Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = train-bridge coupling vibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3922 KiB  
Article
Research on the Dynamic Characteristics of a Typical Medium–Low-Speed Maglev Train–Bridge System Influenced by the Transverse Stiffness of Pier Tops
by Yanghua Cui, Xiangrong Guo, Hongwei Mao and Jianghao Liu
Appl. Sci. 2025, 15(12), 6628; https://doi.org/10.3390/app15126628 - 12 Jun 2025
Viewed by 274
Abstract
With the continuous development of maglev transportation technology, medium–low-speed maglev trains have been widely implemented in many countries. However, due to the limitations of existing specifications, the stiffness limit values of the large-span main girders used in medium–low-speed maglev trains have not been [...] Read more.
With the continuous development of maglev transportation technology, medium–low-speed maglev trains have been widely implemented in many countries. However, due to the limitations of existing specifications, the stiffness limit values of the large-span main girders used in medium–low-speed maglev trains have not been unified. To address this issue, this study takes a specific bridge on a dedicated maglev line as an example and uses self-developed software to model the vehicle–bridge dynamic system. The natural vibration characteristics and vehicle–bridge coupling vibration response of the bridge are calculated and analyzed. Based on this, the influence of pier top stiffness on the dynamic characteristics of a typical medium–low-speed maglev train–bridge system under different working conditions is investigated, with a focus on the lateral line stiffness at the pier top. The results show that vehicle speed has no significant effect on the lateral displacement of the main girder, the lateral displacement of the pier top, the lateral acceleration of the pier top, and the transverse and longitudinal angles of the beam end, and no obvious regularity is observed. However, in the double-track operating condition, the vertical deflection of the main girder is significantly higher than that in the single-track operating condition. As the lateral linear stiffness at the pier top increases, the fundamental frequency of the bridge’s lateral bending vibration gradually increases, while the fundamental frequency of longitudinal floating gradually decreases. The lateral displacements, including those of the main girder, pier top, and beam ends, all decrease, whereas the lateral and vertical vibration accelerations of the main girder and the train are less affected by the lateral stiffness at the pier top. Full article
Show Figures

Figure 1

17 pages, 12087 KiB  
Article
Experimental and Numerical Study on Dynamic Response of High-Pier Ballastless Continuous Beam Bridge in Mountainous Area
by Wenshuo Liu, Qiong Luo, Gonglian Dai and Xin Tang
Appl. Sci. 2025, 15(8), 4341; https://doi.org/10.3390/app15084341 - 15 Apr 2025
Cited by 1 | Viewed by 413
Abstract
The dynamic performance of a ballastless track on bridges affects the vibration performance of the vehicle–bridge coupling system, which, in turn, will affect safety, the smoothness of operating trains, and passenger comfort. However, in the existing literature, few studies focus on the coupled [...] Read more.
The dynamic performance of a ballastless track on bridges affects the vibration performance of the vehicle–bridge coupling system, which, in turn, will affect safety, the smoothness of operating trains, and passenger comfort. However, in the existing literature, few studies focus on the coupled vibration response analysis of large-span continuous beam bridges for high-speed railways, especially high-pier bridges. Dynamic response tests with multiple measurement points installed on the rail, concrete slab, and bridge deck are conducted. This study investigates the dynamic characteristics of bridges with high piers under train loads. A dynamic system is built by the co-simulation platform of SIMPACK v9 and ANSYS v2022, consisting of several models, a coupling mechanism, etc. The vibration response of a train passing through the bridge at 300 km/h is analyzed, and the influence of operating speed on the motivation performance of the coupled system is further studied. The results indicate that the simulation results are validated against experimental data, showing good agreement; the train–track–continuous beam bridge coupling system meets the specification limits and has some margins for further optimization with an operating speed of 300 km/h. The refined model of train–rail–bridge coupling vibration established in this paper provides theoretical guidance for the design and application of high-speed railways. Full article
Show Figures

Figure 1

18 pages, 7007 KiB  
Article
Research on the Dynamic Behavior of “Building-Bridge Integrated” Railway Bridge-Type Station with Setting the Structural Joints on the Mainline
by Xiangrong Guo, Yaolin Liu and Jianghao Liu
Appl. Sci. 2025, 15(8), 4335; https://doi.org/10.3390/app15084335 - 14 Apr 2025
Viewed by 468
Abstract
The prevalence of “building-bridge integrated” structures in station design is increasing. However, in stations where the mainline speed exceeds 160 km/h, structural joints are typically incorporated to ensure the integrity and functionality of the integrated system. The inspection and maintenance of these joints, [...] Read more.
The prevalence of “building-bridge integrated” structures in station design is increasing. However, in stations where the mainline speed exceeds 160 km/h, structural joints are typically incorporated to ensure the integrity and functionality of the integrated system. The inspection and maintenance of these joints, which are critical for the long-term performance of such structures, can be particularly complex. Therefore, it is important to explore the feasibility of designing such stations without structural joints on the mainline. To address this issue, two six-line railway bridge-type stations are selected. The vibration simulation analysis model of the train-track-station coupling system is established, considering two structural types of the “building-bridge integrated” system: the arrival-departure line “building-bridge integrated” and the mainline “building-bridge integrated”. The vibration responses induced by trains passing through two types of “building-bridge integrated” station structures at speeds of 200~350 km/h on the mainline and 80 km/h on the arrival and departure tracks were simulated. The six-line operating conditions were selected as an example, and the influence of setting a structural joint on the mainline on the dynamic response of the “building-bridge integrated” station structure was analyzed. For both types of “building-bridge integrated” station structures, with and without a structural joint on the mainline, the dynamic responses of trains under operational loads show minimal differences. However, the structural joints on the mainline reduce the overall stiffness of the rail bearing floor slab and effectively isolate the train-induced responses transmitted to the platform slab during high-speed operation on the mainline. Therefore, the acceleration response of the platform slab is smaller in station structures with structural joints, while the acceleration and displacement response of the rail bearing floor slab is larger. Additionally, structural joints often lead to issues such as water leakage and seepage. Considering these factors, it is advisable to avoid setting structural joints on the mainline for such station structures. Full article
Show Figures

Figure 1

15 pages, 6026 KiB  
Article
Research on Impact Coefficient of Railroad Large Span Steel Truss Arch Bridge Based on Vehicle–Bridge Coupling
by Yipu Peng, Boen Jiang, Li Chen, Zhiyuan Tang, Zichao Li and Jian Li
Appl. Sci. 2025, 15(5), 2542; https://doi.org/10.3390/app15052542 - 27 Feb 2025
Viewed by 577
Abstract
This study investigated the impact coefficient of a large-span steel truss arch railroad bridge under moving train loads, with the Nanning Three Banks Yongjiang Special Bridge serving as the case study. Field tests were conducted to measure the bridge’s self-vibration characteristics, dynamic deflection, [...] Read more.
This study investigated the impact coefficient of a large-span steel truss arch railroad bridge under moving train loads, with the Nanning Three Banks Yongjiang Special Bridge serving as the case study. Field tests were conducted to measure the bridge’s self-vibration characteristics, dynamic deflection, and strain. A coupled vehicle–bridge vibration model was developed using the finite element software ABAQUS 2022 for the bridge and multi-body dynamics software SIMPACK 2022 for the CRH2 train. The two models were integrated to simulate the dynamic interaction between the train and bridge under different speeds and single-/double-track operations. The results demonstrate that the joint simulation of SIMPACK and ABAQUS was an effective method for the vehicle–bridge coupled vibration analysis. The key findings include the following: the deflection and stress impact coefficients increased with the train speed, where the main span exhibited larger deflection coefficients than the side span. The stress impact coefficients varied significantly across different bridge components, where the lower chord of the side span and the ties of the main span showed the highest values. While there was no substantial difference in the deflection impact coefficients between the single- and double-track operations, the stress impact coefficients showed deviations, particularly in the side span’s lower chord and ties, highlighting their sensitivity to vehicle-induced deflection. This study concluded that the bridge’s deflection impact coefficient met design specifications, but the stress impact coefficient exceeded the specified values, suggesting that stress amplification should be carefully considered in the design of similar bridges to ensure operational safety. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

25 pages, 9033 KiB  
Article
The Wavelength Characteristics of Vertical Deformation and a Train Dynamics Simulation of Long-Span, Cable-Stayed Bridges Under Complex Loads
by Zhiqiang Pang, Mangmang Gao, Guolong Li, Jingjing Yang and Fei Yang
Appl. Sci. 2025, 15(1), 133; https://doi.org/10.3390/app15010133 - 27 Dec 2024
Viewed by 507
Abstract
Ballastless tracks have a high smoothness, but the corresponding laying requirements are strict. Therefore, the maximum span of cable-stayed bridges that can accommodate ballastless tracks is 392 m. For laying ballastless track structures over larger spans, the deformation characteristics of long-span, cable-stayed bridges [...] Read more.
Ballastless tracks have a high smoothness, but the corresponding laying requirements are strict. Therefore, the maximum span of cable-stayed bridges that can accommodate ballastless tracks is 392 m. For laying ballastless track structures over larger spans, the deformation characteristics of long-span, cable-stayed bridges under complex loads are incompletely understood, and the interaction between them and long-span track–bridge structures is unclear. The influence of the wavelength of the cosine wave on the track–bridge mapping of different orbital structures was explored. The wavelength characteristics of vertical deformation under complex loads were investigated. The track–bridge integrated model for the cable-stayed bridge was established to analyze the mapping relationship between the rail and the bridge and the wavelength characteristics of deformation. Based on the mapping relationships and the wavelength characteristics of deformation, the train–track–bridge dynamics simulation model was simplified. The results show that, when the minimum wavelength of bridge deformation surpassed 6 m, 10 m, and 16 m, the rail deformation in the ballasted track, the longitudinal-connected track, and the unit slab-type ballastless track accurately mirrored the deformation of the bridge. For the span of bridges ranging from 200 m to 600 m, the wavelength of vertical deformation ranged from 21 to 1270 m under complex loads. During local loads, the vertical deformation below the 200 m wavelength constituted a significant proportion near the pie. Considering the influence of the deformation on the train vibration response, the train–bridge dynamic coupling model can be employed to treat the track structure as a load to reduce the complexity of the model and enhance the calculation efficiency. Full article
Show Figures

Figure 1

25 pages, 1305 KiB  
Article
Transitioning from Simulation to Reality: Applying Chatter Detection Models to Real-World Machining Data
by Matthew Alberts, Sam St. John, Simon Odie, Anahita Khojandi, Bradley Jared, Tony Schmitz, Jaydeep Karandikar and Jamie B. Coble
Machines 2024, 12(12), 923; https://doi.org/10.3390/machines12120923 - 17 Dec 2024
Cited by 2 | Viewed by 1240
Abstract
Chatter, a self-excited vibration phenomenon, is a critical challenge in high-speed machining operations, affecting tool life, product surface quality, and overall process efficiency. While machine learning models trained on simulated data have shown promise in detecting chatter, their real-world applicability remains uncertain due [...] Read more.
Chatter, a self-excited vibration phenomenon, is a critical challenge in high-speed machining operations, affecting tool life, product surface quality, and overall process efficiency. While machine learning models trained on simulated data have shown promise in detecting chatter, their real-world applicability remains uncertain due to discrepancies between simulated and actual machining environments. The primary goal of this study is to bridge the gap between simulation-based machine learning models and real-world applications by developing and validating a Random Forest-based chatter detection system. This research focuses on improving manufacturing efficiency through reliable chatter detection by integrating Operational Modal Analysis (OMA), Receptance Coupling Substructure Analysis (RCSA), and Transfer Learning (TL). The study applies a Random Forest classification model trained on over 140,000 simulated machining datasets, incorporating techniques like Operational Modal Analysis (OMA), Receptance Coupling Substructure Analysis (RCSA), and Transfer Learning (TL) to adapt the model for real-world operational data. The model is validated against 1600 real-world machining datasets, achieving an accuracy of 86.1%, with strong precision and recall scores. The results demonstrate the model’s robustness and potential for practical implementation in industrial settings, highlighting challenges such as sensor noise and variability in machining conditions. This work advances the use of predictive analytics in machining processes, offering a data-driven solution to improve manufacturing efficiency through more reliable chatter detection. Full article
(This article belongs to the Special Issue Application of Sensing Measurement in Machining)
Show Figures

Figure 1

25 pages, 10080 KiB  
Article
Dynamic Response Prediction of Railway Bridges Considering Train Load Duration Using the Deep LSTM Network
by Sui Tan, Xiandong Ke, Zhenhao Pang and Jianxiao Mao
Appl. Sci. 2024, 14(20), 9161; https://doi.org/10.3390/app14209161 - 10 Oct 2024
Cited by 3 | Viewed by 1251
Abstract
Monitoring and predicting the dynamic responses of railway bridges under moving trains, including displacement and acceleration, are vital for evaluating the safety and serviceability of the train–bridge system. Traditionally, finite element analysis methods with high computational burden are used to predict the train-induced [...] Read more.
Monitoring and predicting the dynamic responses of railway bridges under moving trains, including displacement and acceleration, are vital for evaluating the safety and serviceability of the train–bridge system. Traditionally, finite element analysis methods with high computational burden are used to predict the train-induced responses according to the given train loads and, hence, cannot easily be integrated as an available structural-health-monitoring strategy. Therefore, this study develops a novel framework, combining the train–bridge coupling mechanism and deep learning algorithms to efficiently predict the train-induced bridge responses while considering train load duration. Initially, the feasibility of using neural networks to calculate the train–bridge coupling vibration is demonstrated by leveraging the nonlinear relationship between train load and bridge responses. Subsequently, the instantaneous multiple moving axial loads of the moving train are regarded as the equivalent node loads that excite adjacent predefined nodes on the bridge. Afterwards, a deep long short-term memory (LSTM) network is established as a surrogate model to predict the train-induced bridge responses. Finally, the prediction accuracy is validated using a numerical case study of a simply supported railway bridge. The factors that may affect the prediction accuracy, such as network structure, training samples, the number of structural units, and noise level, are discussed. Results show that the developed framework can efficiently predict the train-induced bridge responses. The prediction accuracy of the bridge displacement is higher than that of the acceleration. In addition, the robustness of the displacement prediction is proven to be better than that of the acceleration with the variation of carriage number, riding speed, and measurement noise. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

20 pages, 5402 KiB  
Article
Research on Train-Induced Vibration of High-Speed Railway Station with Different Structural Forms
by Xiangrong Guo, Jianghao Liu and Ruibo Cui
Materials 2024, 17(17), 4387; https://doi.org/10.3390/ma17174387 - 5 Sep 2024
Cited by 3 | Viewed by 1322
Abstract
Elevated stations are integral components of urban rail transit systems, significantly impacting passengers’ travel experience and the operational efficiency of the transportation system. However, current elevated station designs often do not sufficiently consider the structural dynamic response under various operating conditions. This oversight [...] Read more.
Elevated stations are integral components of urban rail transit systems, significantly impacting passengers’ travel experience and the operational efficiency of the transportation system. However, current elevated station designs often do not sufficiently consider the structural dynamic response under various operating conditions. This oversight can limit the operational efficiency of the stations and pose potential safety hazards. Addressing this issue, this study establishes a vehicle-bridge-station spatial coupling vibration simulation model utilizing the self-developed software GSAP V1.0, focusing on integrated station-bridge and combined station-bridge elevated station designs. The simulation results are meticulously compared with field data to ensure the fidelity of the model. Analyzing the dynamic response of the station in relation to train parameters reveals significant insights. Notably, under similar travel conditions, integrated stations exhibit lower vertical acceleration in the rail-bearing layer compared to combined stations, while the vertical acceleration patterns at the platform and hall layers demonstrate contrasting behaviors. At lower speeds, the vertical acceleration at the station concourse level is comparable for both station types, yet integrated stations exhibit notably higher platform-level acceleration. Conversely, under high-speed conditions, integrated stations show increased vertical acceleration at the platform and hall levels compared to combined stations, particularly under unloaded double-line working conditions, indicating a superior dynamic performance of combined stations in complex operational scenarios. However, challenges such as increased station height due to bridge box girder maintenance, track layer waterproofing, and track girder support maintenance exist for combined stations, warranting comprehensive evaluation for station selection. Further analysis of integrated station-bridge structures reveals that adjustments in the floor slab thickness at the rail-bearing and platform levels significantly reduce dynamic responses, whereas increasing the rail beam height notably diminishes displacement responses. Conversely, alterations in the waiting hall floor slab thickness and frame column cross-sections exhibit a minimal impact on the station dynamics. Overall, optimizing structural dimensions can effectively mitigate dynamic responses, offering valuable insights for station design and operation. Full article
Show Figures

Figure 1

21 pages, 5639 KiB  
Article
Study on Vibration and Noise of Railway Steel–Concrete Composite Box Girder Bridge Considering Vehicle–Bridge Coupling Effect
by Jinyan Si, Li Zhu, Weitao Ma, Bowen Meng, Huifeng Dong, Hongyang Ning and Guanyuan Zhao
Buildings 2024, 14(8), 2509; https://doi.org/10.3390/buildings14082509 - 14 Aug 2024
Cited by 3 | Viewed by 1625
Abstract
A steel–concrete composite beam bridge fully exploits the mechanical advantages of the concrete structure and steel structure, and has the advantages of a fast construction speed and large stiffness. It is of certain research value to explore the application of this bridge type [...] Read more.
A steel–concrete composite beam bridge fully exploits the mechanical advantages of the concrete structure and steel structure, and has the advantages of a fast construction speed and large stiffness. It is of certain research value to explore the application of this bridge type in the field of railway bridges. However, with the rapid development of domestic high-speed railway construction, the problem of vibration and noise radiation of high-speed railway bridges caused by train loads is becoming more and more serious. A steel–concrete composite beam bridge combines the tensile characteristics of steel and the compressive characteristics of concrete perfectly. At the same time, it also has the characteristics of a steel bridge and concrete bridge in terms of vibration and noise radiation. This feature makes the study of the vibration and noise of the bridge type more complicated. Therefore, in this paper, the characteristics of vibration and noise radiation of a high-speed railway steel–concrete composite box girder bridge are studied in detail from two aspects: the theoretical basis and a numerical simulation. The main results obtained are as follows: Relying on the idea of vehicle–rail–bridge coupling dynamics, a structural dynamics analysis model of a steel–concrete combined girder bridge for a high-speed railroad was established, and numerical program simulation of the vibration of the vehicle–rail–bridge coupling system was carried out based on the parametric design language of ANSYS 18.0 and the language of MATLAB R2021a, and the structural vibration results were analyzed in both the time domain and frequency domain. By using different time-step loading for the vehicle–rail–bridge coupling vibration analysis, the computational efficiency can be effectively improved under the condition of guaranteeing the accuracy of the result analysis within 100 Hz. Based on the power flow equilibrium equation, a statistical energy method of calculating the high-frequency noise radiation is theoretically derived. Based on the theoretical basis of the statistical energy method, the high-frequency noise in the structure is numerically simulated in the VAONE 2021 software, and the average contribution of the concrete roof plate to the three acoustic field points constructed in this paper is as high as 50%, which is of great significance in the study of noise reduction in steel–concrete composite girders. Full article
(This article belongs to the Special Issue High-Performance Steel–Concrete Composite/Hybrid Structures)
Show Figures

Figure 1

16 pages, 5546 KiB  
Article
Simulation Study on Ground Vibration Reduction Measures of the Elevated Subway Line
by Hao Wang, Ziqi Tang, Leiming Song, Ling Li, Hao Lin and Xiaojun Hu
Appl. Sci. 2024, 14(15), 6706; https://doi.org/10.3390/app14156706 - 1 Aug 2024
Cited by 1 | Viewed by 1073
Abstract
With the development of urban rail transportation, the environmental vibration problem caused by the running of metro vehicles has received attention. In order to reduce ground vibration near buildings caused by metro vehicles running on viaducts, this paper establishes the train–track–viaduct rigid–flexible coupling [...] Read more.
With the development of urban rail transportation, the environmental vibration problem caused by the running of metro vehicles has received attention. In order to reduce ground vibration near buildings caused by metro vehicles running on viaducts, this paper establishes the train–track–viaduct rigid–flexible coupling dynamics model and pier–soil–building finite element model and carries out the simulation calculation and analysis of ground vibration. The influence of train speed and fastener stiffness on ground vibration is explored, and the vibration reduction effect of the track vibration reduction pad and continuous support vibration reduction structure is studied. The results show that the ground vibration near the building caused by the train running on the viaduct decreases with the reduction in speed, when the speed is reduced to 40 km/h, the vibration attenuation is slower as the speed continues to be reduced; the reduction in the vertical stiffness of fasteners can reduce ground vibration; the arrangement of the vibration damping pad can effectively reduce ground vibration, and after installing a vibration damping pad, 0–23 Hz and 50–80 Hz ground vibration speeds are effectively suppressed. In order to meet the environmental requirements for ground vibration, the vehicle speed can be reduced to less than 35 km/h or vibration damping mats can be installed. Full article
Show Figures

Figure 1

20 pages, 11454 KiB  
Article
Dynamic Response Study of Overhead Contact System Portal Structure Based on Vehicle–Track–Bridge Coupled Vibration
by Tao Li and Xia Zhao
Energies 2024, 17(11), 2510; https://doi.org/10.3390/en17112510 - 23 May 2024
Cited by 1 | Viewed by 1040
Abstract
In light of the rapid development of electrified railways, the safety and stability of train operations, as well as the catenary’s interaction with current quality, have garnered widespread attention. Electrified train operation with additional track irregularities serves as a principal excitation source within [...] Read more.
In light of the rapid development of electrified railways, the safety and stability of train operations, as well as the catenary’s interaction with current quality, have garnered widespread attention. Electrified train operation with additional track irregularities serves as a principal excitation source within the vehicle–bridge–catenary system, significantly influencing the vibration characteristics of the system. Addressing the aforementioned issues, we first established the vehicle–track dynamics model and the bridge–catenary finite element model based on the principles of coupled dynamics of the vehicle–track system. These models are interconnected using dynamic forces between the wheel and rail. Subsequently, within the vehicle–track coupled system, track random irregularities are introduced as input excitations for the coupled model, and the dynamic response of the system is simulated and solved. Then, the obtained wheel–rail forces are applied to the bridge–catenary coupled system finite element model in the form of time-varying moving load forces. Finally, the dynamic response characteristics of the catenary portal structure under different conditions are determined. Meanwhile, a study on the vibration characteristics of the truss-type pillar portal structure was conducted, and the results were compared with those of existing models. The results indicate that the vertical and lateral forces between the vehicle and track are positively correlated with the speed and irregularity amplitude. Response values such as the derailment coefficient and wheel load reduction rate are within the specified range of relevant standards. The low-order natural resonant frequency of the truss-type pillar structure has, on average, increased by 0.86 compared to the existing pillar structure, which signifies improved stability. Furthermore, under various conditions, the average reductions in maximum displacement and stress response of this pillar structure are 13.2% and 14.19%, respectively, in comparison to the existing pillar structure, rendering it more suitable for practical engineering applications. Full article
Show Figures

Figure 1

14 pages, 8496 KiB  
Article
Evaluation of the Dynamic Amplification Factors of a Monorail Tourism Transit System Based on Probability Statistics
by Fengqi Guo, Chenjia Li, Qiaoyun Liao, Yongfeng Yan, Changxing Wu and Liqiang Jiang
Mathematics 2024, 12(8), 1221; https://doi.org/10.3390/math12081221 - 18 Apr 2024
Cited by 2 | Viewed by 1148
Abstract
The straddle monorail tourist transportation system (MTTS) has developed rapidly in recent years, and its structure is an elevated steel structure with a beam–column system, and the design is executed according to the Safety Code for Large Amusement Rides (GB 8408-2018). However, the [...] Read more.
The straddle monorail tourist transportation system (MTTS) has developed rapidly in recent years, and its structure is an elevated steel structure with a beam–column system, and the design is executed according to the Safety Code for Large Amusement Rides (GB 8408-2018). However, the impact coefficient value of this code is deemed partially unreasonable. Based on this, relying on the Seven Colors Yunnan Happy World project, the dynamic response test is carried out; using the finite element (FEM) software ANSYS (2021) and multibody dynamics (MBD) software SIMPACK (2021x) combined with the monorail unevenness spectra based on the measured monorail, the straddle monorail vehicle–bridge coupling vibration model is established, and mutual verification is carried out with the measured data. A continuous random variable probability model is adopted for the regularity study of impact coefficient samples, combined with probability statistics and the function fitting method to analyse the calculation results and derive the MTTS displacement impact coefficient calculation formula with beam span and driving speed as variables. The results show that the calculated values of the finite element model are in good agreement with the measured data, and the MTTS impact coefficients conform to the extreme value I-type distribution in the probability distribution law, which is inversely proportional to the span and is directly proportional to the traveling speed. Considering a multi-factor MTTS displacement impact coefficient fitting formula of high fit can better reflect the impact coefficient, monorail girder span, and train speed of the interrelationship for related research and design reference, in order to ensure safety and, at the same time, to improve the economy. Full article
(This article belongs to the Special Issue Model and Simulation in Structural Engineering)
Show Figures

Figure 1

17 pages, 5113 KiB  
Article
Research on the Dynamic Response of the Multi-Line Elevated Station with “Integral Station-Bridge System”
by Xiangrong Guo and Shipeng Wang
Buildings 2024, 14(3), 758; https://doi.org/10.3390/buildings14030758 - 11 Mar 2024
Cited by 3 | Viewed by 1492
Abstract
Elevated stations serve as critical hubs in urban rail transit engineering. The structure of multi-line “building-bridge integrated” elevated stations is unique, with intricate force transfer paths and challenges to clarify dynamic coupling from train vibrations, necessitating the study of such stations’ train-induced dynamic [...] Read more.
Elevated stations serve as critical hubs in urban rail transit engineering. The structure of multi-line “building-bridge integrated” elevated stations is unique, with intricate force transfer paths and challenges to clarify dynamic coupling from train vibrations, necessitating the study of such stations’ train-induced dynamic responses. This paper presents a case study of a typical “building-bridge integrated” elevated station, utilizing the self-developed finite element software GSAP-V2024 to establish a simulation model of a coupled train–track–station system. It analyzed the station’s dynamic response under various single-track operating conditions and the pattern of the vibration response as the speed changes. Additionally, the study examined lateral vibration response changes in the station under double, quadruple, and sextuple train operations at the same speed. Findings reveal that the station’s vertical responses generally increase with speed, significantly outpacing lateral responses. Under single-track operations, dynamic responses vary across different types of track-bearing floors and frame structures with different spans. With an increase in the number of operating train lines, the station’s vertical response grows, with lateral responses being neutralized in the mid-span of the triple-span frame structure and amplified at the edges. These results provide a reference for the structural design of multi-line “building-bridge integrated” elevated stations. Full article
(This article belongs to the Special Issue Building Vibration and Soil Dynamics)
Show Figures

Figure 1

16 pages, 7118 KiB  
Article
Research on Environmental Vibration Induced by High-Speed Maglev Transportation
by Ziping Han, Guofeng Zeng and Feng Ye
Appl. Sci. 2024, 14(1), 413; https://doi.org/10.3390/app14010413 - 2 Jan 2024
Cited by 2 | Viewed by 1892
Abstract
As a novel form of railway transportation, maglev transportation has the advantages of a better curve negotiation ability and grade ability and lower noise and vibration than traditional urban wheel–rail transportation. Thus, it is suitable for use in urban public transportation. However, the [...] Read more.
As a novel form of railway transportation, maglev transportation has the advantages of a better curve negotiation ability and grade ability and lower noise and vibration than traditional urban wheel–rail transportation. Thus, it is suitable for use in urban public transportation. However, the levitation of the widely utilized electromagnet suspension (EMS) system relies on continuously active suspension force adjustment, which gives it vehicle–track-coupled vibration characteristics different to those of the traditional wheel–track transportation system. Despite many research studies focusing on maglev vehicle–track coupling vibration, the environmental vibration influences associated with the running of maglev trains are still unclear. When the vibration propagates to the surroundings beyond certain thresholds, it may lead to various vibration serviceability problems. Practical test results on the environmental vibration induced by maglev transportation are still not enough to generate convincing vibration propagation and attenuation laws. In this research, a series of in situ tests were carried out around the Shanghai maglev line; the results show that the viaduct bridge is helpful in reducing environmental vibration, and an empirical formula was proposed to predict the effect of viaduct column height. Due to the ground wave superposition, a vibration-amplifying zone was also found about 10 m away from the maglev line, in which the vibration magnitude was strong enough to be perceived by the surrounding occupants. Full article
Show Figures

Figure 1

14 pages, 3837 KiB  
Article
Influence of Fastener Stiffness and Damping on Vibration Transfer Characteristics of Urban Railway Bridge Lines Using Vibration Power Flow Method
by Xingxiao Cao, Li Yang, Peixuan Li, Jiangang Xu and Xiaoyun Zhang
Appl. Sci. 2023, 13(23), 12543; https://doi.org/10.3390/app132312543 - 21 Nov 2023
Cited by 2 | Viewed by 1607
Abstract
The problem of vibration in urban rail transportation has become a current research hotspot. When a train passes through a bridge line at high speed, it interacts with the rail, leading to vibration energy transfer and causing issues such as vibration and noise [...] Read more.
The problem of vibration in urban rail transportation has become a current research hotspot. When a train passes through a bridge line at high speed, it interacts with the rail, leading to vibration energy transfer and causing issues such as vibration and noise in the line infrastructure. To propose a more targeted vibration-damping track structure, it is necessary to explore the vibration characteristics of urban rail transit bridge lines and understand the regulations governing the distribution of vibration energy. This paper employs the theory of vehicle–rail–bridge interaction to establish a coupled dynamics model for a subway A-type vehicle–integral ballast bed–box girder bridge. Based on the proposed model, the transmission characteristics and distribution of vibration energy in the rail–bridge system are systematically analyzed and the influence of the parameters of the track structural components on the power flow of the system are investigated. The results of this study indicate that low-frequency vibration energy in the track system of urban rail transit bridges is primarily concentrated within the track structure, whereas high-frequency vibration energy is mainly focused on the rail. The fastener, as a component connecting the rail and the overall roadbed, has different effects on the peak value of the power flow and the accumulation of vibration energy in various components such as the rail, the overall roadbed, the top plate of the box girder bridge, and the bottom plate in different frequency bands due to its own stiffness and damping. An appropriate increase in fastener damping is beneficial for reducing the accumulation of low-frequency vibration energy in the track structure. Full article
(This article belongs to the Special Issue Railway Structure and Track Engineering)
Show Figures

Figure 1

Back to TopTop