Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = transgenic chrysanthemum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6235 KiB  
Article
Heterologous Expression of Chrysanthemum TCP Transcription Factor CmTCP13 Enhances Salinity Tolerance in Arabidopsis
by Xinran Chong, Yanan Liu, Peiling Li, Yue Wang, Ting Zhou, Hong Chen and Haibin Wang
Plants 2024, 13(15), 2118; https://doi.org/10.3390/plants13152118 - 31 Jul 2024
Cited by 3 | Viewed by 1254
Abstract
Plant-specific TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) proteins play critical roles in plant development and stress responses; however, their functions in chrysanthemum (Chrysanthemum morifolium) have not been well-studied. In this study, we isolated and characterized the chrysanthemum TCP transcription factor family gene [...] Read more.
Plant-specific TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) proteins play critical roles in plant development and stress responses; however, their functions in chrysanthemum (Chrysanthemum morifolium) have not been well-studied. In this study, we isolated and characterized the chrysanthemum TCP transcription factor family gene CmTCP13, a homolog of AtTCP13. This gene encoded a protein harboring a conserved basic helix–loop–helix motif, and its expression was induced by salinity stress in chrysanthemum plants. Subcellular localization experiments showed that CmTCP13 localized in the nucleus. Sequence analysis revealed the presence of multiple stress- and hormone-responsive cis-elements in the promoter region of CmTCP13. The heterologous expression of CmTCP13 in Arabidopsis plants enhanced their tolerance to salinity stress. Under salinity stress, CmTCP13 transgenic plants exhibited enhanced germination, root length, seedling growth, and chlorophyll content and reduced relative electrical conductivity compared with those exhibited by wild-type (WT) plants. Moreover, the expression levels of stress-related genes, including AtSOS3, AtP5CS2, AtRD22, AtRD29A, and AtDREB2A, were upregulated in CmTCP13 transgenic plants than in WT plants under salt stress. Taken together, our results demonstrate that CmTCP13 is a critical regulator of salt stress tolerance in plants. Full article
(This article belongs to the Special Issue Molecular Regulation of Plant Stress Responses)
Show Figures

Figure 1

13 pages, 3373 KiB  
Article
Characterization of bZIP Transcription Factors in Transcriptome of Chrysanthemum mongolicum and Roles of CmbZIP9 in Drought Stress Resistance
by Xuan Wang, Yuan Meng, Shaowei Zhang, Zihan Wang, Kaimei Zhang, Tingting Gao and Yueping Ma
Plants 2024, 13(15), 2064; https://doi.org/10.3390/plants13152064 - 26 Jul 2024
Cited by 3 | Viewed by 1172
Abstract
bZIP transcription factors play important roles in regulating plant development and stress responses. Although bZIPs have been identified in many plant species, there is little information on the bZIPs in Chrysanthemum. In this study, bZIP TFs were identified from the leaf transcriptome [...] Read more.
bZIP transcription factors play important roles in regulating plant development and stress responses. Although bZIPs have been identified in many plant species, there is little information on the bZIPs in Chrysanthemum. In this study, bZIP TFs were identified from the leaf transcriptome of C. mongolicum, a plant naturally tolerant to drought. A total of 28 full-length bZIP family members were identified from the leaf transcriptome of C. mongolicum and were divided into five subfamilies based on their phylogenetic relationships with the bZIPs from Arabidopsis. Ten conserved motifs were detected among the bZIP proteins of C. mongolicum. Subcellular localization assays revealed that most of the CmbZIPs were predicted to be localized in the nucleus. A novel bZIP gene, designated as CmbZIP9, was cloned based on a sequence of the data of the C. mongolicum transcriptome and was overexpressed in tobacco. The results indicated that the overexpression of CmbZIP9 reduced the malondialdehyde (MDA) content and increased the peroxidase (POD) and superoxide dismutase (SOD) activities as well as the expression levels of stress-related genes under drought stress, thus enhancing the drought tolerance of transgenic tobacco lines. These results provide a theoretical basis for further exploring the functions of the bZIP family genes and lay a foundation for stress resistance improvement in chrysanthemums in the future. Full article
(This article belongs to the Special Issue Recent Advances in Horticultural Plant Genomics)
Show Figures

Figure 1

14 pages, 5397 KiB  
Article
The Functional Verification of CmSMXL6 from Chrysanthemum in the Regulation of Branching in Arabidopsis thaliana
by Fenglan Wang, Zhiren Hu, Honghui Luo, Qing Wu, Xiuzhe Chen, Shuang Wen, Zihang Xiao, Xiaoxiao Ai and Yanhong Guo
Horticulturae 2024, 10(7), 718; https://doi.org/10.3390/horticulturae10070718 - 6 Jul 2024
Cited by 2 | Viewed by 1109
Abstract
The development of branching plays a pivotal role in the cultivation of ornamental chrysanthemums, as it dictates the ultimate morphology and quality of the plants. Strigolactones (SLs) are associated with apical dominance to indirectly inhibit shoot branching. Chrysanthemum morifolium ‘Baltasar’ in this study [...] Read more.
The development of branching plays a pivotal role in the cultivation of ornamental chrysanthemums, as it dictates the ultimate morphology and quality of the plants. Strigolactones (SLs) are associated with apical dominance to indirectly inhibit shoot branching. Chrysanthemum morifolium ‘Baltasar’ in this study was subjected to treatment with three hormones: auxin (IAA), 6-BA, and GR24. Following the exogenous application of GR24 and IAA, a significant reduction in both the length and quantity of lateral buds on chrysanthemums was observed. Additionally, there was a notable down-regulation in the expression levels of CmPIN1 (associated with auxin transport) and CmIPT3, which is involved in cytokinin (CK) synthesis. After the application of 6-BA, there was a significant increase in both the length and quantity of lateral buds on chrysanthemums. Subsequently, the separate application of IAA and 6-BA to C. morifolium ‘Baltasar’ notably induced the expression of CmMAX1, a gene involved in the biosynthesis of strigolactones, and CmSMXL6, a gene associated with the signaling pathway of SLs, suggesting a negative regulatory role for SLs and auxin in chrysanthemum lateral buds, while CK demonstrated positive regulation. Cloning and expression analysis of CmSMXL6, a member of the D53/SMXL gene family in chrysanthemum, revealed its up-regulation following GR24 treatment, peaking at 9 h. The overexpression of CmSMXL6 in Arabidopsis thaliana promoted increased numbers of primary and secondary branches. In transgenic lines, genes associated with SLs synthesis (AtMAX1, AtMAX2, and AtMAX3) exhibited varying degrees of down-regulation, while the branching-inhibitory gene AtBRC1 also displayed decreased expression levels. These findings suggest that CmSMXL6 plays a role in promoting branching. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

15 pages, 7282 KiB  
Article
Functional Validation of Different Alternative Splicing Variants of the Chrysanthemum lavandulifolium ClNUM1 Gene in Tobacco
by Wenxin Zhang, Hai Wang, Yuning Guo, Xueying Hao, Yanxi Li, Wenting He, Xiang Zhao, Shiyi Cai and Xuebin Song
Curr. Issues Mol. Biol. 2024, 46(6), 5242-5256; https://doi.org/10.3390/cimb46060314 - 25 May 2024
Cited by 2 | Viewed by 1302
Abstract
The Asteraceae are widely distributed throughout the world, with diverse functions and large genomes. Many of these genes remain undiscovered and unstudied. In this study, we discovered a new gene ClNUM1 in Chrysanthemum lavandulifolium and studied its function. In this study, bioinformatics, RT-qPCR, [...] Read more.
The Asteraceae are widely distributed throughout the world, with diverse functions and large genomes. Many of these genes remain undiscovered and unstudied. In this study, we discovered a new gene ClNUM1 in Chrysanthemum lavandulifolium and studied its function. In this study, bioinformatics, RT-qPCR, paraffin sectioning, and tobacco transgenics were utilized to bioinformatically analyze and functionally study the three variable splice variants of the unknown gene ClNUM1 cloned from C. lavandulifolium. The results showed that ClNUM1.1 and ClNUM1.2 had selective 3′ splicing and selective 5′ splicing, and ClNUM1.3 had selective 5′ splicing. When the corresponding transgenic tobacco plants were subjected to abiotic stress treatment, in the tobacco seedlings, the ClNUM1.1 gene and the ClNUM1.2 gene enhanced salt and low-temperature tolerance and the ClNUM1.3 gene enhanced low-temperature tolerance; in mature tobacco plants, the ClNUM1.1 gene was able to enhance salt and low-temperature tolerance, and the ClNUM1.2 and ClNUM1.3 genes were able to enhance low-temperature tolerance. In summary, there are differences in the functions of the different splice variants and the different seedling stages of transgenic tobacco, but all of them enhanced the resistance of tobacco to a certain extent. The analysis and functional characterization of the ClNUM1 gene provided new potential genes and research directions for abiotic resistance breeding in Chrysanthemum. Full article
(This article belongs to the Special Issue Molecular Breeding and Genetics Research in Plants)
Show Figures

Figure 1

17 pages, 1289 KiB  
Review
Genetic Engineering and Genome Editing Advances to Enhance Floral Attributes in Ornamental Plants: An Update
by Manjulatha Mekapogu, Hyun-Young Song, So-Hyeon Lim and Jae-A Jung
Plants 2023, 12(23), 3983; https://doi.org/10.3390/plants12233983 - 27 Nov 2023
Cited by 12 | Viewed by 5411
Abstract
The ornamental horticulture industry is a highly dynamic and rapidly changing market. Constant development of novel cultivars with elite traits is essential to sustain competitiveness. Conventional breeding has been used to develop cultivars, which is often laborious. Biotechnological strategies such as genetic engineering [...] Read more.
The ornamental horticulture industry is a highly dynamic and rapidly changing market. Constant development of novel cultivars with elite traits is essential to sustain competitiveness. Conventional breeding has been used to develop cultivars, which is often laborious. Biotechnological strategies such as genetic engineering have been crucial in manipulating and improving various beneficial traits that are technically not possible through cross-breeding. One such trait is the highly desired blue-colored flower in roses and chrysanthemums, which can be achieved through transgenic technology. Advances in genome sequencing platforms have enhanced the opportunities to access the whole genome sequence in various ornamentals, facilitating the dissection of the molecular genetics and regulatory controls of different traits. The recent advent of genome editing tools, including CRISPR/Cas9, has revolutionized plant breeding. CRISPR/Cas9-based gene editing offers efficient and highly precise trait modification, contributing to various beneficial advancements. Although genome editing in ornamentals is currently in its infancy, the recent increase in the availability of ornamental genome sequences provides a platform to extend the frontiers of future genome editing in ornamentals. Hence, this review depicts the implication of various commercially valuable ornamental attributes, and details the research attempts and achievements in enhancing floral attributes using genetic engineering and genome editing in ornamental plants. Full article
(This article belongs to the Special Issue Floriculture and Landscape Architecture)
Show Figures

Figure 1

14 pages, 4879 KiB  
Article
Alternative Splicing for Leucanthemella linearis NST1 Contributes to Variable Abiotic Stress Resistance in Transgenic Tobacco
by Hai Wang, Yuning Guo, Xueying Hao, Wenxin Zhang, Yanxia Xu, Wenting He, Yanxi Li, Shiyi Cai, Xiang Zhao and Xuebin Song
Genes 2023, 14(8), 1549; https://doi.org/10.3390/genes14081549 - 28 Jul 2023
Cited by 3 | Viewed by 1676
Abstract
Leucanthemella linearis is a marsh plant in the family Compositae. It has good water and moisture resistance and ornamental properties, which makes it one of the important materials for chrysanthemum breeding and genetic improvement. The NST1 (NAC secondary wall enhancement factor 1) [...] Read more.
Leucanthemella linearis is a marsh plant in the family Compositae. It has good water and moisture resistance and ornamental properties, which makes it one of the important materials for chrysanthemum breeding and genetic improvement. The NST1 (NAC secondary wall enhancement factor 1) gene is associated with the thickening of the secondary walls of fiber cells in the plant ducts and the secondary xylem and plays an important role in plant stress resistance. In this study, two variable spliceosomes of the NST1 gene were identified from a chrysanthemum plant by using bioinformatics, qRT-PCR, transgene, and paraffin section methods to explore the molecular mechanism of the variable splicing of NST1 under abiotic stress. The results show that only three amino acids were found to be different between the two LlNST1 variants. After being treated with salt, drought, and low temperatures, analysis of the expression levels of the LlNST1 and LlNST1.1 genes in Ll showed that LlNST1.1 could respond to low temperatures and salt stress and had a weak response to drought stress. However, the expression level of LlNST1 under the three treatments was lower than that of LlNST1.1. LlNST1 transgenic tobacco showed increased saline–alkali resistance and low-temperature resistance at the seedling stage. LlNST1.1 transgenic tobacco also showed enhanced saline–alkali resistance and drought resistance at the seedling stage. In conclusion, the functions of the two variable spliceosomes of the NST1 gene are very different under abiotic stress. Therefore, this study verified the function of the variable spliceosome of NST1 and improved the stress resistance of the chrysanthemum plant under examination by regulating the expression of the NST protein, which lays a material foundation for the improvement of plant stress resistance materials and has important significance for the study of the resistance of chrysanthemum plants to abiotic stress. Full article
(This article belongs to the Special Issue Genetics and Breeding of Horticulture Crops)
Show Figures

Figure 1

16 pages, 4561 KiB  
Article
Overexpression of CmWRKY8-1–VP64 Fusion Protein Reduces Resistance in Response to Fusarium oxysporum by Modulating the Salicylic Acid Signaling Pathway in Chrysanthemum morifolium
by Weihao Miao, Lijiao Ge, Yuean Wang, Song Li, Daojin Sun, Ye Liu, Zhiyong Guan, Sumei Chen, Weimin Fang, Fadi Chen and Shuang Zhao
Int. J. Mol. Sci. 2023, 24(4), 3499; https://doi.org/10.3390/ijms24043499 - 9 Feb 2023
Cited by 8 | Viewed by 2487
Abstract
Chrysanthemum Fusarium wilt, caused by the pathogenic fungus Fusarium oxysporum, severely reduces ornamental quality and yields. WRKY transcription factors are extensively involved in regulating disease resistance pathways in a variety of plants; however, it is unclear how members of this family regulate [...] Read more.
Chrysanthemum Fusarium wilt, caused by the pathogenic fungus Fusarium oxysporum, severely reduces ornamental quality and yields. WRKY transcription factors are extensively involved in regulating disease resistance pathways in a variety of plants; however, it is unclear how members of this family regulate the defense against Fusarium wilt in chrysanthemums. In this study, we characterized the WRKY family gene CmWRKY8-1 from the chrysanthemum cultivar ‘Jinba’, which is localized to the nucleus and has no transcriptional activity. We obtained CmWRKY8-1 transgenic chrysanthemum lines overexpressing the CmWRKY8-1-VP64 fusion protein that showed less resistance to F. oxysporum. Compared to Wild Type (WT) lines, CmWRKY8-1 transgenic lines had lower endogenous salicylic acid (SA) content and expressed levels of SA-related genes. RNA-Seq analysis of the WT and CmWRKY8-1-VP64 transgenic lines revealed some differentially expressed genes (DEGs) involved in the SA signaling pathway, such as PAL, AIM1, NPR1, and EDS1. Based on Gene Ontology (GO) enrichment analysis, the SA-associated pathways were enriched. Our results showed that CmWRKY8-1-VP64 transgenic lines reduced the resistance to F. oxysporum by regulating the expression of genes related to the SA signaling pathway. This study demonstrated the role of CmWRKY8-1 in response to F. oxysporum, which provides a basis for revealing the molecular regulatory mechanism of the WRKY response to F. oxysporum infestation in chrysanthemum. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

24 pages, 1431 KiB  
Review
Towards the Improvement of Ornamental Attributes in Chrysanthemum: Recent Progress in Biotechnological Advances
by Manjulatha Mekapogu, Oh-Keun Kwon, Hyun-Young Song and Jae-A Jung
Int. J. Mol. Sci. 2022, 23(20), 12284; https://doi.org/10.3390/ijms232012284 - 14 Oct 2022
Cited by 37 | Viewed by 10798
Abstract
Incessant development and introduction of novel cultivars with improved floral attributes are vital in the dynamic ornamental industry. Chrysanthemum (Chrysanthemum morifolium) is a highly favored ornamental plant, ranking second globally in the cut flower trade, after rose. Development of new chrysanthemum [...] Read more.
Incessant development and introduction of novel cultivars with improved floral attributes are vital in the dynamic ornamental industry. Chrysanthemum (Chrysanthemum morifolium) is a highly favored ornamental plant, ranking second globally in the cut flower trade, after rose. Development of new chrysanthemum cultivars with improved and innovative modifications in ornamental attributes, including floral color, shape, plant architecture, flowering time, enhanced shelf life, and biotic and abiotic stress tolerance, is a major goal in chrysanthemum breeding. Despite being an economically important ornamental plant, the application of conventional and molecular breeding approaches to various key traits of chrysanthemum is hindered owing to its genomic complexity, heterozygosity, and limited gene pool availability. Although classical breeding of chrysanthemum has resulted in the development of several hundreds of cultivars with various morphological variations, the genetic and transcriptional control of various important ornamental traits remains unclear. The coveted blue colored flowers of chrysanthemums cannot be achieved through conventional breeding and mutation breeding due to technical limitations. However, blue-hued flower has been developed by genetic engineering, and transgenic molecular breeding has been successfully employed, leading to substantial progress in improving various traits. The recent availability of whole-genome sequences of chrysanthemum offers a platform to extensively employ MAS to identify a large number of markers for QTL mapping, and GWAS to dissect the genetic control of complex traits. The combination of NGS, multi-omic platforms, and genome editing technologies has provided a tremendous scope to decipher the molecular and regulatory mechanisms. However, the application and integration of these technologies remain inadequate for chrysanthemum. This review, therefore, details the significance of floral attributes, describes the efforts of recent advancements, and highlights the possibilities for future application towards the improvement of crucial ornamental traits in the globally popular chrysanthemum plant. Full article
(This article belongs to the Special Issue From Functional Genomics to Biotechnology in Ornamental Plant)
Show Figures

Figure 1

14 pages, 2500 KiB  
Article
Development of a Transformation System and Locus Identification Pipeline for T-DNA in Chrysanthemum seticuspe, A Model Species for Hexaploid Cultivated Chrysanthemum
by Jiali Zhang, Jing Zhang, Peiling Li, Yuan Gao, Qi Yu, Daojin Sun, Lingling Zhang, Siqi Wang, Jing Tian, Zhenxing Wang, Jiafu Jiang, Fadi Chen and Aiping Song
Int. J. Mol. Sci. 2022, 23(19), 11426; https://doi.org/10.3390/ijms231911426 - 28 Sep 2022
Cited by 1 | Viewed by 2426
Abstract
Chrysanthemum is one of the most popular flowers worldwide and has high aesthetic and commercial value. However, the cultivated varieties of chrysanthemum are hexaploid and highly heterozygous, which makes gene editing and gene function research difficult. Gojo-0 is a diploid homozygous line bred [...] Read more.
Chrysanthemum is one of the most popular flowers worldwide and has high aesthetic and commercial value. However, the cultivated varieties of chrysanthemum are hexaploid and highly heterozygous, which makes gene editing and gene function research difficult. Gojo-0 is a diploid homozygous line bred from a self-compatible mutant of Chrysanthemum seticuspe and is expected to become a model plant of the genus Chrysanthemum. After assessment of different growth regulator combinations, the optimal concentrations of α-naphthaleneacetic acid (NAA) and 6-benzyladenine (6-BA) in the regeneration system were 1.0 mg·L−1 and 0.2 mg·L−1, respectively. In the genetic transformation system, the selected concentrations of kanamycin, hygromycin and glufosinate-ammonium were 10 mg·L−1, 2.5 mg·L1 and 0.6 mg·L−1 for bud generation and 12 mg L−1, 1.5 mg·L−1 and 0.5 mg·L−1 for rooting. The transgenic plants were verified by not only PCR detection and GUS staining, but also identification of the T-DNA insertion locus using high-throughput sequencing. Our results lay the foundation for gene functional research on chrysanthemum and will help with the identification of transgenic plants. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 30274 KiB  
Article
Characterization of the MADS-Box Gene CmFL3 in chrysanthemum
by Kunkun Zhao, Song Li, Diwen Jia, Xiaojuan Xing, Haibin Wang, Aiping Song, Jiafu Jiang, Sumei Chen, Fadi Chen and Lian Ding
Agronomy 2022, 12(7), 1716; https://doi.org/10.3390/agronomy12071716 - 20 Jul 2022
Cited by 4 | Viewed by 2355
Abstract
Chrysanthemummorifolium is one of the four major cut flowers in the world, with high ornamental and economic value. Flowering time is an important ornamental characteristic of chrysanthemum that affects its value in the market. In Arabidopsis, the FRUITFULL (FUL) gene [...] Read more.
Chrysanthemummorifolium is one of the four major cut flowers in the world, with high ornamental and economic value. Flowering time is an important ornamental characteristic of chrysanthemum that affects its value in the market. In Arabidopsis, the FRUITFULL (FUL) gene plays a key role in inducing flowering. Here, we isolated an FUL clade MADS-box gene, CmFL3, from chrysanthemum inflorescence buds. CmFL3 localized in the cellular membrane and nucleus, and showed no transcriptional activity in yeast. The qRT-PCR assay showed that CmFL3 was strongly expressed in the leaves, receptacles, and disc floret petals. Furthermore, CmFL3 was mainly detected in the inflorescence meristem and bract primordia using in situ hybridization. Similar to Arabidopsis, overexpression of CmFL3 in chrysanthemum induced early flowering. Particularly, the expression level of CmAFT was downregulated, whereas that of CmFTL3 was upregulated in the leaves of transgenic chrysanthemum lines. Meanwhile, the overexpression of CmFL3 in Arabidopsis also led to earlier flowering. Furthermore, the expression of AtFT, AtAP1, AtLFY, and AtFUL was significantly increased in CmFL3 transgenic Arabidopsis. The present study verified the function of CmFL3 in regulating flowering time and further revealed that it could affect the expression of other flowering-related genes—CmAFT and CmFTL3. Therefore, the CmFL3 gene may be an important candidate for genetic breeding aimed at regulating flowering. Full article
(This article belongs to the Special Issue Frontier Studies in Genetic Breeding of Ornamental Plants)
Show Figures

Figure 1

12 pages, 2898 KiB  
Article
Silencing of Dihydroflavonol 4-reductase in Chrysanthemum Ray Florets Enhances Flavonoid Biosynthesis and Antioxidant Capacity
by Sun-Hyung Lim, Da-Hye Kim, Jae-A Jung, Nam-In Hyung, YeoJin Youn and Jong-Yeol Lee
Plants 2022, 11(13), 1681; https://doi.org/10.3390/plants11131681 - 24 Jun 2022
Cited by 9 | Viewed by 2312
Abstract
Flavonoid biosynthesis requires the activities of several enzymes, which form weakly-bound, ordered protein complexes termed metabolons. To decipher flux regulation in the flavonoid biosynthetic pathway of chrysanthemum (Chrysanthemum morifolium Ramat), we suppressed the gene-encoding dihydroflavonol 4-reductase (DFR) through RNA interference (RNAi)-mediated post-transcriptional [...] Read more.
Flavonoid biosynthesis requires the activities of several enzymes, which form weakly-bound, ordered protein complexes termed metabolons. To decipher flux regulation in the flavonoid biosynthetic pathway of chrysanthemum (Chrysanthemum morifolium Ramat), we suppressed the gene-encoding dihydroflavonol 4-reductase (DFR) through RNA interference (RNAi)-mediated post-transcriptional gene silencing under a floral-specific promoter. Transgenic CmDFR-RNAi chrysanthemum plants were obtained by Agrobacterium-mediated transformation. Genomic PCR analysis of CmDFR-RNAi chrysanthemums propagated by several rounds of stem cuttings verified stable transgene integration into the genome. CmDFR mRNA levels were reduced by 60–80% in CmDFR-RNAi lines compared to those in wild-type (WT) plants in ray florets, but not leaves. Additionally, transcript levels of flavonoid biosynthetic genes were highly upregulated in ray florets of CmDFR-RNAi chrysanthemum relative to those in WT plants, while transcript levels in leaves were similar to WT. Total flavonoid contents were high in ray florets of CmDFR-RNAi chrysanthemums, but flavonoid contents of leaves were similar to WT, consistent with transcript levels of flavonoid biosynthetic genes. Ray florets of CmDFR-RNAi chrysanthemums exhibited stronger antioxidant capacity than those of WT plants. We propose that post-transcriptional silencing of CmDFR in ray florets modifies metabolic flux, resulting in enhanced flavonoid content and antioxidant activity. Full article
(This article belongs to the Special Issue Plant Biotechnology Applications in Secondary Metabolite Production)
Show Figures

Figure 1

17 pages, 8788 KiB  
Article
Chrysanthemum CmHSP90.5 as a Tool to Regulate Heat and Salt Stress Tolerance
by Xinhui Wang, Jianpeng Wu, Yue Wang, Yuhan Jiang, Fei Li, Yu Chen, Jiafu Jiang, Likai Wang, Zhiyong Guan, Fadi Chen and Sumei Chen
Horticulturae 2022, 8(6), 532; https://doi.org/10.3390/horticulturae8060532 - 16 Jun 2022
Cited by 3 | Viewed by 2605
Abstract
Heat shock proteins (HSPs) play important roles in various stress conditions. In this study, CmHSP90.5, whose expression is induced by heat and salt, was cloned from a chrysanthemum (Chrysanthemum morifolium) ‘Jinba’ and expressed in Arabidopsis. We found [...] Read more.
Heat shock proteins (HSPs) play important roles in various stress conditions. In this study, CmHSP90.5, whose expression is induced by heat and salt, was cloned from a chrysanthemum (Chrysanthemum morifolium) ‘Jinba’ and expressed in Arabidopsis. We found that CmHSP90.5 localized in the chloroplast. The heterologous expression of CmHSP90.5 weakened the heat tolerance of Arabidopsis and reduced the activity of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), indicating that CmHSP90.5-mediated heat stress sensitivity may be partially due to the regulation of active oxygen cleavage. The levels of expression of AtHSP101, AtHSP15.7, and AtHSP17.6C in CmHSP90.5-overexpressing plants decreased compared with those in wild-type (WT) plants under heat stress, indicating that these HSPs and CmHSP90.5 coregulate a plant’s heat stress tolerance. In addition, the salt stress tolerance of the CmHSP90.5-overexpressing Arabidopsis decreased compared with that of WT plants; CmHSP90.5-overexpressing plants showed increased Na+ levels and decreased K+ and proline levels compared with those of WT plants. Interestingly, the expression of stress-related genes, such as the Na+/H+ antiporter encoding gene SOS1, high-affinity K+ transporter encoding gene HKT1;1, and proline synthesis gene AtP5CS1, decreased in CmHSP90.5-overexpressing plants under salt stress compared with those expressions in WT plants. Our findings lay a foundation for understanding the roles of CmHSP90.5 in response to abiotic stresses in chrysanthemum. Full article
Show Figures

Figure 1

14 pages, 3244 KiB  
Article
CgbZIP1: A bZIP Transcription Factor from Chrysanthemum Grandiflora Confers Plant Tolerance to Salinity and Drought Stress
by Yu Liu, Lin Wang, Chenxu Liu, Hang Yin, He Liu, Hong Luo, Miao He and Yunwei Zhou
Agronomy 2022, 12(3), 556; https://doi.org/10.3390/agronomy12030556 - 23 Feb 2022
Cited by 13 | Viewed by 2397
Abstract
Abiotic stresses, such as salt and drought, significantly affect plant development and are the major limiting factors for crop quality and productivity. The manipulation of genes involved in plant stress response facilitates plant mitigation of adverse environments. In this study, we characterized CgbZIP1 [...] Read more.
Abiotic stresses, such as salt and drought, significantly affect plant development and are the major limiting factors for crop quality and productivity. The manipulation of genes involved in plant stress response facilitates plant mitigation of adverse environments. In this study, we characterized CgbZIP1, a differentially expressed gene under normal and salinity conditions in Chrysanthemum grandiflora. CgbZIP1 was significantly upregulated by salt stress and also strongly responsive to drought stress and ABA treatments. Bioinformatics and subcellular localization analyses revealed that CgbZIP1 is a bZIP transcription factor and localized to the nucleus. Transgenic tobacco plants overexpressing CgbZIP1 exhibited significantly enhanced salt and drought stress tolerance associated with characteristic morphological and physiological indexes. The results demonstrate the important role CgbZIP1 plays in plant stress response and suggest its potential use in other crops for improved stress resistance. Full article
Show Figures

Figure 1

16 pages, 6253 KiB  
Article
Phenotypic Characterization and RT-qPCR Analysis of Flower Development in F1 Transgenics of Chrysanthemum × grandiflorum
by Saba Haider, Muhammad Ajmal Bashir, Umer Habib, Yike Gao, Muhammad Rashid Shaheen, Rashid Hussain and Fan Min
Plants 2021, 10(8), 1681; https://doi.org/10.3390/plants10081681 - 16 Aug 2021
Cited by 2 | Viewed by 3729
Abstract
Gene silencing is the epigenetic regulation of any gene in order to prevent gene expression at the transcription or translation levels. Among various gene silencing techniques, RNA silencing (RNAi) is notable gene regulation technique that involves sequence-specific targeting and RNA degradation. However, the [...] Read more.
Gene silencing is the epigenetic regulation of any gene in order to prevent gene expression at the transcription or translation levels. Among various gene silencing techniques, RNA silencing (RNAi) is notable gene regulation technique that involves sequence-specific targeting and RNA degradation. However, the effectiveness of transgene-induced RNAi in F1 generation of chrysanthemum has not been studied yet. In the current study, we used RNAi-constructed CmTFL1 (white-flowered) and CmSVP overexpressed (yellow flowered) transgenic plants of previously conducted two studies for our experiment. Cross hybridization was performed between these intergeneric transgenic and non-transgenic plants of the winter-growing chrysanthemum selection “37” (light pink flowered). The transgene CmSVP was confirmed in F1 hybrids by RT-PCR analysis, whereas hybrids of CmTFL1 parental plants were non-transgenic. Besides this, quantitative real-time PCR (qPCR) was used to explain the molecular mechanism of flower development using reference genes. Intergeneric and interspecific hybrids produced different colored flowers unlike their respective parents. These results suggest that generic traits of CmSVP overexpressed plants can be transferred into F1 generations when crossed with mutant plants. This study will aid in understanding the breeding phenomenon among intergeneric hybrids of chrysanthemum plants at an in vivo level, and such transgenics will also be more suitable for sustainable flower yield under a low-light production system. Full article
(This article belongs to the Collection Advances in Plant Breeding)
Show Figures

Figure 1

7 pages, 1453 KiB  
Communication
Heterologous Biosynthesis of Artemisinin in Chrysanthemum morifolium Ramat
by Aleksey Firsov, Alexander Pushin, Svetlana Motyleva, Svetlana Pigoleva, Lyubov Shaloiko, Alexander Vainstein and Sergey Dolgov
Separations 2021, 8(6), 75; https://doi.org/10.3390/separations8060075 - 28 May 2021
Cited by 5 | Viewed by 2985
Abstract
Artemisinin-based drugs are the most effective medicine against multidrug-resistant Plasmodium spp., the parasite that causes malaria. To this day, wormwood A. annua L. is the sole commercial source of artemisinin, where it is produced in minor amounts. The artemisinin yield depends on numerous [...] Read more.
Artemisinin-based drugs are the most effective medicine against multidrug-resistant Plasmodium spp., the parasite that causes malaria. To this day, wormwood A. annua L. is the sole commercial source of artemisinin, where it is produced in minor amounts. The artemisinin yield depends on numerous poorly regulated agricultural factors and the genetic variability of this non-domesticated plant. This has aroused significant interest in the development of heterologous expression platforms for artemisinin production. Previously, we obtained lines of Chrysanthemum morifolium Ramat. (C. morifolium Ramat.), cvs. White Snowdon and Egyptianka, transformed with artemisinin biosynthesis genes. Here, we report the results of an analysis of artemisinin production in transgenic chrysanthemums. Transcription of heterologous amorpha-4,11-diene monooxygenase and cytochrome P450 reductase genes in transgenic lines was confirmed using high-resolution melting analysis. Artemisinin accumulation was detected using GC-MS in White Snowdon plants, but not in Egyptianka ones, thereby demonstrating the possibility of transplanting active artemisinin biosynthetic pathway into chrysanthemum. Ways of increasing its content in producer plants are discussed. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Figure 1

Back to TopTop