature and Future Pandemic Preparedness. Viruses 2024, 16, 458. [Google Scholar] [CrossRef]
- Winokur, P.L.; Hegmann, T.E.; Keitel, W.A.; Bernstein, D.I.; Frey, S.E.; Bryant, C.; DMID 15-0064 Study Group. Safety and Immunogenicity of a monovalent inactivated influenza A/H5N8 virus vaccine given with and without AS03 or MF59 adjuvants in healthy adults. Clin. Infect. Dis. 2023, ciac983. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Zakaria, S.; Bazid, A.H.I.; Kilany, W.H.; Zain El-Abideen, M.A.; Ali, A. A single dose of inactivated oil-emulsion bivalent H5N8/H5N1 vaccine protects chickens against the lethal challenge of both highly pathogenic avian influenza viruses. Comp. Immunol. Microbiol. Infect. Dis. 2021, 74, 101601. [Google Scholar] [CrossRef]
- Kong, D.; He, Y.; Wang, J.; Chi, L.; Ao, X.; Ye, H.; Qiu, W.; Zhu, X.; Liao, M.; Fan, H. A single immunization with H5N1 virus-like particle vaccine protects chickens against divergent H5N1 influenza viruses and vaccine efficacy is determined by adjuvant and dosage. Emerg. Microbes Infect. 2023, 13, 2287682. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Deng, Z.; Chuai, Z.; Li, C.; Chang, L.; Sun, F.; Cao, R.; Yu, H.; Xiao, R.; Lu, S.; et al. A combination influenza mRNA vaccine candidate provided broad protection against diverse influenza virus challenge. Virology 2024, 596, 110125. [Google Scholar] [CrossRef]
- Hu, J.; Peng, P.; Li, J.; Zhang, Q.; Li, R.; Wang, X.; Gu, M.; Hu, Z.; Hu, S.; Liu, X.; et al. Single Dose of Bivalent H5 and H7 Influenza Virus-Like Particle Protects Chickens Against Highly Pathogenic H5N1 and H7N9 Avian Influenza Viruses. Front. Vet. Sci. 2021, 8, 774630. [Google Scholar] [CrossRef]
- Conferencia Científica OIE/FAO/IZSVe. Vacunación Contra La Influenza Aviar; Unión Europea: Brussels, Belgium, 2007; Available online: https://www.woah.org/app/uploads/2021/03/e-guidelines-on-ai-vaccination.pdf (accessed on 2 May 2025).
- Hein, R.; Koopman, R.; García, M.; Armour, N.; Dunn, J.R.; Barbosa, T.; Martinez, A. Review of Poultry Recombinant Vector Vaccines. Avian Dis. 2021, 65, 438–452. [Google Scholar] [CrossRef]
- Wang, H.; Tian, J.; Zhao, J.; Zhao, Y.; Yang, H.; Zhang, G. Current Status of Poultry Recombinant Virus Vector Vaccine Development. Vaccines 2024, 12, 630. [Google Scholar] [CrossRef]
- Boonnak, K.; Matsuoka, Y.; Wang, W.; Suguitan, A.L.; Chen, Z.; Paskel, M.; Baz, M.; Moore, I.; Jin, H.; Subbarao, K. Development of Clade-Specific and Broadly Reactive Live Attenuated Influenza Virus Vaccines against Rapidly Evolving H5 Subtype Viruses. J. Virol. 2017, 91, 10–1128. [Google Scholar] [CrossRef]
- Focosi, D.; Maggi, F. Avian Influenza Virus A(H5Nx) and Prepandemic Candidate Vaccines: State of the Art. Int. J. Mol. Sci. 2024, 25, 8550. [Google Scholar] [CrossRef]
- Yamayoshi, S.; Kawaoka, Y. Current and future influenza vaccines. Nat. Med. 2019, 25, 212–220. [Google Scholar] [CrossRef]
- Nuwarda, R.F.; Alharbi, A.A.; Kayser, V. An Overview of Influenza Viruses and Vaccines. Vaccines 2021, 9, 1032. [Google Scholar] [CrossRef] [PubMed]
- Cber. Sanofi Pasteur-H5N1 Influenza Virus Vaccine. 2007. Available online: http://vaers.hhs.gov (accessed on 3 May 2025).
- Vacuna Contra el Virus de la Influenza, H5N1 (Para Reserva Nacional) FDA. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/influenza-virus-vaccine-h5n1-national-stockpile (accessed on 3 May 2025).
- FDA; Cber. Highlights of Prescribing Information. Available online: https://www.vaers.hhs.gov (accessed on 3 May 2025).
- Audenz FDA. Available online: https://www.fda.gov/vaccines-blood-biologics/audenz (accessed on 3 May 2025).
- ID Biomedical Corporation of Quebec. Influenza A (H5N1) Virus Monovalent Vaccine, Adjuvanted. U.S. Food and Drug Administration. 22 November 2013. Available online: https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/influenza-h5n1-virus-monovalent-vaccine-adjuvanted-manufactured-id-biomedical-corporation-questions (accessed on 23 May 2025).
- Arepanrix FDA. Available online: https://www.fda.gov/vaccines-blood-biologics/arepanrix (accessed on 3 May 2025).
- Khurana, S.; King, L.R.; Manischewitz, J.; Posadas, O.; Mishra, A.K.; Liu, D.; Beigel, J.H.; Rappuoli, R.; Tsang, J.S.; Golding, H. Licensed H5N1 vaccines generate cross-neutralizing antibodies against highly pathogenic H5N1 clade 2.3.4.4b influenza virus. Nat. Med. 2024, 30, 2771–2776. [Google Scholar] [CrossRef] [PubMed]
- Acerca de la Influenza Aviar Influenza Aviar CDC. Available online: https://espanol.cdc.gov/bird-flu/about/index.html (accessed on 3 May 2025).
- Medidas Médicas de Prevención y Control Programa de Vacunas y Adyuvantes Contra la Pandemia de Influenza y Enfermedades Infecciosas Emergentes. Available online: https://medicalcountermeasures.gov/barda/influenza-and-emerging-infectious-diseases/pandemic-vaccines-adjuvants (accessed on 3 May 2025).
- Krammer, F.; Palese, P. Universal Influenza Virus Vaccines That Target the Conserved Hemagglutinin Stalk and Conserved Sites in the Head Domain. J. Infect. Dis. 2019, 219 (Suppl. S1), S62–S67. [Google Scholar] [CrossRef] [PubMed]
- Krammer, F.; Palese, P.; Steel, J. Advances in universal influenza virus vaccine design and antibody mediated therapies based on conserved regions of the hemagglutinin. Curr. Top. Microbiol. Immunol. 2015, 386, 301–321. [Google Scholar]
- Mo, J.; Spackman, E.; Swayne, D.E. Prediction of highly pathogenic avian influenza vaccine efficacy in chickens by comparison of in vitro and in vivo data: A meta-analysis and systematic review. Vaccine 2023, 41, 5507–5517. [Google Scholar] [CrossRef]
- Cho, M.W.; Goodman, A.G.; Yassine, H.M.; Rajão, D.S.; Pérez, D.R. Universal Vaccines and Vaccine Platforms to Protect against Influenza Viruses in Humans and Agriculture. Front. Microbiol. 2018, 9, 123. [Google Scholar]
- Abdelaziz, K.; Helmy, Y.A.; Yitbarek, A.; Hodgins, D.C.; Sharafeldin, T.A.; Selim, M.S.H. Advances in Poultry Vaccines: Leveraging Biotechnology for Improving Vaccine Development, Stability, and Delivery. Vaccines 2024, 12, 134. [Google Scholar] [CrossRef]
- Rabie, N.S.; Amin Girh, Z.M.S. Bacterial vaccines in poultry. Bull. Natl. Res. Cent. 2020, 44, 15. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, R.; Chan, J.; Prabakaran, M. Vaccines against Major Poultry Viral Diseases: Strategies to Improve the Breadth and Protective Efficacy. Viruses 2022, 14, 1195. [Google Scholar] [CrossRef] [PubMed]
- Sims, L.D.; Swayne, D.E. Avian Influenza Control Strategies; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Saroja, C.; Lakshmi, P.; Bhaskaran, S. Recent trends in vaccine delivery systems: A review. Int. J. Pharm. Investig. 2011, 1, 64–74. [Google Scholar]
- Taha-Abdelaziz, K.; Hodgins, D.C.; Alkie, T.N.; Quinteiro-Filho, W.; Yitbarek, A.; Astill, J.; Sharif, S. Oral administration of PLGA-encapsulated CpG ODN and Campylobacter jejuni lysate reduces cecal colonization by Campylobacter jejuni in chickens. Vaccine 2018, 36, 388–394. [Google Scholar] [CrossRef]
- Balzli, C.L.; Bertran, K.; Lee, D.-H.; Killmaster, L.; Pritchard, N.; Linz, P.; Mebatsion, T.; Swayne, D.E. The efficacy of recombinant turkey herpesvirus vaccines targeting the H5 of highly pathogenic avian influenza virus from the 2014–2015 North American outbreak. Vaccine 2018, 36, 84–90. [Google Scholar] [CrossRef]
- Bublot, M.; Pritchard, N.; Cruz, J.S.; Mickle, T.R.; Selleck, P.; Swayne, D.E. Efficacy of a fowlpox-vectored avian influenza H5 vaccine against Asian H5N1 highly pathogenic avian influenza virus challenge. Avian Dis. 2007, 51 (Suppl. S1), 498–500. [Google Scholar] [CrossRef]
- Toro, H.; Tang, D.C. Protection of chickens against avian influenza with nonreplicating adenovirus-vectored vaccine. Poult. Sci. 2009, 88, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, S.P.; Veits, J.; Mettenleiter, T.C.; Fuchs, W. Live vaccination with an H5-hemagglutinin-expressing infectious laryngotracheitis virus recombinant protects chickens against different highly pathogenic avian influenza viruses of the H5 subtype. Vaccine 2009, 27, 5085–5090. [Google Scholar] [CrossRef]
- Cui, H.; Gao, H.; Cui, X.; Zhao, Y.; Shi, X.; Li, Q.; Yan, S.; Gao, M.; Wang, M.; Liu, C. Avirulent Marek’s Disease Virus Type 1 Strain 814 Vectored Vaccine Expressing Avian Influenza (AI) Virus H5 Haemagglutinin Induced Better Protection Than Turkey Herpesvirus Vectored AI Vaccine. PLoS ONE. 2013, 8, e53340. [Google Scholar] [CrossRef]
- Swayne, D.E. Impact of Vaccines and Vaccination on Global Control of Avian Influenza. Avian Dis. 2012, 56, 818–828. [Google Scholar] [CrossRef]
- Tseng, I.S.S.; Pan, B.Y.; Feng, Y.C.; Fang, C.T. Re-evaluating efficacy of vaccines against highly pathogenic avian influenza virus in poultry: A systematic review and meta-analysis. One Health 2024, 18, 100714. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Samal, S.K. Innovation in Newcastle Disease Virus Vectored Avian Influenza Vaccines. Viruses 2019, 11, 300. [Google Scholar] [CrossRef]
- Chen, H.; Yu, K.; Jiang, Y.; Tang, X. DNA immunization elicits high HI antibody and protects chicken from AIV challenge. Int. Congr. Ser. 2001, 1219, 917–921. [Google Scholar] [CrossRef]
- Jiang, Y.; Yu, K.; Zhang, H.; Zhang, P.; Li, C.; Tian, G.; Li, Y.; Wang, X.; Ge, J.; Bu, Z.; et al. Enhanced protective efficacy of H5 subtype avian influenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid vector. Antivir. Res. 2007, 75, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Rahn, J.; Hoffmann, D.; Harder, T.C.; Beer, M. Vaccines against influenza A viruses in poultry and swine: Status and future developments. Vaccine 2015, 33, 2414–2424. [Google Scholar] [CrossRef]
- Alqazlan, N.; Astill, J.; Raj, S.; Sharif, S. Strategies for enhancing immunity against avian influenza virus in chickens: A review. Avian Pathol. 2022, 51, 211–235. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Qian, J.; Qin, L.; Li, J.; Xue, C.; Ding, J.; Wang, W.; Ding, W.; Yin, R.; Jin, N.; et al. Chimeric Newcastle Disease Virus-like Particles Containing DC-Binding Peptide-Fused Haemagglutinin Protect Chickens from Virulent Newcastle Disease Virus and H9N2 Avian Influenza Virus Challenge. Virol. Sin. 2020, 35, 455–467. [Google Scholar] [CrossRef]
- Hu, C.-M.J.; Chien, C.-Y.; Liu, M.-T.; Fang, Z.-S.; Chang, S.-Y.; Juang, R.-H.; Chang, S.-C.; Chen, H.-W. Multi-antigen avian influenza a (H7N9) virus-like particles: Particulate characterizations and immunogenicity evaluation in murine and avian models. BMC Biotechnol. 2017, 17, 2. [Google Scholar] [CrossRef]
- Wu, P.; Lu, J.; Zhang, X.; Mei, M.; Feng, L.; Peng, D.; Hou, J.; Kang, S.-M.; Liu, X.; Tang, Y. Single dose of consensus hemagglutinin-based virus-like particles vaccine protects chickens against divergent H5 subtype influenza viruses. Front. Immunol. 2017, 8, 1649. [Google Scholar] [CrossRef]
- Li, X.; Ju, H.; Liu, J.; Yang, D.; Qi, X.; Yang, X.; Qiu, Y.; Zheng, J.; Ge, F.; Zhou, J. Influenza virus-like particles harboring H9N2 HA and NA proteins induce a protective immune response in chicken. Influenza Other Respir. Viruses 2017, 11, 518–524. [Google Scholar] [CrossRef]
- Lai, C.-C.; Cheng, Y.-C.; Chen, P.-W.; Lin, T.-H.; Tzeng, T.-T.; Lu, C.-C.; Lee, M.-S.; Hu, A.Y.-C. Process development for pandemic influenza VLP vaccine production using a baculovirus expression system. J. Biol. Eng. 2019, 13, 78. [Google Scholar] [CrossRef] [PubMed]
- Koutsakos, M.; Kedzierska, K.; Subbarao, K. Immune Responses to Avian Influenza Viruses. J. Immunol. 2019, 202, 382–391. [Google Scholar] [CrossRef]
- Hao, X.; Zhang, F.; Yang, Y.; Shang, S. The Evaluation of Cellular Immunity to Avian Viral Diseases: Methods, Applications, and Challenges. Front. Microbiol. 2021, 12, 794514. [Google Scholar] [CrossRef]
- Dai, M.; Xu, C.; Chen, W.; Liao, M. Progress on chicken T cell immunity to viruses. Cell. Mol. Life Sci. 2019, 76, 2779–2788. [Google Scholar] [CrossRef]
- Kai McKinstry, K.; Dutton, R.W.; Swain, S.L.; Strutt, T.M. Memory CD4 T cell-mediated immunity against influenza a virus: More than a little helpful. Arch. Immunol. Ther. Exp. 2013, 61, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Wang, Q.; Ma, B.; Zhang, B.; Sun, K.; Yu, X.; Ye, Z.; Zhang, M. Advances in Detection Techniques for the H5N1 Avian Influenza Virus. Int. J. Mol. Sci. 2023, 24, 17157. [Google Scholar] [CrossRef]
- Hong, S.C.; Murale, D.P.; Jang, S.-Y.; Haque, M.M.; Seo, M.; Lee, S.; Woo, D.H.; Kwon, J.; Song, C.-S.; Kim, Y.K.; et al. Discrimination of Avian Influenza Virus Subtypes using Host-Cell Infection Fingerprinting by a Sulfinate-based Fluorescence Superoxide Probe. Angew. Chem. Int. Ed. 2018, 57, 9716–9721. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, E.; Stech, J.; Guan, Y.; Webster, R.G.; Perez, D.R. Universal primer set for the full-length amplification of all influenza A viruses. Arch. Virol. 2001, 146, 2275–2289. [Google Scholar] [CrossRef]
- Swayne, D.E.; Kapczynski, D. Strategies and challenges for eliciting immunity against avian influenza virus in birds. Immunol. Rev. 2008, 225, 314–331. [Google Scholar] [CrossRef]
- Shan, S.; Ko, L.-S.; Collins, R.A.; Wu, Z.; Chen, J.; Chan, K.-Y.; Xing, J.; Lau, L.-T.; Yu, A.C.-H. Comparison of nucleic acid-based detection of avian influenza H5N1 with virus isolation. Biochem. Biophys. Res. Commun. 2003, 302, 377–383. [Google Scholar] [CrossRef]
- Bishai, F.R.; Galli, R. Enzyme-linked immunosorbent assay for detection of antibodies to influenza A and B and parainfluenza type 1 in sera of patients. J. Clin. Microbiol. 1978, 8, 648–656. [Google Scholar] [CrossRef]
- Snyder, D.B.; Marquardt, W.W.; Mallinson, E.T.; Allen, D.A.; Savage, P.K. An enzyme-linked immunosorbent assay method for the simultaneous measurement of antibody titer to multiple viral, bacterial or protein antigens. Vet. Immunol Immunopathol. 1985, 9, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Chen, Q.; Zheng, L.; Chen, J.; Sui, Z.; Guan, Y.; Chen, Z. Generation and evaluation of an H9N1 influenza vaccine derived by reverse genetics that allows utilization of a DIVA strategy for control of H9N2 avian influenza. Arch. Virol. 2009, 154, 1203–1210. [Google Scholar] [CrossRef]
- Adair, B.M.; Todd, D.; McKillop, E.R.; McNulty, M.S. Detection of influenza a type-specific antibodies in chicken and turkey sera by enzyme linked immunosorbent assay. Avian Pathol. 1989, 18, 455–463. [Google Scholar] [CrossRef]
- Yang, M.; Berhane, Y.; Salo, T.; Li, M.; Hole, K.; Clavijo, A. Development and application of monoclonal antibodies against avian influenza virus nucleoprotein. J. Virol. Methods 2008, 147, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Sakurai, A.; Nomura, N.; Park, E.Y.; Shibasaki, F.; Ueda, H. Isolation of recombinant phage antibodies targeting the hemagglutinin cleavage site of highly pathogenic avian influenza virus. PLoS ONE 2013, 8, e61158. [Google Scholar] [CrossRef]
- He, F.; Soejoedono, R.D.; Murtini, S.; Goutama, M.; Kwang, J. Complementary monoclonal antibody-based dot ELISA for universal detection of H5 avian influenza virus. BMC Microbiol. 2010, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.-T.; Qian, H.-L.; He, F.; Meng, T.; Szyporta, M.; Prabhu, N.; Prabakaran, M.; Chan, K.-P.; Kwang, J. Rapid detection of H5N1 subtype influenza viruses by antigen capture enzyme-linked immunosorbent assay using H5- and N1-specific monoclonal antibodies. Clin. Vaccine Immunol. 2009, 16, 726–732. [Google Scholar] [CrossRef]
- Ellis, J.S.; Fleming, D.M.; Zambon, M.C. Multiplex reverse transcription-PCR for surveillance of influenza A and B viruses in England and Wales in 1995 and 1996. J. Clin. Microbiol. 1997, 35, 2076–2082. [Google Scholar] [CrossRef]
- Elbers, A.R.W.; Holtslag, J.B.; Bouma, A.; Koch, G. Within-flock mortality during the high-pathogenicity avian influenza (H7N7) epidemic in The Netherlands in 2003: Implications for an early detection system. Avian Dis. 2007, 51 (Suppl. S1), 304–308. [Google Scholar] [CrossRef]
- Beerens, N.; Koch, G.; Heutink, R.; Harders, F.; Vries, D.P.E.; Ho, C.; Bossers, A.; Elbers, A. Novel Highly Pathogenic Avian Influenza A(H5N6) Virus in the Netherlands, December 2017. Emerg. Infect. Dis. 2018, 24, 770–773. [Google Scholar] [CrossRef] [PubMed]
- Conan, A.; Goutard, F.L.; Sorn, S.; Vong, S. Biosecurity measures for backyard poultry in developing countries: A systematic review. BMC Vet. Res. 2012, 8, 240. [Google Scholar] [CrossRef]
- Caría, D.; Ferrer, M.A.E.; Chuard, N. Manual de Procedimientos Para la Contingencia de la Influenza Aviar; SENASA: Buenos Aires, Argentina, 2017. Available online: https://www.argentina.gob.ar/sites/default/files/manual_de_procedimientos_-_plan_de_contingencia_de_ia_res._ndeg_73.2010.pdf (accessed on 3 May 2025).
- Programa Mundial de la Gripe de la Gripe no Estacional y Otras Afecciones Respiratorias Agudas Emergentes Estudio Protocolo de Organización Mundial de la Salud. Available online: http://www.who.int/about/licensing (accessed on 3 May 2025).
- Adlhoch, C.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Marangon, S.; Mirinaviciute, G.; Niqueux, É.; Stahl, K.; Staubach, C.; Terregino, C.; et al. Avian influenza overview December 2022–March 2023. EFSA J. 2023, 21, e07917. [Google Scholar]
- Guinat, C.; Comin, A.; Kratzer, G.; Durand, B.; Delesalle, L.; Delpont, M.; Guérin, J.-L.; Paul, M.C. Biosecurity risk factors for highly pathogenic avian influenza (H5N8) virus infection in duck farms, France. Transbound. Emerg. Dis. 2020, 67, 2961–2970. [Google Scholar] [CrossRef]
- Krammer, F.; Schultz-Cherry, S. We need to keep an eye on avian influenza. Nat. Rev. Immunol. 2023, 23, 267–268. [Google Scholar] [CrossRef] [PubMed]
- Gubareva, L.V.; Besselaar, T.G.; Daniels, R.S.; Fry, A.; Gregory, V.; Huang, W.; Hurt, A.C.; Jorquera, P.A.; Lackenby, A.; Leang, S.-K.; et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2015–2016. Antivir. Res. 2017, 146, 12–20. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.; Liu, S. Emerging antiviral therapies and drugs for the treatment of influenza. Expert Opin. Emerg. Drugs 2022, 27, 389–403. [Google Scholar] [CrossRef]
- Shiraishi, C.; Kato, H.; Hagihara, M.; Asai, N.; Iwamoto, T.; Mikamo, H. Comparison of clinical efficacy and safety of baloxavir marboxil versus oseltamivir as the treatment for influenza virus infections: A systematic review and meta-analysis. J. Infect. Chemother. 2024, 30, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Bonomini, A.; Zhang, J.; Ju, H.; Zago, A.; Pacetti, M.; Tabarrini, O.; Massari, S.; Liu, X.; Mercorelli, B.; Zhan, P.; et al. Synergistic activity of an RNA polymerase PA-PB1 interaction inhibitor with oseltamivir against human and avian influenza viruses in cell culture and in ovo. Antivir. Res. 2024, 230, 105980. [Google Scholar] [CrossRef]
- Taniguchi, K.; Ando, Y.; Kobayashi, M.; Toba, S.; Nobori, H.; Sanaki, T.; Noshi, T.; Kawai, M.; Yoshida, R.; Sato, A.; et al. Characterization of the In Vitro and In Vivo Efficacy of Baloxavir Marboxil against H5 Highly Pathogenic Avian Influenza Virus Infection. Viruses 2022, 14, 111. [Google Scholar] [CrossRef]
- Abbas, G.; Yu, J.; Li, G. Novel and Alternative Therapeutic Strategies for Controlling Avian Viral Infectious Diseases: Focus on Infectious Bronchitis and Avian Influenza. Front. Vet. Sci. 2022, 9, 933274. [Google Scholar] [CrossRef] [PubMed]
- Luganini, A.; Terlizzi, M.E.; Catucci, G.; Gilardi, G.; Maffei, M.E.; Gribaudo, G. The cranberry extract oximacro® exerts in vitro virucidal activity against influenza virus by interfering with hemagglutinin. Front. Microbiol. 2018, 9, 1826. [Google Scholar] [CrossRef]
- Brindha Devi, A.; Sarala, R. Efficacy of the commercial plant products acting against influenza-A review. Future J. Pharm. Sci. 2021, 7, 238. [Google Scholar] [CrossRef]
- Sharma, M.; Anderson, S.A.; Schoop, R.; Hudson, J.B. Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract. Antivir. Res. 2009, 83, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Jawad, M.; Schoop, R.; Suter, A.; Klein, P.; Eccles, R. Safety and efficacy profile of Echinacea purpurea to prevent common cold episodes: A randomized, double-blind, placebo-controlled trial. Evid.-Based Complement. Altern. Med. 2012, 2012, 841315. [Google Scholar] [CrossRef]
- Ehrhardt, C.; Dudek, S.E.; Holzberg, M.; Urban, S.; Hrincius, E.R.; Haasbach, E.; Seyer, R.; Lapuse, J.; Planz, O.; Ludwig, S. A Plant Extract of Ribes nigrum folium Possesses Anti-Influenza Virus Activity In Vitro and In Vivo by Preventing Virus Entry to Host Cells. PLoS ONE. 2013, 8, e63657. [Google Scholar] [CrossRef] [PubMed]
- Haasbach, E.; Hartmayer, C.; Hettler, A.; Sarnecka, A.; Wulle, U.; Ehrhardt, C.; Ludwig, S.; Planz, O. Antiviral activity of ladania067, an extract from wild black currant leaves against influenza a virus in vitro and in vivo. Front. Microbiol. 2014, 5, 171. [Google Scholar] [CrossRef]
- Rehman, S.R.; Muhammad, K.; Yaqub, T.; Khan, M.S.; Hanif, K.; Yasmeen, R. Antimicrobial Activity Of Mentofin And Its Effect On Antibody Response Of Broilers To Newcastle Disease Virus Vaccine. J. Anim. Plant Sci. 2013, 23, 1008–1011. [Google Scholar]
- Kinoshita, E.; Hayashi, K.; Katayama, H.; Hayashi, T.; Obata, A. Anti-influenza virus effects of elderberry juice and its fractions. Biosci. Biotechnol. Biochem. 2012, 76, 1633–1638. [Google Scholar] [CrossRef]
- Krawitz, C.; Abu Mraheil, M.; Stein, M.; Imirzalioglu, C.; Domann, E.; Pleschka, S.; Hain, T. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Complement. Altern. Med. 2011, 11, 16. [Google Scholar] [CrossRef]
- Zakay-Rones, Z.; Thom, E.; Wollan, T.; Wadstein, J. Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. J. Int. Med. Res. 2004, 32, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Zakay-Rones, Z.; Varsano, N.; Zlotnik, M.; Manor, O.; Regev, L.; Schlesinger, M.; Mumcuoglu, M. Inhibition of Several Strains of Influenza Virus in Vitro and Reduction of Symptoms by an Elderberry Extract (Sambucus nigra L.) during an Outbreak of Influenza B Panama. J. Altern. Complement. Med. 1995, 1, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Li, N.X.; Duan, N.; Liu, B.; Zhu, H.; Zhang, C.; Li, L.; Lu, C.; Huang, L. Traditional Chinese Medicine in Treating Influenza: From Basic Science to Clinical Applications. Front. Pharmacol. 2020, 11, 575803. [Google Scholar] [CrossRef]
- Li, J.H.; Wang, R.Q.; Guo, W.J.; Li, J.S. Efficacy and safety of traditional Chinese medicine for the treatment of influenza A (H1N1): A meta-analysis. J. Chin. Med. Assoc. 2016, 79, 281–291. [Google Scholar] [CrossRef]
- Yoshino, T.; Arita, R.; Horiba, Y.; Watanabe, K. The use of maoto (Ma-Huang-Tang), a traditional Japanese Kampo medicine, to alleviate flu symptoms: A systematic review and meta-analysis. BMC Complement. Altern. Med. 2019, 19, 68. [Google Scholar] [CrossRef]
- Hu, X.-Y.; Wu, R.-H.; Logue, M.; Blondel, C.; Lai, L.Y.W.; Stuart, B.; Flower, A.; Fei, Y.-T.; Moore, M.; Shepherd, J.; et al. Andrographis paniculata (Chuān Xīn Lián) for symptomatic relief of acute respiratory tract infections in adults and children: A systematic review and meta-analysis. PLoS ONE. 2017, 12, e0181780. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Cao, B.; Liu, Q.-Q.; Zou, Z.-Q.; Liang, Z.-A.; Gu, L.; Dong, J.-P.; Liang, L.-R.; Li, X.-W.; Hu, K.; et al. Oseltamivir compared with the Chinese traditional therapy maxingshigan-yinqiaosan in the treatment of H1N1 influenza: A randomized trial. Ann. Intern. Med. 2011, 155, 217–226. [Google Scholar] [CrossRef]
- Yan, H.; Wang, H.; Ma, L.; Ma, X.; Yin, J.; Wu, S.; Huang, H.; Li, Y. Cirsimaritin inhibits influenza A virus replication by downregulating the NF-κB signal transduction pathway. Virol. J. 2018, 15, 88. [Google Scholar] [CrossRef]
- Pavlova, E.L.; Simeonova, L.S.; Gegova, G.A. Combined efficacy of oseltamivir, isoprinosine and ellagic acid in influenza A(H3N2)-infected mice. Biomed. Pharmacother. 2018, 98, 29–35. [Google Scholar] [CrossRef]
- Huang, S.F.; Fung, C.P.; Perng, D.W.; Wang, F.D. Effects of corticosteroid and neuraminidase inhibitors on survival in patients with respiratory distress induced by influenza virus. J. Microbiol. Immunol. Infect. 2017, 50, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Madan, A.; Chen, S.; Yates, P.; Washburn, M.L.; Roberts, G.; Peat, A.J.; Tao, Y.; Parry, M.F.; Barnum, O.; McClain, M.T.; et al. Efficacy and safety of danirixin (GSK1325756) co-administered with standard-of-care antiviral (Oseltamivir): A phase 2b, global, randomized study of adults hospitalized with influenza. Open Forum Infect. Dis. 2019, 6, ofz163. [Google Scholar] [CrossRef] [PubMed]
- Ashar, H.K.; Pulavendran, S.; Rudd, J.M.; Maram, P.; Achanta, M.; Chow, V.T.K.; Malayer, J.R.; Snider, T.A.; Teluguakula, N. Administration of a CXC Chemokine Receptor 2 (CXCR2) Antagonist, SCH527123, Together with Oseltamivir Suppresses NETosis and Protects Mice from Lethal Influenza and Piglets from Swine-Influenza Infection. Am. J. Pathol. 2021, 191, 669–685. [Google Scholar] [CrossRef]
- Haasbach, E.; Hartmayer, C.; Planz, O. Combination of MEK inhibitors and oseltamivir leads to synergistic antiviral effects after influenza A virus infection in vitro. Antivir. Res. 2013, 98, 319–324. [Google Scholar] [CrossRef]
- Study Details Interferon Alpha Lozenges Plus Oseltamivir for Influenza Treatment ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT01146535 (accessed on 3 May 2025).
- Andreev, K.; Jones, J.C.; Seiler, P.; Kandeil, A.; Webby, R.J.; Govorkova, E.A. Genotypic and phenotypic susceptibility of emerging avian influenza A viruses to neuraminidase and cap-dependent endonuclease inhibitors. Antivir. Res. 2024, 229, 105959. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Muñoz, C.A.; Arango-Restrepo, A.E. Aguirre-Muñoz CA, Arango-Restrepo AE. Influenza aviar: Estado actual. Med. Lab. 2006, 12, 411–437. [Google Scholar]
- Quiénes Somos-OMSA-Organización Mundial de Sanidad Animal. Available online: https://www.woah.org/es/quienes-somos/ (accessed on 22 April 2025).
- OMSA. High Pathogenicity Avian Influenza (HPAI) Situation Report 66; Organización Mundial de Sanidad Animal: Paris, France. Available online: https://www.who.int/teams/global-influenza-programme/avian-influenza/monthly-risk-assessment-summary (accessed on 3 May 2025).
- Evaluación de Salud Pública Conjunta FAO/OMS/WOAH Actualizada Sobre Eventos Recientes Del Virus de la Influenza A(H5) en Animales y Personas. Available online: https://www.who.int/publications/m/item/updated-joint-fao-who-woah-assessment-of-recent-influenza-a(h5n1)-virus-events-in-animals-and-people_dec2024 (accessed on 3 May 2025).
- Agronomes; Vétérinaires Sans Frontières. Salud Animal y Salud Pública Veterinaria: Un desafío Global Mundial. AVSF. 2021. Available online: https://www.avsf.org/app/uploads/2023/10/ES-Note-de-posicionamiento-Salud-animal_AVSF_WEB.pdf (accessed on 3 May 2025).
- Factores Impulsores de Una Pandemia Debido a la Gripe Aviar y Opciones Para Las Medidas de Mitigación de Una Salud. Available online: https://www.ecdc.europa.eu/en/publications-data/drivers-pandemic-due-avian-influenza-and-options-one-health-mitigation-measures (accessed on 3 May 2025).
- World Economy Forum. Outbreak Readiness and Business Impact Protecting Lives and Livelihoods Across the Global Economy; Harvard Global Health Institute: Cambridge, MA, USA, 2019; Available online: https://www3.weforum.org/docs/WEF%20HGHI_Outbreak_Readiness_Business_Impact.pdf (accessed on 3 May 2025).
- Commission on a Global Health Risk Framework for the Future; National Academy of Medicine, Secretariat. The Neglected Dimension of Global Security: A Framework to Counter Infectious Disease Crises. National Academies Press (US): Washington, DC, USA, 16 May 2016. [Google Scholar]
- Declaración Sobre la Influenza Aviar y Los Mamíferos-OMSA. Available online: https://www.woah.org/es/declaracion-sobre-la-influenza-aviar-y-los-mamiferos/ (accessed on 3 May 2025).
- Jarvis, S. What next for avian influenza? Vet. Record. 2022, 191, 139. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, L.; Lai, A.; Kang, M.; Qi, Y.; Merits, A.; Jiao, X.; Wang, X.; Yu, X.; Su, S.; et al. Novel universal vaccines to mitigate emerging avian influenza viruses. Trends Mol. Med. 2025. [Google Scholar] [CrossRef]
- Lei, H.; Lu, X.; Li, S.; Ren, Y. High immune efficacy against different avian influenza H5N1 viruses due to oral administration of a Saccharomyces cerevisiae-based vaccine in chickens. Sci. Rep. 2021, 11, 8977. [Google Scholar] [CrossRef]
- OPS Lanza Tablero Interactivo Para Monitorear la Influenza Aviar A(H5N1) en Las AMÉRICAS-OPS/OMS Organización Panamericana de la Salud. Available online: https://www.paho.org/es/noticias/6-1-2025-ops-lanza-tablero-interactivo-para-monitorear-influenza-aviar-ah5n1-americas (accessed on 3 May 2025).
- Adlhoch, C.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Marangon, S.; Niqueux, É.; Staubach, C.; Terregino, C.; Aznar, I.; Muñoz Guajardo, I.; et al. Avian influenza overview March–June 2022. EFSA J. 2022, 20, e07415. [Google Scholar]
- Li, L.; Taeihagh, A.; Tan, S.Y. A scoping review of the impacts of COVID-19 physical distancing measures on vulnerable population groups. Nat. Commun. 2023, 14, 599. [Google Scholar] [CrossRef]
- Antinori, A.; Bausch-Jurken, M. The Burden of COVID-19 in the Immunocompromised Patient: Implications for Vaccination and Needs for the Future. J. Infect. Dis. 2023, 228 (Suppl. S1), S4–S12. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhu, W.; Yang, L.; Shu, Y. The Epidemiology, Virology, and Pathogenicity of Human Infections with Avian Influenza Viruses. Cold Spring Harb. Perspect. Med. 2021, 11, a038620. [Google Scholar] [CrossRef]
- Jennings, L.C.; Monto, A.S.; Chan, P.K.; Szucs, T.D.; Nicholson, K.G. Stockpiling prepandemic influenza vaccines: A new cornerstone of pandemic preparedness plans. Lancet Infect. Dis. 2008, 8, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Bruno, A.; Alfaro-Núñez, A.; de Mora, D.; Armas, R.; Olmedo, M.; Garcés, J.; Garcia-Bereguiain, M.A. First case of human infection with highly pathogenic H5 avian Influenza A virus in South America: A new zoonotic pandemic threat for 2023? J. Travel. Med. 2023, 30, taad032. [Google Scholar] [CrossRef]
- Xie, R.; Edwards, K.M.; Wille, M.; Wei, X.; Wong, S.-S.; Zanin, M.; El-Shesheny, R.; Ducatez, M.; Poon, L.L.M.; Kayali, G.; et al. The episodic resurgence of highly pathogenic avian influenza H5 virus. Nature 2023, 622, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Mahase, E. H5N1: Governments should invest in vaccines for all flu strains, says incoming WHO chief scientist. BMJ 2023, 380, 434. [Google Scholar] [CrossRef]
- Adlhoch, C.; Baldinelli, F. Avian influenza, new aspects of an old threat. Eurosurveillance 2023, 28, 2300227. [Google Scholar] [CrossRef]
Genotype | Region of Origin | Year | Affected Species | Key Notes | References |
---|---|---|---|---|---|
AB/BB | Europe, Central Asia | 2020 | Poultry, wild birds | Result of reassortment between H5N8 and LPAI viruses | [31,32,34] |
B3.2 | Americas | 2021 | Wild birds, marine mammals | Reassortment in the Western Hemisphere | [25,27] |
B3.13 | Americas | 2022 | Seals, minks, dairy cattle, domestic cats | Genotype with high interspecies adaptability | [25,27,33] |
D1.1 | Asia | 2022 | Birds, mammals (emerging data) | Involved in sporadic infections, monitoring underway | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simancas-Racines, A.; Reytor-González, C.; Toral, M.; Simancas-Racines, D. H5N1 Avian Influenza: A Narrative Review of Scientific Advances and Global Policy Challenges. Viruses 2025, 17, 927. https://doi.org/10.3390/v17070927
Simancas-Racines A, Reytor-González C, Toral M, Simancas-Racines D. H5N1 Avian Influenza: A Narrative Review of Scientific Advances and Global Policy Challenges. Viruses. 2025; 17(7):927. https://doi.org/10.3390/v17070927
Chicago/Turabian StyleSimancas-Racines, Alison, Claudia Reytor-González, Melannie Toral, and Daniel Simancas-Racines. 2025. "H5N1 Avian Influenza: A Narrative Review of Scientific Advances and Global Policy Challenges" Viruses 17, no. 7: 927. https://doi.org/10.3390/v17070927
APA StyleSimancas-Racines, A., Reytor-González, C., Toral, M., & Simancas-Racines, D. (2025). H5N1 Avian Influenza: A Narrative Review of Scientific Advances and Global Policy Challenges. Viruses, 17(7), 927. https://doi.org/10.3390/v17070927