Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (370)

Search Parameters:
Keywords = traffic related air pollution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 650 KiB  
Article
Investigating Users’ Acceptance of Autonomous Buses by Examining Their Willingness to Use and Willingness to Pay: The Case of the City of Trikala, Greece
by Spyros Niavis, Nikolaos Gavanas, Konstantina Anastasiadou and Paschalis Arvanitidis
Urban Sci. 2025, 9(8), 298; https://doi.org/10.3390/urbansci9080298 - 1 Aug 2025
Viewed by 318
Abstract
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in [...] Read more.
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in terms of time and cost, due to better fleet management and platooning. However, challenges also arise, mostly related to data privacy, security and cyber-security, high acquisition and infrastructure costs, accident liability, even possible increased traffic congestion and air pollution due to induced travel demand. This paper presents the results of a survey conducted among 654 residents who experienced an autonomous bus (AB) service in the city of Trikala, Greece, in order to assess their willingness to use (WTU) and willingness to pay (WTP) for ABs, through testing a range of factors based on a literature review. Results useful to policy-makers were extracted, such as that the intention to use ABs was mostly shaped by psychological factors (e.g., users’ perceptions of usefulness and safety, and trust in the service provider), while WTU seemed to be positively affected by previous experience in using ABs. In contrast, sociodemographic factors were found to have very little effect on the intention to use ABs, while apart from personal utility, users’ perceptions of how autonomous driving will improve the overall life standards in the study area also mattered. Full article
Show Figures

Figure 1

42 pages, 28030 KiB  
Article
Can AI and Urban Design Optimization Mitigate Cardiovascular Risks Amid Rapid Urbanization? Unveiling the Impact of Environmental Stressors on Health Resilience
by Mehdi Makvandi, Zeinab Khodabakhshi, Yige Liu, Wenjing Li and Philip F. Yuan
Sustainability 2025, 17(15), 6973; https://doi.org/10.3390/su17156973 - 31 Jul 2025
Viewed by 331
Abstract
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health [...] Read more.
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health (+76.9%, 2019–2025) and optimization and algorithmic approaches (+63.7%), the compounded and synergistic impacts of these stressors remain inadequately explored or addressed within current urban planning frameworks. This study presents a Mixed Methods Systematic Review (MMSR) to investigate the potential of AI-driven urban design optimizations in mitigating these multi-scalar environmental health risks. Specifically, it explores the complex interactions between urbanization, traffic-related pollutants, green infrastructure, and architectural intelligence, identifying critical gaps in the integration of computational optimization with nature-based solutions (NBS). To empirically substantiate these theoretical insights, this study draws on longitudinal 24 h dynamic blood pressure (BP) monitoring (3–9 months), revealing that chronic exposure to environmental noise (mean 79.84 dB) increases cardiovascular risk by approximately 1.8-fold. BP data (average 132/76 mmHg), along with observed hypertensive spikes (systolic > 172 mmHg, diastolic ≤ 101 mmHg), underscore the inadequacy of current urban design strategies in mitigating health risks. Based on these findings, this paper advocates for the integration of AI-driven approaches to optimize urban environments, offering actionable recommendations for developing adaptive, human-centric, and health-responsive urban planning frameworks that enhance resilience and public health in the face of accelerating urbanization. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

32 pages, 3694 KiB  
Article
Decoding Urban Traffic Pollution: Insights on Trends, Patterns, and Meteorological Influences for Policy Action in Bucharest, Romania
by Cristiana Tudor, Alexandra Horobet, Robert Sova, Lucian Belascu and Alma Pentescu
Atmosphere 2025, 16(8), 916; https://doi.org/10.3390/atmos16080916 - 29 Jul 2025
Viewed by 406
Abstract
Traffic-related pollutants remain a challenging global issue, with significant policy implications. Within the European Union, Romania has the highest yearly societal cost per capita due to air pollution, which kills 29,000 Romanians every year, whereas the health and economic costs are also significant. [...] Read more.
Traffic-related pollutants remain a challenging global issue, with significant policy implications. Within the European Union, Romania has the highest yearly societal cost per capita due to air pollution, which kills 29,000 Romanians every year, whereas the health and economic costs are also significant. In this context, municipal authorities in the country, particularly in high-density areas, should place a strong focus on mitigating air pollution. In particular, the capital city, Bucharest, ranks among the most congested cities in the world while registering the highest pollution index in Romania, with traffic pollution responsible for two-thirds of its air pollution. Consequently, studies that assess and model pollution trends are paramount to inform local policy-making processes and assist pollution-mitigation efforts. In this paper, a generalized additive modeling (GAM) framework is employed to model hourly concentrations of nitrogen dioxide (NO2), i.e., a relevant traffic-pollution proxy, at a busy urban traffic location in central Bucharest, Romania. All models are developed on a wide, fine-granularity dataset spanning January 2017–December 2022 and include extensive meteorological covariates. Model robustness is assured by switching between the generalized additive model (GAM) framework and the generalized additive mixed model (GAMM) framework when the residual autoregressive process needs to be specifically acknowledged. Results indicate that trend GAMs explain a large amount of the hourly variation in traffic pollution. Furthermore, meteorological factors contribute to increasing the models’ explanation power, with wind direction, relative humidity, and the interaction between wind speed and the atmospheric pressure emerging as important mitigators for NO2 concentrations in Bucharest. The results of this study can be valuable in assisting local authorities to take proactive measures for traffic pollution control in the capital city of Romania. Full article
(This article belongs to the Special Issue Sources Influencing Air Pollution and Their Control)
Show Figures

Figure 1

25 pages, 4161 KiB  
Article
Indoor/Outdoor Particulate Matter and Related Pollutants in a Sensitive Public Building in Madrid (Spain)
by Elisabeth Alonso-Blanco, Francisco Javier Gómez-Moreno, Elías Díaz-Ramiro, Javier Fernández, Esther Coz, Carlos Yagüe, Carlos Román-Cascón, Dulcenombre Gómez-Garre, Adolfo Narros, Rafael Borge and Begoña Artíñano
Int. J. Environ. Res. Public Health 2025, 22(8), 1175; https://doi.org/10.3390/ijerph22081175 - 25 Jul 2025
Viewed by 382
Abstract
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated [...] Read more.
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated carbonaceous species, such as black carbon (BC), which are classified as carcinogenic by the International Agency for Research on Cancer (IARC), are not currently regulated. Compared with IAQ studies in other types of buildings, studies focusing on IAQ in hospitals or other healthcare facilities are scarce. Therefore, this study aims to evaluate the impact of these outdoor pollutants, among others, on the indoor environment of a hospital under different atmospheric conditions. To identify the seasonal influence, two different periods of two consecutive seasons (summer 2020 and winter 2021) were selected for the measurements. Regulated pollutants (NO, NO2, O3, PM10, and PM2.5) and nonregulated pollutants (PM1, PNC, and equivalent BC (eBC)) in outdoor air were simultaneously measured indoor and outdoor. This study also investigated the impact of indoor activities on indoor air quality. In the absence of indoor activities, outdoor sources significantly contribute to indoor traffic-related pollutants. Indoor and outdoor (I-O) measurements showed similar behavior, but indoor concentrations were lower, with peak levels delayed by up to two hours. Seasonal variations in indoor/outdoor (I/O) ratios were lower for particles than for associated gaseous pollutants. Particle infiltration depended on particle size, with it being higher the smaller the particle size. Indoor activities also significantly affected indoor pollutants. PMx (especially PM10 and PM2.5) concentrations were mainly modulated by walking-induced particle resuspension. Vertical eBC profiles indicated a relatively well-mixed environment. Ventilation through open windows rapidly altered indoor air quality. Outdoor-dominant pollutants (PNC, eBC, and NOX) had I/O ratios ≥ 1. Staying in the room with an open window had a synergistic effect, increasing the I/O ratios for all pollutants. Higher I/O ratios were associated with turbulent outdoor conditions in both unoccupied and occupied conditions. Statistically significant differences were observed between stable (TKE ≤ 1 m2 s−2) and unstable (TKE > 1 m2 s−2) conditions, except for NO2 in summer. This finding was particularly significant when the wind direction was westerly or easterly during unstable conditions. The results of this study highlight the importance of understanding the behavior of indoor particulate matter and related pollutants. These pollutants are highly variable, and knowledge about them is crucial for determining their health effects, particularly in public buildings such as hospitals, where information on IAQ is often limited. More measurement data is particularly important for further research into I-O transport mechanisms, which are essential for developing preventive measures and improving IAQ. Full article
Show Figures

Figure 1

13 pages, 264 KiB  
Review
Impact of Climate Change and Air Pollution on Bronchiolitis: A Narrative Review Bridging Environmental and Clinical Insights
by Cecilia Nobili, Matteo Riccò, Giulia Piglia and Paolo Manzoni
Pathogens 2025, 14(7), 690; https://doi.org/10.3390/pathogens14070690 - 14 Jul 2025
Viewed by 451
Abstract
Climate change and air pollution are reshaping viral circulation patterns and increasing host vulnerability, amplifying the burden of respiratory illness in early childhood. This narrative review synthesizes current evidence on how environmental exposures, particularly to nitrogen dioxide, ozone, and fine particulate matter, contribute [...] Read more.
Climate change and air pollution are reshaping viral circulation patterns and increasing host vulnerability, amplifying the burden of respiratory illness in early childhood. This narrative review synthesizes current evidence on how environmental exposures, particularly to nitrogen dioxide, ozone, and fine particulate matter, contribute to the incidence and severity of bronchiolitis, with a focus on biological mechanisms, epidemiological trends, and public health implications. Bronchiolitis remains one of the leading causes of hospitalization in infancy, with Respiratory Syncytial Virus (RSV) being responsible for the majority of severe cases. Airborne pollutants penetrate deep into the airways, triggering inflammation, compromising mucosal defenses, and impairing immune function, especially in infants with pre-existing vulnerabilities. These interactions can intensify the clinical course of viral infections and contribute to more severe disease presentations. Children in urban areas exposed to high levels of traffic-related emissions are disproportionately affected, underscoring the need for integrated public health interventions. These include stricter emission controls, urban design strategies to reduce exposure, and real-time health alerts during pollution peaks. Prevention strategies should also address indoor air quality and promote risk awareness among families and caregivers. Further research is needed to standardize exposure assessments, clarify dose–response relationships, and deepen our understanding of how pollution interacts with viral immunity. Bronchiolitis emerges as a sentinel condition at the crossroads of climate, environment, and pediatric health, highlighting the urgent need for collaboration across clinical medicine, epidemiology, and environmental science. Full article
25 pages, 2173 KiB  
Article
Quantifying Topography-Dependent Ultrafine Particle Exposure from Diesel Emissions in Appalachia Using Traffic Counts as a Surrogate Measure
by Nafisat O. Isa, Bailley Reggetz, Ojo. A. Thomas, Andrew C. Nix, Sijin Wen, Travis Knuckles, Marcus Cervantes, Ranjita Misra and Michael McCawley
Appl. Sci. 2025, 15(13), 7415; https://doi.org/10.3390/app15137415 - 1 Jul 2025
Viewed by 595
Abstract
Diesel particulate matter—primarily ultrafine particles (UFPs), defined as particles smaller than 0.1 µm—are released by diesel-powered vehicles, especially those used in heavy-duty hauling. While much of the existing research on traffic-related air pollution focuses on urban environments, limited attention has been paid to [...] Read more.
Diesel particulate matter—primarily ultrafine particles (UFPs), defined as particles smaller than 0.1 µm—are released by diesel-powered vehicles, especially those used in heavy-duty hauling. While much of the existing research on traffic-related air pollution focuses on urban environments, limited attention has been paid to how complex topography influences the concentration of UFPs, particularly in areas with significant truck traffic. With a focus on Morgantown, West Virginia, an area distinguished by a steep topography, this study investigates how travel over two different terrain conditions affects UFP concentrations close to roadways. Specifically, we sought to determine if the truck count taken from simultaneous video evidence could be used as a surrogate for varying topography in determining the concentration of UFPs. This study shows that “TRUCK COUNT” and “TRUCK SPEED” have a linear relationship and yield a possible surrogate measure of the lung dose of UFP number concentration. Our results demonstrate a statistically significant (p < 0.1) linear relationship between truck count and UFP number concentration (R = 0.77 and 0.40), validating truck count along with truck speed as a medium effect surrogate for estimating near-road UFP exposure. Dose estimation using the Multiple-Path Particle Dosimetry (MPPD) model further revealed that approximately 30% of inhaled UFPs are deposited in the alveolar region, underscoring the public health relevance of this exposure pathway in topographically complex areas. This method ultimately awaits comparison with health effects to determine its true potential as a useful exposure metric. Full article
(This article belongs to the Special Issue Advances in Air Pollution Detection and Air Quality Research)
Show Figures

Figure 1

25 pages, 5088 KiB  
Article
Improved Perceptual Quality of Traffic Signs and Lights for the Teleoperation of Autonomous Vehicle Remote Driving via Multi-Category Region of Interest Video Compression
by Itai Dror and Ofer Hadar
Entropy 2025, 27(7), 674; https://doi.org/10.3390/e27070674 - 24 Jun 2025
Viewed by 733
Abstract
Autonomous vehicles are a promising solution to traffic congestion, air pollution, accidents, wasted time, and resources. However, remote driver intervention may be necessary in extreme situations to ensure safe roadside parking or complete remote takeover. In these cases, high-quality real-time video streaming is [...] Read more.
Autonomous vehicles are a promising solution to traffic congestion, air pollution, accidents, wasted time, and resources. However, remote driver intervention may be necessary in extreme situations to ensure safe roadside parking or complete remote takeover. In these cases, high-quality real-time video streaming is crucial for remote driving. In a preliminary study, we presented a region of interest (ROI) High-Efficiency Video Coding (HEVC) method where the image was segmented into two categories: ROI and background. This involved allocating more bandwidth to the ROI, which yielded an improvement in the visibility of classes essential for driving while transmitting the background at a lower quality. However, migrating the bandwidth to the large ROI portion of the image did not substantially improve the quality of traffic signs and lights. This study proposes a method that categorizes ROIs into three tiers: background, weak ROI, and strong ROI. To evaluate this approach, we utilized a photo-realistic driving scenario database created with the Cognata self-driving car simulation platform. We used semantic segmentation to categorize the compression quality of a Coding Tree Unit (CTU) according to its pixel classes. A background CTU contains only sky, trees, vegetation, or building classes. Essentials for remote driving include classes such as pedestrians, road marks, and cars. Difficult-to-recognize classes, such as traffic signs (especially textual ones) and traffic lights, are categorized as a strong ROI. We applied thresholds to determine whether the number of pixels in a CTU of a particular category was sufficient to classify it as a strong or weak ROI and then allocated bandwidth accordingly. Our results demonstrate that this multi-category ROI compression method significantly enhances the perceptual quality of traffic signs (especially textual ones) and traffic lights by up to 5.5 dB compared to a simpler two-category (background/foreground) partition. This improvement in critical areas is achieved by reducing the fidelity of less critical background elements, while the visual quality of other essential driving-related classes (weak ROI) is at least maintained. Full article
(This article belongs to the Special Issue Information Theory and Coding for Image/Video Processing)
Show Figures

Figure 1

18 pages, 9625 KiB  
Article
Tracking Long-Term Ozone Pollution Dynamics in Chinese Cities with Meteorological and Emission Attribution
by Hongrui Li, Xiaoyong Liu, Zijian Liu, Mengyang Li, Tong Wu, Peicheng Li and Peng Zhou
Atmosphere 2025, 16(7), 768; https://doi.org/10.3390/atmos16070768 - 23 Jun 2025
Viewed by 428
Abstract
Although China has achieved substantial reductions in particulate matter pollution, continually rising ground-level ozone now constitutes the primary challenge to further air-quality improvements. A systematic assessment of the long-term spatiotemporal behavior of ozone (O3) and its links to meteorology and emissions [...] Read more.
Although China has achieved substantial reductions in particulate matter pollution, continually rising ground-level ozone now constitutes the primary challenge to further air-quality improvements. A systematic assessment of the long-term spatiotemporal behavior of ozone (O3) and its links to meteorology and emissions is still lacking. Here, we develop a novel framework that couples Kolmogorov–Zurbenko (KZ) filtering with an optimized random forest (RF) regression model to examine daily maximum 8 h average ozone (O3-8h) in 372 Chinese cities from 2013 to 2023. The approach quantitatively disentangles meteorological and emission contributions at the national scale, overcoming the limitations of traditional linear methods in capturing non-linear processes. Long-term components explain, in general, <40% of total O3 variance. In eastern urban agglomerations, long-term meteorological factors—particularly temperature and surface ultraviolet radiation—account for up to 80% of the trend, whereas long-term emission contributions remain modest (≈5–6%), with pronounced signals in the Beijing–Tianjin–Hebei and Fenwei Plain regions. Empirical orthogonal function analysis further reveals distinct spatial patterns of emission influence: long-term O3 trends in mega-cities such as Beijing, Tianjin, and Shanghai are driven mainly by local emissions (1.5–3% contribution), while key transport hubs including Xi’an, Tangshan, and Langfang are markedly affected by traffic-related emissions (>2%). These findings clarify the heterogeneous mechanisms governing O3 formation across China and provide a scientific basis for designing and implementing the next phase of region-specific, joint prevention-and-control policies. Full article
(This article belongs to the Special Issue Air Pollution: Emission Characteristics and Formation Mechanisms)
Show Figures

Figure 1

30 pages, 3202 KiB  
Article
A Comprehensive Model for Quantifying, Predicting, and Evaluating Ship Emissions in Port Areas Using Novel Metrics and Machine Learning Methods
by Filip Bojić, Anita Gudelj and Rino Bošnjak
J. Mar. Sci. Eng. 2025, 13(6), 1162; https://doi.org/10.3390/jmse13061162 - 12 Jun 2025
Viewed by 467
Abstract
Seaports, as major transportation hubs, generate significant air pollution due to intensive ship traffic, directly affecting local air quality. While emission inventories are commonly used to manage ship-based air pollution, they reflect only the emission-related aspect of a specified period and area, limiting [...] Read more.
Seaports, as major transportation hubs, generate significant air pollution due to intensive ship traffic, directly affecting local air quality. While emission inventories are commonly used to manage ship-based air pollution, they reflect only the emission-related aspect of a specified period and area, limiting the broader interpretability and comparability of the results. To overcome the mentioned challenges, this research presents the PrE-PARE model, which enables the prediction, analysis, and risk evaluation of ship-sourced air pollution in port areas. The model comprises three interconnected modules. The first is applied for quantifying emissions using detailed technical and movement datasets, which are combined into individual voyage trajectories to enable a high-resolution analysis of ship-based air pollutants. In the second module, the Multivariate Adaptive Regression Splines (MARS) machine learning method is adapted to predict emissions in varying operational scenarios. In the third module, novel metric methods are introduced, enabling a standardised efficiency comparison between ships. These methods are supported by a unique classification system to determine the emission risk in different periods, evaluate the intensity of various ship types, and rank individual ships based on their operational efficiency and emission optimisation potential. By combining new methods with technical and operational shipping data, the model provides a transparent, comparable, and adaptable system for emissions monitoring. The results demonstrate that the PrE-PARE model has the potential to improve strategic planning and air quality management in ports while remaining flexible enough to be applied in different contexts and future scenarios. Full article
(This article belongs to the Special Issue Sustainable Maritime Transport and Port Intelligence)
Show Figures

Figure 1

11 pages, 1202 KiB  
Article
The Impacts of Gentrification on Air Pollutant Levels and Child Opportunity Index near New York City Schools
by Kyung Hwa Jung, Zachary Pitkowsky, Kira L. Argenio, James W. Quinn, Jeanette A. Stingone, Andrew G. Rundle, Jean-Marie Bruzzese, Steven Chillrud, Matthew Perzanowski and Stephanie Lovinsky-Desir
Environments 2025, 12(6), 199; https://doi.org/10.3390/environments12060199 - 11 Jun 2025
Viewed by 521
Abstract
Introduction: Gentrification, commonly defined as low-socioeconomic-status (SES) neighborhoods experiencing rapid increases in rental value, can lead to changes in the built and social neighborhood environment. Schools are an important location for pollutant exposure and child opportunities because children spend significant time in school. [...] Read more.
Introduction: Gentrification, commonly defined as low-socioeconomic-status (SES) neighborhoods experiencing rapid increases in rental value, can lead to changes in the built and social neighborhood environment. Schools are an important location for pollutant exposure and child opportunities because children spend significant time in school. Given their central role in both environmental and social contexts, we examined the relationship between gentrification, pollutants, and child opportunity near schools in New York City. Methods: School locations (Ntotal = 1482) were classified into gentrifying (n = 624), non-gentrifying (n = 198), and higher-SES (ineligible for gentrification; n = 660) neighborhoods. Annual average pollutant levels (black carbon (BC), fine particulates (PM2.5), nitrogen dioxide (NO2)) were assessed near schools. Child opportunity index (COI 2.0) was used to evaluate overall opportunity and three domains: education; health/environment; social/economic. Results: On average, pollution was highest in gentrifying neighborhoods compared to non-gentrifying (5–8.6% difference) and higher-SES (4.8–14.8% difference) neighborhoods. Average air pollution levels remained consistently higher in gentrifying neighborhoods both before and after gentrification compared to non-gentrifying and higher-SES neighborhoods. Regarding childhood opportunity, education, and social/economic opportunities were better and health/environment opportunities were worse in gentrifying compared to non-gentrifying neighborhoods. Conclusions: Gentrifying neighborhoods are at risk for higher exposure to pollutants and lower health/environment childhood opportunities compared to other neighborhoods. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Figure 1

11 pages, 2324 KiB  
Proceeding Paper
Development of Autonomous Unmanned Aerial Vehicle for Environmental Protection Using YOLO V3
by Vijayaraja Loganathan, Dhanasekar Ravikumar, Maniyas Philominal Manibha, Rupa Kesavan, Gokul Raj Kusala Kumar and Sarath Sasikumar
Eng. Proc. 2025, 87(1), 72; https://doi.org/10.3390/engproc2025087072 - 6 Jun 2025
Viewed by 404
Abstract
Unmanned aerial vehicles, also termed as unarmed aerial vehicles, are used for various purposes in and around the environment, such as delivering things, spying on opponents, identification of aerial images, extinguishing fire, spraying the agricultural fields, etc. As there are multi-functions in a [...] Read more.
Unmanned aerial vehicles, also termed as unarmed aerial vehicles, are used for various purposes in and around the environment, such as delivering things, spying on opponents, identification of aerial images, extinguishing fire, spraying the agricultural fields, etc. As there are multi-functions in a single UAV model, it can be used for various purposes as per the user’s requirement. The UAVs are used for faster communication of identified information, entry through the critical atmospheres, and causing no harm to humans before entering a collapsed path. In relation to the above discussion, a UAV system is designed to classify and transmit information about the atmospheric conditions of the environment to a central controller. The UAV is equipped with advanced sensors that are capable of detecting air pollutants such as carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), ammonia (NH3), hydrogen sulfide (H2S), etc. These sensors present in the UAV model monitor the quality of air, time-to-time, as the UAV navigates through different areas and transmits real-time data regarding the air quality to a central unit; this data includes detailed information on the concentrations of different pollutants. The central unit analyzes the data that are captured by the sensor and checks whether the quality of air meets the atmospheric standards. If the sensed levels of pollutants exceed the thresholds, then the system present in the UAV triggers a warning alert; this alert is communicated to local authorities and the public to take necessary precautions. The developed UAV is furnished with cameras which are used to capture real-time images of the environment and it is processed using the YOLO V3 algorithm. Here, the YOLO V3 algorithm is defined to identify the context and source of pollution, such as identifying industrial activities, traffic congestion, or natural sources like wildfires. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

25 pages, 4088 KiB  
Article
Urban Source Apportionment of Potentially Toxic Elements in Thessaloniki Using Syntrichia Moss Biomonitoring and PMF Modeling
by Themistoklis Sfetsas, Sopio Ghoghoberidze, Panagiotis Karnoutsos, Vassilis Tziakas, Marios Karagiovanidis and Dimitrios Katsantonis
Environments 2025, 12(6), 188; https://doi.org/10.3390/environments12060188 - 4 Jun 2025
Cited by 1 | Viewed by 637
Abstract
Urban air pollution from potentially toxic elements (PTEs) presents a critical threat to public health and environmental sustainability. The current study employed Syntrichia moss in a passive biomonitoring capacity to ascertain the levels of atmospheric PTE pollution in Thessaloniki, Greece. A comprehensive collection [...] Read more.
Urban air pollution from potentially toxic elements (PTEs) presents a critical threat to public health and environmental sustainability. The current study employed Syntrichia moss in a passive biomonitoring capacity to ascertain the levels of atmospheric PTE pollution in Thessaloniki, Greece. A comprehensive collection of 192 moss samples was undertaken at 16 urban sampling points over the March–July 2024 period. Concentrations of 21 PTEs were quantified using ICP-MS, and contamination levels were assessed through contamination factor (CF), enrichment factor (EF), and pollution load index (PLI). Positive matrix factorization (PMF) modeling and multivariate statistical analyses were used to identify pollution sources and spatiotemporal variations. Results revealed persistent hotspots with significant anthropogenic enrichments of elements, such as Fe, Mn, Sn in industrial zones and Tl, Ce, Pt in traffic corridors. PMF modeling attributed 48% of the measured PTE variance to traffic-related sources, 35% to industrial sources, and 17% to crustal material. Seasonal transitions showed a significant 3.5-fold increase in Tl during summer, indicating elevated traffic-related emissions. This integrated multi-index and source apportionment framework demonstrates the efficacy of Syntrichia moss for high-resolution urban air quality assessment. The approach offers a cost-effective, scalable, and environmentally friendly tool to support EU-aligned air quality management strategies. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Graphical abstract

21 pages, 2352 KiB  
Article
Exposure to NO2 and PM2.5 While Commuting: Utility of Low-Cost Sensor
by Anna Mainka, Witold Nocoń, Aleksandra Malinowska, Julia Pfajfer, Edyta Komisarczyk, Dariusz Góra and Pawel Wargocki
Appl. Sci. 2025, 15(11), 5965; https://doi.org/10.3390/app15115965 - 26 May 2025
Viewed by 496
Abstract
This study examines variations in personal exposure to PM2.5 and NO2 while commuting by bicycle, vehicle, and walking during heating and non-heating seasons in Gliwice, an industrial city in Upper Silesia, Poland. Understanding these variations is crucial for assessing health risks [...] Read more.
This study examines variations in personal exposure to PM2.5 and NO2 while commuting by bicycle, vehicle, and walking during heating and non-heating seasons in Gliwice, an industrial city in Upper Silesia, Poland. Understanding these variations is crucial for assessing health risks and developing effective mitigation strategies. Personal exposure was measured using low-cost sensors, while stationary measurements provided comparative background concentrations. The results indicate statistically significant seasonal differences in pollutant concentrations. NO2 levels were higher during the heating season (mean: 30.84 µg/m3, median: 25.60 µg/m3) than in the non-heating season (mean: 22.61 µg/m3, median: 20.37 µg/m3; p = 0.025). In contrast, PM2.5 concentrations were higher in the non-heating season (mean: 12.1 µg/m3) compared to the heating season (mean: 9.5 µg/m3; p = 0.032). Inhaled doses instead of concentrations evaluated the exposure of participants. The inhaled doses of NO2 and PM2.5 per km were significantly higher for walking (mean: 141.3 and 30.7 µg/km for the male participant; 77.9 and 31.6 µg/km for the female participant) than for bicycle and walking (p < 0.05). These findings underscore the impact of transport mode and seasonality on air pollution exposure, highlighting the necessity for targeted mitigation strategies to reduce commuters’ exposure to traffic-related pollutants. Full article
(This article belongs to the Special Issue Advances in Air Pollution Detection and Air Quality Research)
Show Figures

Figure 1

23 pages, 12621 KiB  
Article
How Does the Location of Power Plants Impact Air Quality in the Urban Area of Bucharest?
by Doina Nicolae, Camelia Talianu, Jeni Vasilescu, Alexandru Marius Dandocsi, Livio Belegante, Anca Nemuc, Florica Toanca, Alexandru Ilie, Andrei Valentin Dandocsi, Stefan Marius Nicolae, Gabriela Ciocan, Viorel Vulturescu and Ovidiu Gelu Tudose
Atmosphere 2025, 16(6), 636; https://doi.org/10.3390/atmos16060636 - 22 May 2025
Viewed by 784
Abstract
This study investigates the impact of a thermal power plant site on air quality in Bucharest, Romania. It emphasizes the importance of accurate air pollutant inmission measurements in urban areas by utilizing mobile measurements of low-cost sensors, Copernicus’ Copernicus Atmosphere Monitoring Service (CAMS) [...] Read more.
This study investigates the impact of a thermal power plant site on air quality in Bucharest, Romania. It emphasizes the importance of accurate air pollutant inmission measurements in urban areas by utilizing mobile measurements of low-cost sensors, Copernicus’ Copernicus Atmosphere Monitoring Service (CAMS) and Copernicus Land Monitoring Service (CLMS), and satellite retrieval to better understand climate change drivers and their potential impact on near- surface concentrations and column densities of NO2, CO, and PM (particulate matter). It focuses the attention on the need of considering the placement of power plants in relation to metropolitan areas while making this assessment. The research highlights the limits of typical mesoscale air quality models in effectively capturing pollution dispersion and distribution using LUR (Land Use Regressions) retrievals. The authors investigate a variety of ways to better understand air pollution in metropolitan areas, including satellite observations, mobile measurements, and land use regression models. The study focuses largely on Bucharest, the capital of Romania, which has air pollution issues caused by vehicle traffic, industrial activity, heating systems, and power plants. The results indicate how the placement of a power plant may affects air quality in the nearby residential areas. Full article
Show Figures

Figure 1

10 pages, 232 KiB  
Article
Electric Scooter Trauma in Rome: A Three-Year Analysis from a Tertiary Care Hospital
by Bruno Cirillo, Mariarita Tarallo, Giulia Duranti, Paolo Sapienza, Pierfranco Maria Cicerchia, Luigi Simonelli, Roberto Cirocchi, Matteo Matteucci, Andrea Mingoli and Gioia Brachini
J. Clin. Med. 2025, 14(10), 3615; https://doi.org/10.3390/jcm14103615 - 21 May 2025
Viewed by 658
Abstract
Background: Electric motorized rental scooters (ES) were introduced in Italy in 2019 as an alternative form of urban transportation, aiming to reduce traffic congestion and air pollution. As their popularity has grown, a parallel increase in ES-related injuries has been observed. This study [...] Read more.
Background: Electric motorized rental scooters (ES) were introduced in Italy in 2019 as an alternative form of urban transportation, aiming to reduce traffic congestion and air pollution. As their popularity has grown, a parallel increase in ES-related injuries has been observed. This study aims to investigate the types and patterns of ES-related injuries and to identify potentially modifiable risk factors. Methods: We conducted a retrospective analysis of all consecutive patients admitted to the Emergency Department of Policlinico Umberto I in Rome between January 2020 and December 2022 following ES-related trauma. Collected data included demographics, injury mechanisms and types, helmet use, Injury Severity Score (ISS), blood alcohol levels, and patient outcomes. Results: A total of 411 individuals presented to the Emergency Department due to ES-related injuries, either as riders or pedestrians. The mean age was 31 years (range: 2–93); 38 patients (9%) were under 18 years of age. Fifty-six accidents (14%) occurred during work-related commutes. Only three riders (0.7%) wore helmets, and nine patients (2%) had blood alcohol levels > 0.50 g/L. Cranial injuries (134 cases, 32%) and upper limb fractures (93 cases, 23%) were the most frequently reported serious injuries. The mean ISS was 4.5; 17 patients (4%) had an ISS ≥ 16. A total of 270 orthopedic injuries and 118 (29%) maxillofacial injuries were documented. Head trauma was reported in 115 patients (28%), with 19 cases classified as severe traumatic brain injuries. Twenty-three patients (5.5%) were hospitalized, three (0.7%) required intensive care, and one patient (0.2%) died. Conclusions: ES-related injuries are becoming increasingly common and present a significant public health concern. A nationwide effort is warranted to improve rider safety through mandatory helmet use, protective equipment, alcohol consumption control, and stricter enforcement of speed regulations. Full article
(This article belongs to the Section General Surgery)
Back to TopTop