Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (183)

Search Parameters:
Keywords = transcriptional mutagenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2345 KiB  
Article
CRY1 Lysine 151 Regulates Circadian Rhythms Through Ubiquitination-Independent Protein Interactions
by Jiawen Peng, Na Liu, Yixuan Ren, Jiahui Wang, Yanxia Jin, Xianping Wang, Weidong Wang and Jicheng Pan
Int. J. Mol. Sci. 2025, 26(16), 7962; https://doi.org/10.3390/ijms26167962 - 18 Aug 2025
Viewed by 189
Abstract
Mammalian circadian rhythms, governing ~24 h oscillations in behavior, physiology, and hormone levels, are orchestrated by transcriptional–translational feedback loops centered around the core clock protein cryptochrome 1 (CRY1). While CRY1 ubiquitination is known to regulate clock function, the roles of specific ubiquitination sites [...] Read more.
Mammalian circadian rhythms, governing ~24 h oscillations in behavior, physiology, and hormone levels, are orchestrated by transcriptional–translational feedback loops centered around the core clock protein cryptochrome 1 (CRY1). While CRY1 ubiquitination is known to regulate clock function, the roles of specific ubiquitination sites remain unclear. Here, we identify lysine 151 (K151) as a critical residue modulating the circadian period through non-canonical mechanisms. Using site-directed mutagenesis, we generated CRY1-K151Q/R mutants mimicking constitutive deubiquitination. Circadian rescue assays in Cry1/2-deficient cells revealed period shortening (K151Q: −2.25 h; K151R: −1.4 h; n = 3, p < 0.01, Student’s t-test), demonstrating K151’s functional importance. Despite normal nuclear localization kinetics, K151Q/R mutants exhibited reduced transcriptional repression in luciferase assays, a weakened interaction with BMAL1 by the luciferase complementation assay, and enhanced binding to E3 ligase FBXL12 (but not FBXL3) while showing more stability than wild-type CRY1. Notably, the absence of ubiquitination-linked degradation or altered FBXL3 engagement suggests a ubiquitination-independent mechanism. We propose that CRY1-K151 serves as a structural hub fine-tuning circadian periodicity by modulating core clock protein interactions rather than through traditional ubiquitin-mediated turnover. These findings redefine the mechanistic landscape of post-translational clock regulation and offer new therapeutic avenues for circadian disorders. Full article
(This article belongs to the Special Issue The Importance of Molecular Circadian Rhythms in Health and Disease)
Show Figures

Figure 1

17 pages, 1453 KiB  
Article
Unique Regulation of Sed-1 β-Lactamase in Citrobacter sedlakii: Insights on Resistance to Third-Generation Cephalosporin
by Mako Watanabe, Ryuichi Nakano, Keizo Yamamoto, Akiyo Nakano, Yuki Suzuki, Kai Saito, Satoko Nakashima, Kentaro Endo, Kazuya Narita and Hisakazu Yano
Antibiotics 2025, 14(8), 823; https://doi.org/10.3390/antibiotics14080823 - 12 Aug 2025
Viewed by 260
Abstract
Background: The Citrobacter genus harbors class C (AmpC) and class A β-lactamases. Citrobacter freundii produces an inducible AmpC β-lactamase controlled by the LysR-type transcriptional regulator AmpR and cytosolic amidase AmpD. Citrobacter sedlakii produces the class A β-lactamase Sed-1, whose expression is believed to [...] Read more.
Background: The Citrobacter genus harbors class C (AmpC) and class A β-lactamases. Citrobacter freundii produces an inducible AmpC β-lactamase controlled by the LysR-type transcriptional regulator AmpR and cytosolic amidase AmpD. Citrobacter sedlakii produces the class A β-lactamase Sed-1, whose expression is believed to be regulated by the transcriptional regulator SedR and AmpD. Objectives:C. sedlakii NR2807, isolated in Japan, is resistant to third-generation cephalosporins and displays extended-spectrum β-lactamase characteristics. Here, we sought to understand the mechanism for successful resistance to third-generation cephalosporins by investigating the regulators controlling Sed-1 production. Methods: Plasmids containing blaSed-1 and sedR (pCR2807) or truncated sedR (pCR2807ΔSedR) were constructed and introduced into Escherichia coli. Antibiotic-resistant mutants of NR2807 were obtained, and enzyme kinetics were assessed. Results: The AmpD mutant (pCR2807/ML4953) showed an 8-fold increase in cefotaxime MIC and an 8.46-fold increase in Sed-1 activity compared to the wild-type (pCR2807/ML4947). However, induction of pCR2807/ML4947 also led to a 1.32-fold higher Sed-1 activity, indicating semi-inducibility. Deletion of sedR (pCR2807ΔSedR/ML4947) led to a 4-fold decrease in cefotaxime MIC and 1.93-fold lower Sed-1 activity, confirming SedR as an activator. While wild-type C. sedlakii ATCC51115 is susceptible to third-generation cephalosporins, the AmpD mutation in NR2807 led to Sed-1 overproduction and resistance to this class of antibiotics. Finally, mutagenesis revealed that amino acid substitution in Sed-1 conferred resistance to ceftazidime and extended-spectrum β-lactamase characteristics. Conclusions: Sed-1 producers, though usually susceptible to third-generation cephalosporins, may develop extended-spectrum β-lactamase traits due to AmpD or Sed-1 mutations, thereby requiring careful monitoring. Full article
Show Figures

Figure 1

16 pages, 3286 KiB  
Article
Poxvirus K3 Orthologs Regulate NF-κB-Dependent Inflammatory Responses by Targeting the PKR–eIF2α Axis in Multiple Species
by Huibin Yu, Mary Eloise L. Fernandez, Chen Peng, Dewi Megawati, Greg Brennan, Loubna Tazi and Stefan Rothenburg
Vaccines 2025, 13(8), 800; https://doi.org/10.3390/vaccines13080800 - 28 Jul 2025
Viewed by 534
Abstract
Background: Protein kinase R (PKR) inhibits general mRNA translation by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF2). PKR also modulates NF-κB signaling during viral infections, but comparative studies of PKR-mediated NF-κB responses across mammalian species and their regulation by [...] Read more.
Background: Protein kinase R (PKR) inhibits general mRNA translation by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF2). PKR also modulates NF-κB signaling during viral infections, but comparative studies of PKR-mediated NF-κB responses across mammalian species and their regulation by viral inhibitors remain largely unexplored. This study aimed to characterize the conserved antiviral and inflammatory roles of mammalian PKR orthologs and investigate their modulation by poxviral inhibitors. Methods: Using reporter gene assays and quantitative RT-PCR, we assessed the impact of 17 mammalian PKR orthologs on general translation inhibition, stress-responsive translation, and NF-κB-dependent induction of target genes. Congenic human and rabbit cell lines infected with a myxoma virus strain lacking PKR inhibitors were used to compare the effects of human and rabbit PKR on viral replication and inflammatory responses. Site-directed mutagenesis was employed to determine key residues responsible for differential sensitivity to the viral inhibitor M156. Results: All 17 mammalian PKR orthologs significantly inhibited general translation, strongly activated stress-responsive ATF4 translation, and robustly induced NF-κB target genes. Inhibition of these responses was specifically mediated by poxviral K3 orthologs that effectively suppressed PKR activation. Comparative analyses showed human and rabbit PKRs similarly inhibited virus replication and induced cytokine transcripts. Amino acid swaps between rabbit PKRs reversed their sensitivity to viral inhibitor M156 and NF-κB activation. Conclusions: Our data show that the tested PKR orthologs exhibit conserved dual antiviral and inflammatory regulatory roles, which can be antagonized by poxviral K3 orthologs that exploit eIF2α mimicry to modulate the PKR-NF-κB axis. Full article
(This article belongs to the Special Issue Antiviral Immunity and Vaccine Development)
Show Figures

Figure 1

14 pages, 3358 KiB  
Article
The Structural Deciphering of the α3 Helix Within ZmHsfA2’S DNA-Binding Domain for the Recognition of Heat Shock Elements in Maize
by Yantao Wang, Zhenyu Ma, Guoliang Li, Xiangzhao Meng, Shuonan Duan, Zihui Liu, Min Zhao, Xiulin Guo and Huaning Zhang
Plants 2025, 14(13), 1950; https://doi.org/10.3390/plants14131950 - 25 Jun 2025
Viewed by 411
Abstract
Heat shock transcription factor (Hsf) plays a pivotal role in regulating plant growth, development, and stress responses. Hsf activates or represses target gene transcription by binding to the heat shock element (HSE) of downstream genes. However, the specific interaction sites between Hsf and [...] Read more.
Heat shock transcription factor (Hsf) plays a pivotal role in regulating plant growth, development, and stress responses. Hsf activates or represses target gene transcription by binding to the heat shock element (HSE) of downstream genes. However, the specific interaction sites between Hsf and the HSE in the promoter remain unclear. In this study, the critical amino acid residues of ZmHsf17 and the paralogous ZmHsf05 involved in DNA binding were identified using molecular docking models, site-directed mutagenesis, and the electrophoretic mobility shift assay (EMSA). The results reveal that both ZmHsf17 and ZmHsf05 bind to the HSE of the ZmPAH1 promoter via a conserved arginine residue located in the α3 helix of their DNA-binding domains. Sequence substitution experiments among distinct HSEs demonstrated that flanking sequences upstream and downstream of the HSE core synergistically contribute to the specificity of DNA-binding domain recognition. Comparative evolutionary analysis of DNA-binding domain sequences from 25 phylogenetically diverse species reveals that the α3 helix constitutes the most conserved structural element. This study elucidates the key interaction sites between maize HsfA2 and its target genes, providing theoretical insights into the binding specificity to the HSEs of the plant’s Hsf family and the functional divergence. Additionally, these findings offer new targets for the precise engineering of Hsf proteins and synthetic HSEs. Full article
(This article belongs to the Special Issue Genomics of Biotic and Abiotic Stress Tolerance in Cereals)
Show Figures

Figure 1

10 pages, 1017 KiB  
Article
Cytochrome P450 CYP76F14 Mediates the Conversion of Its Substrate Linalool in Table Grape Berries
by Zhizhong Song, Jinjin Zhang, Matthew Shi, Dong Li and Xiaohua Liu
Horticulturae 2025, 11(6), 651; https://doi.org/10.3390/horticulturae11060651 - 9 Jun 2025
Viewed by 375
Abstract
Aroma composition serves as a pivotal quality determinant in table grapes (Vitis vinifera). While the cytochrome P450 enzyme CYP76F14 is implicated in aroma biosynthesis, its functional role in grape berries remains uncharacterized. A comparative analysis of three aroma-distinct cultivars—Muscat type ‘Irsai [...] Read more.
Aroma composition serves as a pivotal quality determinant in table grapes (Vitis vinifera). While the cytochrome P450 enzyme CYP76F14 is implicated in aroma biosynthesis, its functional role in grape berries remains uncharacterized. A comparative analysis of three aroma-distinct cultivars—Muscat type ‘Irsai Oliver’, Neutral type ‘Yanhong’, and Berry-like type ‘Venus Seedless’—revealed cultivar-specific linalool accumulation patterns. ‘Irsai Oliver’ exhibited sustained linalool biosynthesis from the fruit set through to maturity (from Stage 1 to Stage 5), with concentrations peaking at Stage 3 (veraison phase) and remaining elevated until harvest, surpassing the other two cultivars. Transcriptional profiling demonstrated that the CYP76F14 expression exhibited a similar trend with the accumulation of linalool levels, showing a higher expression in ‘Irsai Oliver’ across the developmental stages. A structural analysis identified 12 divergent residues in the ‘Irsai Oliver’ CYP76F14 variant, including E378 and T380 within the conserved substrate recognition site. The site-directed mutagenesis of these residues (CYP76F14-E378G/T380A) reduced the catalytic efficiency by 68–72% compared to the wild-type (in vitro LC-MS/MS assays), confirming their functional significance. This work reveals that cytochrome P450 CYP76F14 mediates the conversion of its substrate linalool in table grape berries, especially of Muscat type grapes, and proposes the CYP76F14 polymorphic variants as molecular markers for aroma-type breeding. The identified catalytic residues (E378/T380) provide targets for enzymatic engineering to modulate the terpenoid profiles in Vitis species. Full article
(This article belongs to the Special Issue Fruit Tree Physiology and Molecular Biology)
Show Figures

Figure 1

20 pages, 5967 KiB  
Article
Site-Directed Mutagenesis Mediated by Molecular Modeling and Docking and Its Effect on the Protein–Protein Interactions of the bHLH Transcription Factors SPATULA, HECATE1, and INDEHISCENT
by Pablo López-Gómez, Daniela De La Mora-Franco, Humberto Herrera-Ubaldo, Corina Díaz-Quezada, Luis G. Brieba and Stefan de Folter
Plants 2025, 14(12), 1756; https://doi.org/10.3390/plants14121756 - 8 Jun 2025
Cited by 1 | Viewed by 956
Abstract
The aim of this study was to investigate the biological relevance of predicted sites involved in protein–protein interaction formation by bHLH transcription factors associated with gynoecium development in Arabidopsis (Arabidopsis thaliana). We used AlphaFold2 to generate three-dimensional protein structures of the [...] Read more.
The aim of this study was to investigate the biological relevance of predicted sites involved in protein–protein interaction formation by bHLH transcription factors associated with gynoecium development in Arabidopsis (Arabidopsis thaliana). We used AlphaFold2 to generate three-dimensional protein structures of the bHLH proteins SPATULA (SPT), HECATE1 (HEC1), and INDEHISCENT (IND). These structures were subjected to molecular docking using the HawkDock server, enabling the identification of potential interaction sites. PCR-based site-directed mutagenesis was used to modify the predicted interaction sites, followed by testing for protein–protein interaction formation using Bimolecular Fluorescence Complementation (BiFC) assays. Furthermore, these modified versions were overexpressed in Arabidopsis to observe whether gynoecium and fruit development would be affected. BiFC assays with the modified versions revealed a complete loss of the SPT-HEC1 interaction and a strong reduction in the SPT-IND interaction. The overexpression experiments in Arabidopsis showed that the 35S::SPT-4A line exhibited strong phenotypes in the development of the medial tissues of the gynoecium, resulting in reduced seed number and shorter fruits. In the 35S::HEC1-2A line, a reduced seed number and shorter fruits were also observed, but no other obvious defects were observed. Finally, the 35S::IND-3A line was less affected than the 35S::IND line. In the latter, medial tissue development was strongly affected, while in the 35S::IND-3A line, it was only slightly affected; however, a reduced seed number and shorter fruits were observed. In summary, the predicted interaction sites are relevant and, when modified, affect gynoecium development in Arabidopsis. The findings demonstrate that predictive computational tools represent a viable strategy for a deeper understanding of protein–protein interactions. Full article
Show Figures

Figure 1

28 pages, 6869 KiB  
Article
Proteomic and Mechanistic Insights into the Efficiency of Atmospheric and Room-Temperature Plasma Mutagenesis-Driven Bioconversion of Corn Stover by Trichoderma longibrachiatum
by Fengyun Ren, Fan Wu, Le Gao, Yucheng Jie and Xin Wu
Fermentation 2025, 11(4), 181; https://doi.org/10.3390/fermentation11040181 - 1 Apr 2025
Cited by 1 | Viewed by 835
Abstract
The valorization of agricultural residues, particularly corn stover, represents a sustainable approach for resource utilization and protein production in which high-performing microbial strains are essential. This study systematically evaluated fungal lignocellulolytic capabilities during corn stover solid-state fermentation and employed atmospheric and room-temperature plasma [...] Read more.
The valorization of agricultural residues, particularly corn stover, represents a sustainable approach for resource utilization and protein production in which high-performing microbial strains are essential. This study systematically evaluated fungal lignocellulolytic capabilities during corn stover solid-state fermentation and employed atmospheric and room-temperature plasma (ARTP) mutagenesis to enhance the degradative capacity of Trichoderma longibrachiatum. Comparative screening revealed that T. longibrachiatum exhibited superior comprehensive degradation of the major lignocellulosic components compared to other tested strains. ARTP mutagenesis yielded mutant strain TL-MU07, which displayed significantly enhanced enzymatic capabilities with improvements in FPase (22.1%), CMCase (10.1%), and xylanase (16.1%) activities, resulting in increased cellulose degradation (14.6%) and protein accumulation (14.7%). Proteomic analysis revealed 289 significantly differentially expressed proteins, with pathway enrichment demonstrating enhancement of glycosaminoglycan degradation, amino sugar metabolism, and membrane remodeling. Key mechanistic adaptations included downregulation of Zn(2)-C6 transcriptional repressors, upregulation of detoxification enzymes (ALDH-like proteins), and enhanced secretory pathway components. The ARTP-derived mutant strain TL-MU07 represents a valuable microbial resource for agricultural waste bioconversion, offering enhanced lignocellulolytic capabilities for industrial applications while elucidating specific proteomic changes associated with improved biomass degradation efficiency for sustainable protein production in the circular bioeconomy. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass Valorization)
Show Figures

Figure 1

15 pages, 2795 KiB  
Article
m6A-Modified GATA2 Enhances Odontogenic Differentiation in Stem Cells from the Apical Papilla
by Haoqing Yang, Fengning Yuan, Jiaxin Song, Yishu Huang, Zhaochen Shan and Zhipeng Fan
Int. J. Mol. Sci. 2025, 26(7), 2920; https://doi.org/10.3390/ijms26072920 - 24 Mar 2025
Viewed by 569
Abstract
Epigenetic modifications play a crucial role in regulating stem cell differentiation. Among these, N6-methyladenosine (m6A) modification significantly impacts mRNA stability and translation. However, its role in dental stem cell differentiation remains largely unexplored. Functional assays, including ALP activity, alizarin red S [...] Read more.
Epigenetic modifications play a crucial role in regulating stem cell differentiation. Among these, N6-methyladenosine (m6A) modification significantly impacts mRNA stability and translation. However, its role in dental stem cell differentiation remains largely unexplored. Functional assays, including ALP activity, alizarin red S staining, qPCR, and Western blot, were conducted to assess odontogenic differentiation. Then, an in vivo dentin formation model was used to validate our findings. Additionally, we employed RNA stability assays and m6A site mutagenesis to investigate the regulatory mechanism of m6A modification in GATA2-mediated differentiation. Our results demonstrated that overexpression of GATA2 significantly promoted SCAP odontogenic differentiation. Moreover, in vivo studies confirmed that GATA2 overexpression enhances dentin formation in mouse models. Conversely, knockdown of GATA2 or mutation of its m6A sites led to reduced mRNA stability and decreased odontogenic differentiation. m6A modification is enriched in the 3′ untranslated region (3′UTR) of GATA2 mRNA, regulating its stability and expression. Our findings indicate that m6A modification contributes to the post-transcriptional regulation of GATA2, enhancing its stability and promoting SCAP-mediated odontogenic differentiation and dentin formation. This study provides new insights into the epigenetic regulation of dental stem cells and suggests a potential molecular target for dental tissue regeneration. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 6930 KiB  
Article
Genomic and Transcriptomic Analysis of Mutant Bacillus subtilis with Enhanced Nattokinase Production via ARTP Mutagenesis
by Liuyu Guo, Yang Chen, Zhiyong He, Zhaojun Wang, Qiuming Chen, Jie Chen, Fatih Oz, Zhimin Xu and Maomao Zeng
Foods 2025, 14(5), 898; https://doi.org/10.3390/foods14050898 - 6 Mar 2025
Viewed by 1566
Abstract
Nattokinase (NK), a serine protease with high thrombolytic activity, has significant potential for application in foods intended for special health benefits. However, the NK production in wild-type Bacillus subtilis natto is relatively low. In this study, a high-yielding NK and genetically stable mutant strain [...] Read more.
Nattokinase (NK), a serine protease with high thrombolytic activity, has significant potential for application in foods intended for special health benefits. However, the NK production in wild-type Bacillus subtilis natto is relatively low. In this study, a high-yielding NK and genetically stable mutant strain (B. subtilis JNC002.001, 300.0 ± 4.7 FU/mL) was obtained through atmospheric and room temperature plasma (ARTP) mutagenesis. It increased NK activity by 1.84 times compared to the initial strain SD2, demonstrating significant prospects for NK production and food fermentation applications. Additionally, the B. subtilis JNC002.001 exhibited notable alterations in growth characteristics, glucose consumption, and sporulation. This study further elucidated the mechanism of enhanced NK production at the molecular level. Genome resequencing revealed that the mutant genes in JNC002.001 included 10 single nucleotide polymorphisms (SNPs) and one insertion, among which the kinA and gltA genes were associated with sporulation and NK synthesis, respectively. In terms of the transcriptional level, the NK-coding gene aprN was up-regulated 9.4 times relative to the wild-type strain. Most of the genes related to central carbon metabolism and the Sec secretion pathway were up-regulated. In addition, the expression of regulatory factors associated with the transcription of the aprN gene and the sporulation process provided evidence for high NK expression and sporulation deficiency in JNC002.001. These results could provide insights into the mechanism of NK production and facilitate the construction of engineered strains with high NK yield. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

19 pages, 4986 KiB  
Article
Analysis of the Transcriptional Control of Bcl11b in Chicken: IRF1 and GATA1 as Negative Regulators
by Lingling Qiu, Haojie Wang, Wenhao Li, Ting Yang, Hao Bai and Guobin Chang
Animals 2025, 15(5), 665; https://doi.org/10.3390/ani15050665 - 25 Feb 2025
Viewed by 654
Abstract
B-cell lymphoma/leukemia 11B (Bcl11b) plays roles in cell proliferation and apoptosis and holds a pivotal position within the immune system. Our previous studies have demonstrated that Bcl11b can promote cell apoptosis to curb ALV-J infection. To gain insights into the molecular mechanisms underlying [...] Read more.
B-cell lymphoma/leukemia 11B (Bcl11b) plays roles in cell proliferation and apoptosis and holds a pivotal position within the immune system. Our previous studies have demonstrated that Bcl11b can promote cell apoptosis to curb ALV-J infection. To gain insights into the molecular mechanisms underlying Bcl11b expression regulation in chickens, we constructed various truncated dual luciferase reporter vectors and analyzed the promoter region of Bcl11b. We employed promoter-binding TF profiling assay and the dual luciferase assay of site-directed mutagenesis and the expression level of interfering or overexpressing transcription factors were used to study their transcriptional regulation mechanism of chicken Bcl11b and functions in ALV-J infection. Our findings revealed core regulatory regions of the chicken Bcl11b promoter. By examining the −606~−363 bp region, we identified several transcription factors and their binding sites. Mutational and functional analysis further revealed interferon regulatory factor-1 (IRF1) and GATA-binding protein 1 (GATA1) as critical factors for the repression of chicken Bcl11b, thereby affecting cell apoptosis and ALV-J replication. Furthermore, DNA methylation analysis indicated that methylation may also contribute to changes in Bcl11b promoter activity. These findings offer valuable insights into the regulatory mechanisms of chicken Bcl11b and provide promising targets for molecular breeding and genetic improvement of disease resistance in chickens. Full article
(This article belongs to the Special Issue Livestock and Poultry Genetics and Breeding Management)
Show Figures

Figure 1

32 pages, 3150 KiB  
Review
Deaminase-Driven Reverse Transcription Mutagenesis in Oncogenesis: Critical Analysis of Transcriptional Strand Asymmetries of Single Base Substitution Signatures
by Edward J. Steele and Robyn A. Lindley
Int. J. Mol. Sci. 2025, 26(3), 989; https://doi.org/10.3390/ijms26030989 - 24 Jan 2025
Viewed by 1348
Abstract
This paper provides a critical analysis of the molecular mechanisms presently used to explain transcriptional strand asymmetries of single base substitution (SBS) signatures observed in cancer genomes curated at the Catalogue of Somatic Mutations in Cancer (COSMIC) database (Wellcome Trust Sanger Institute). The [...] Read more.
This paper provides a critical analysis of the molecular mechanisms presently used to explain transcriptional strand asymmetries of single base substitution (SBS) signatures observed in cancer genomes curated at the Catalogue of Somatic Mutations in Cancer (COSMIC) database (Wellcome Trust Sanger Institute). The analysis is based on a deaminase-driven reverse transcriptase (DRT) mutagenesis model of cancer oncogenesis involving both the cytosine (AID/APOBEC) and adenosine (ADAR) mutagenic deaminases. In this analysis we apply what is known, or can reasonably be inferred, of the immunoglobulin somatic hypermutation (Ig SHM) mechanism to the analysis of the transcriptional stand asymmetries of the COSMIC SBS signatures that are observed in cancer genomes. The underlying assumption is that somatic mutations arising in cancer genomes are driven by dysregulated off-target Ig SHM-like mutagenic processes at non-Ig loci. It is reasoned that most SBS signatures whether of “unknown etiology” or assigned-molecular causation, can be readily understood in terms of the DRT-paradigm. These include the major age-related “clock-like” SBS5 signature observed in all cancer genomes sequenced and many other common subset signatures including SBS1, SBS3, SBS2/13, SBS6, SBS12, SBS16, SBS17a/17b, SBS19, SBS21, as well as signatures clearly arising from exogenous causation. We conclude that the DRT-model provides a plausible molecular framework that augments our current understanding of immunogenetic mechanisms driving oncogenesis. It accommodates both what is known about AID/APOBEC and ADAR somatic mutation strand asymmetries and provides a fully integrated understanding into the molecular origins of common COSMIC SBS signatures. The DRT-paradigm thus provides scientists and clinicians with additional molecular insights into the causal links between deaminase-associated genomic signatures and oncogenic processes. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

17 pages, 10117 KiB  
Article
A Conserved Di-Lysine Motif in the E2 Transactivation Domain Regulates MmuPV1 Replication and Disease Progression
by Jessica Gonzalez, Marsha DeSmet and Elliot J. Androphy
Pathogens 2025, 14(1), 84; https://doi.org/10.3390/pathogens14010084 - 16 Jan 2025
Viewed by 930
Abstract
The papillomavirus E2 protein regulates the transcription, replication, and segregation of viral episomes within the host cell. A multitude of post-translational modifications have been identified which control E2 functions. A highly conserved di-lysine motif within the transactivation domain (TAD) has been shown to [...] Read more.
The papillomavirus E2 protein regulates the transcription, replication, and segregation of viral episomes within the host cell. A multitude of post-translational modifications have been identified which control E2 functions. A highly conserved di-lysine motif within the transactivation domain (TAD) has been shown to regulate the normal functions of the E2 proteins of BPV-1, SfPV1, HPV-16, and HPV-31. This motif is similarly conserved in the E2 of the murine papillomavirus, MmuPV1. Using site-directed mutagenesis, we show that the first lysine (K) residue within the motif, K112, is absolutely required for E2-mediated transcription and transient replication in vitro. Furthermore, mutation of the second lysine residue, K113, to the potential acetyl-lysine mimic glutamine (Q) abrogated E2 transcription and decreased transient replication in vitro, while the acetylation defective arginine (R) mutant remained functional. Both K113 mutants were able to induce wart formation in vivo, though disease progression appeared to be delayed in the K113Q group. These findings suggest that acetylation of K113 may act as a mechanism for repressing MmuPV1 E2 activity. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

22 pages, 3822 KiB  
Article
Heterogeneous Ribonucleoprotein K Is a Host Regulatory Factor of Chikungunya Virus Replication in Astrocytes
by Lisa Pieterse, Maranda McDonald, Rachy Abraham and Diane E. Griffin
Viruses 2024, 16(12), 1918; https://doi.org/10.3390/v16121918 - 14 Dec 2024
Viewed by 1717
Abstract
Chikungunya virus (CHIKV) is an emerging, mosquito-borne arthritic alphavirus increasingly associated with severe neurological sequelae and long-term morbidity. However, there is limited understanding of the crucial host components involved in CHIKV replicase assembly complex formation, and thus virus replication and virulence-determining factors, within [...] Read more.
Chikungunya virus (CHIKV) is an emerging, mosquito-borne arthritic alphavirus increasingly associated with severe neurological sequelae and long-term morbidity. However, there is limited understanding of the crucial host components involved in CHIKV replicase assembly complex formation, and thus virus replication and virulence-determining factors, within the central nervous system (CNS). Furthermore, the majority of CHIKV CNS studies focus on neuronal infection, even though astrocytes represent the main cerebral target. Heterogeneous ribonucleoprotein K (hnRNP K), an RNA-binding protein involved in RNA splicing, trafficking, and translation, is a regulatory component of alphavirus replicase assembly complexes, but has yet to be thoroughly studied in the context of CHIKV infection. We identified the hnRNP K CHIKV viral RNA (vRNA) binding site via sequence alignment and performed site-directed mutagenesis to generate a mutant, ΔhnRNPK-BS1, with disrupted hnRNPK–vRNA binding, as verified through RNA coimmunoprecipitation and RT-qPCR. CHIKV ΔhnRNPK-BS1 demonstrated hampered replication in both NSC-34 neuronal and C8-D1A astrocytic cultures. In astrocytes, disruption of the hnRNPK–vRNA interaction curtailed viral RNA transcription and shut down subgenomic RNA translation. Our study demonstrates that hnRNP K serves as a crucial RNA-binding host factor that regulates CHIKV replication through the modulation of subgenomic RNA translation. Full article
(This article belongs to the Special Issue Chikungunya Virus and Emerging Alphaviruses—Volume II)
Show Figures

Figure 1

14 pages, 3722 KiB  
Article
Structure Characterization of Zinc Finger Motif 1 and 2 of GLI1 DNA Binding Region
by Mousheng Wu, Nusrat Jahan, Amanda Sharp, Anwar Ullah, Corinne E. Augelli-Szafran, Sixue Zhang and Rebecca J. Boohaker
Int. J. Mol. Sci. 2024, 25(24), 13368; https://doi.org/10.3390/ijms252413368 - 13 Dec 2024
Viewed by 1960
Abstract
As a transcription factor, GLI1 plays an important role in cell cycle regulation, DNA replication, and DNA damage responses. The aberrant activation of GLI1 has been associated with cancers such as glioma, osteosarcoma, and rhabdomyosarcoma. The binding of GLI1 to a specific DNA [...] Read more.
As a transcription factor, GLI1 plays an important role in cell cycle regulation, DNA replication, and DNA damage responses. The aberrant activation of GLI1 has been associated with cancers such as glioma, osteosarcoma, and rhabdomyosarcoma. The binding of GLI1 to a specific DNA sequence was achieved by five tandem zinc finger motifs (Zif motifs) on the N-terminal part of the molecule. Here, we reported a novel homodimeric crystal structure of Zif1-2. These two Zif motifs are linearized. Namely, Zif2 does not bend and interact with Zif1 of the same molecule. Instead, Zif1 from one molecule interacts with Zif2 from another molecule. The dimer interface of Zif1-2 is unique and different from the conformation of Zif1-2 from the GLI1-DNA co-crystal structure. The dimeric conformation of Zif motifs could represent the native conformation of apo form GLI1 Zif motifs in the cell. The molecular dynamics simulation result of the homodimer, the in silico mutagenesis, and the predicted protease stability of these mutants using a large language model are also presented. Full article
(This article belongs to the Special Issue Structural Dynamics of Macromolecules)
Show Figures

Graphical abstract

17 pages, 4618 KiB  
Article
Accumulation of Anthocyanin in the Aleurone of Barley Grains by Targeted Restoration of the MYC2 Gene
by Anastasiya A. Egorova, Tatyana E. Zykova, Christian W. Hertig, Iris Hoffie, Sergey V. Morozov, Elena I. Chernyak, Artem D. Rogachev, Anna M. Korotkova, Alexander V. Vikhorev, Gennady V. Vasiliev, Olesya Y. Shoeva, Jochen Kumlehn, Sophia V. Gerasimova and Elena K. Khlestkina
Int. J. Mol. Sci. 2024, 25(23), 12705; https://doi.org/10.3390/ijms252312705 - 26 Nov 2024
Cited by 1 | Viewed by 1775
Abstract
Blue barley grain pigmentation results from anthocyanin accumulation in the aleurone layer. Anthocyanins are known for their beneficial effects on human health. The gene encoding the MYELOCYTOMATOSIS 2 (MYC2) transcription factor is potentially responsible for the blue coloration of the aleurone. In non-pigmented [...] Read more.
Blue barley grain pigmentation results from anthocyanin accumulation in the aleurone layer. Anthocyanins are known for their beneficial effects on human health. The gene encoding the MYELOCYTOMATOSIS 2 (MYC2) transcription factor is potentially responsible for the blue coloration of the aleurone. In non-pigmented barley, a single nucleotide insertion in this gene causes a frameshift mutation with a premature stop codon. It was hypothesized that restoring the MYC2 reading frame could activate anthocyanin accumulation in the aleurone. Using a targeted mutagenesis approach in the present study, the reading frame of MYC2 was restored in the non-pigmented cultivar Golden Promise. Genetic constructs harboring cas9 and gRNA expression units were developed, pre-validated in protoplasts, and then functional MYC2 alleles were generated at the plant level via Agrobacterium-mediated transformation. Anthocyanin accumulation in the aleurone layer of grains from these mutants was confirmed through microscopy and chemical analysis. The expression of anthocyanin biosynthesis genes was analyzed, revealing that the restoration of MYC2 led to increased transcript levels of F3H and ANS genes. These results confirm the critical role of the MYC2 transcription factor in the blue aleurone trait and provide a biotechnological solution for enriching barley grain with anthocyanins. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

Back to TopTop