Quantifying Topography-Dependent Ultrafine Particle Exposure from Diesel Emissions in Appalachia Using Traffic Counts as a Surrogate Measure
Abstract
Featured Application
Abstract
1. Introduction
1.1. Background
Overview of the Studied Appalachian Region
1.2. The Physics of Ultrafine Particles
1.3. Sources and Concentrations of Ultrafine Particles
1.4. Health Effects of Ultrafine Particles
1.5. Topographic Influences
2. Materials and Methods
2.1. Justification for Using Morgantown, WV, as a Surrogate Site
2.2. Study Locations
2.2.1. Brockway Avenue (Surrogate for Rough and Complex Topography)
2.2.2. Beechurst Avenue (Surrogate for Flat Topography)
2.3. Exposure Monitoring
2.4. Traffic Data Collection and Classification
2.4.1. Traffic Pattern Analysis
2.4.2. Configuration and Inputs for the Deposition Modelling
2.5. Statistical Analysis and Data Processing
2.6. Multiple-Path Particle Dosimetry (MPPD) Data Analysis
3. Results
3.1. Time Series Plot 3.1 Analysis of Temporal Trends in Truck Traffic and UFP Levels
3.2. Analysis of Particle Size Distribution at Brockway and Beechurst Avenue Sites and Its Implication for Lung Dose Estimation Using a Deposition Model
3.3. Multivariate Analysis
4. Discussion
5. Conclusions
Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MPPD | Multiple-Path Particle Dosimetry model for particle deposition |
R | Pearson correlation coefficient |
UFP | Ultrafine Particle (a particle less than 0.1 µm) |
References
- Marcella, S.; Apicella, B.; Secondo, A.; Palestra, F.; Opromolla, G.; Ciardi, R.; Tedeschi, V.; Ferrara, A.L.; Russo, C.; Galdiero, M.R.; et al. Size-based effects of anthropogenic ultrafine particles on activation of human lung macrophages. Environ. Int. 2022, 166, 107395. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.U.; Lin, S.; Yousaf, B.; Abbas, Q.; Munir, M.A.M.; Rashid, A.; Zheng, C.; Kuang, X.; Wong, M.H. Pollution characteristics, mechanism of toxicity and health effects of the ultrafine particles in the indoor environment: Current status and future perspectives. Crit. Rev. Environ. Sci. Technol. 2022, 52, 436–473. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Ayala, A. Air Pollution, Ultrafine Particles, and Your Brain: Are Combustion Nanoparticle Emissions and Engineered Nanoparticles Causing Preventable Fatal Neurodegenerative Diseases and Common Neuropsychiatric Outcomes? Environ. Sci. Technol. 2022, 56, 6847–6856. [Google Scholar] [CrossRef]
- Presto, A.A.; PSaha, K.; Robinson, A.L. Past, present, and future of ultrafine particle exposures in North America. Atmos. Environ. X 2021, 10, 100109. [Google Scholar] [CrossRef]
- Bergmann, M.L.; Andersen, Z.J.; Massling, A.; Kindler, P.A.; Loft, S.; Amini, H.; Cole-Hunter, T.; Guo, Y.; Maric, M.; Nordstrøm, C.; et al. Short-term exposure to ultrafine particles and mortality and hospital admissions due to respiratory and cardiovascular diseases in Copenhagen, Denmark. Environ. Pollut. 2023, 336, 122396. [Google Scholar] [CrossRef]
- Kwon, H.-S.; Ryu, M.H.; Carlsten, C. Ultrafine particles: Unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 2020, 52, 318–328. [Google Scholar] [CrossRef]
- McCawley, M.A. Does increased traffic flow around unconventional resource development activities represent the major respiratory hazard to neighboring communities? Knowns and unknowns. Curr. Opin. Pulm. Med. 2017, 23, 161–166. [Google Scholar] [CrossRef]
- Moreira, F.M.R.d.S. Ultrafine Particles: World Characterization, Occupational Assessment and Effects on Human Health; Universidade Fernando Pessoa: Porto, Portugal, 2023. [Google Scholar]
- Lewis, A.; Carslaw, D.; Moller, S.J. Ultrafine Particles (UFP) in the UK; Research Report; Defra: London, UK, 2018. [Google Scholar]
- Christian, W.J.; Flunker, J.; May, B.; Westneat, S.; Sanderson, W.T.; Schoenberg, N.; Browning, S.R. Adult asthma associated with roadway density and housing in rural Appalachia: The Mountain Air Project (MAP). Environ. Health 2023, 22, 28. [Google Scholar] [CrossRef]
- Chauhan, B.V.S.; Corada, K.; Young, C.; Smallbone, K.L.; Wyche, K.P. Review on Sampling Methods and Health Impacts of Fine (PM2.5, ≤2.5 µm) and Ultrafine (UFP, PM0.1, ≤0.1 µm) Particles. Atmosphere 2024, 15, 572. [Google Scholar] [CrossRef]
- Ohlwein, S.; Kappeler, R.; Joss, M.K.; Künzli, N.; Hoffmann, B. Health effects of ultrafine particles: A systematic literature review update of epidemiological evidence. Int. J. Public Health 2019, 64, 547–559. [Google Scholar] [CrossRef]
- Vaze, N.; Calderon, L.; Tsiodra, I.; Mihalopoulos, N.; Serhan, C.N.; Levy, B.D.; Demokritou, P. Assessment of the Physicochemical Properties of Ultrafine Particles (UFP) from Vehicular Emissions in a Commercial Parking Garage: Potential Health Implications. Toxics 2024, 12, 833. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, K.; Ramachandran, S.; Mishra, R.K. Seasonal variation of particle number concentration in a busy urban street with exposure assessment and deposition in human respiratory tract. Chemosphere 2024, 366, 143470. [Google Scholar] [CrossRef] [PubMed]
- Smichowski, P.; Gómez, D. An overview of natural and anthropogenic sources of ultrafine airborne particles: Analytical determination to assess the multielemental profiles. Appl. Spectrosc. Rev. 2023, 59, 355–381. [Google Scholar] [CrossRef]
- Groma, V.; Alföldy, B.; Börcsök, E.; Czömpöly, O.; Füri, P.; Kéri, A.H.; Kovács, G.; Török, S.; Osán, J. Sources and health effects of fine and ultrafine aerosol particles in an urban environment. Atmos. Pollut. Res. 2022, 13, 101302. [Google Scholar] [CrossRef]
- Hopke, P.K.; Feng, Y.; Dai, Q. Source apportionment of particle number concentrations: A global review. Sci. Total Environ. 2022, 819, 153104. [Google Scholar] [CrossRef]
- Saha, P.K.; Hankey, S.; Marshall, J.D.; Robinson, A.L.; Presto, A.A. High-Spatial-Resolution Estimates of Ultrafine Particle Concentrations across the Continental United States. Environ. Sci. Technol. 2021, 55, 10320–10331. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Li, J.; Tian, L.; Tu, J. Transport and deposition of ultrafine particles in the upper tracheobronchial tree: A comparative study between approximate and realistic respiratory tract models. Comput. Methods Biomech. Biomed. Engin 2021, 24, 1125–1135. [Google Scholar] [CrossRef]
- Zhai, J.; Shao, S.; Yang, X.; Zeng, Y.; Fu, T.-M.; Zhu, L.; Shen, H.; Ye, J.; Wang, C.; Tao, S. Chemically Resolved Respiratory Deposition of Ultrafine Particles Characterized by Number Concentration in the Urban Atmosphere. Environ. Sci. Technol. 2024, 58, 16507–16516. [Google Scholar] [CrossRef]
- Vallabani, N.S.; Gruzieva, O.; Elihn, K.; Juárez-Facio, A.T.; Steimer, S.S.; Kuhn, J.; Silvergren, S.; Portugal, J.; Piña, B.; Olofsson, U.; et al. Toxicity and health effects of ultrafine particles: Towards an understanding of the relative impacts of different transport modes. Environ. Res. 2023, 231 Pt 2, 116186. [Google Scholar] [CrossRef]
- Robinson, P.D.; Salimi, F.; Cowie, C.T.; Clifford, S.; King, G.G.; Thamrin, C.; Hardaker, K.; Mazaheri, M.; Morawska, L.; Toelle, B.G.; et al. Ultrafine particle exposure and biomarkers of effect on small airways in children. Environ. Res. 2022, 214, 113860. [Google Scholar] [CrossRef]
- Agache, I.; Eguiluz-Gracia, I.; Cojanu, C.; Laculiceanu, A.; del Giacco, S.; Zemelka-Wiacek, M.; Kosowska, A.; Akdis, C.A.; Jutel, M. Advances and highlights in asthma in 2021. Allergy 2021, 76, 3390–3407. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.H.G.; Saber, A.T.; Frederiksen, M.; Clausen, P.A.; Sejbaek, C.S.; Hemmingsen, C.H.; Ebbehøj, N.E.; Catalán, J.; Aimonen, K.; Koivisto, J.; et al. Occupational exposure and markers of genetic damage, systemic inflammation and lung function: A Danish cross-sectional study among air force personnel. Sci. Rep. 2021, 11, 17998. [Google Scholar] [CrossRef]
- Turner, A.; Brokamp, C.; Wolfe, C.; Reponen, T.; Ryan, P. Personal exposure to average weekly ultrafine particles, lung function, and respiratory symptoms in asthmatic and non-asthmatic adolescents. Environ. Int. 2021, 156, 106740. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.J.; Hsu, H.-H.L.; Chiu, Y.-H.M.; Coull, B.A.; Simon, M.C.; Hudda, N.; Schwartz, J.; Kloog, I.; Durant, J.L. Prenatal Ambient Ultrafine Particle Exposure and Childhood Asthma in the Northeastern United States. Am. J. Respir. Crit. Care Med. 2021, 204, 788–796. [Google Scholar] [CrossRef]
- Sivakumar, B.; Kurian, G.A. Exposure to real ambient particulate matter inflicts cardiac electrophysiological disturbances, vascular calcification, and mitochondrial bioenergetics decline more than diesel particulate matter: Consequential impact on myocardial ischemia-reperfusion injury. Environ. Sci. Pollut. Res. 2023, 30, 97518–97530. [Google Scholar]
- Lachowicz, J.I.; Gać, P. Short- and Long-Term Effects of Inhaled Ultrafine Particles on Blood Pressure: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 6802. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Yu, F.; Nair, A.A.; Lau, S.S.; Luo, G.; Mithu, I.; Zhang, W.; Li, S.; Lin, S. Hidden danger: The long-term effect of ultrafine particles on mortality and its sociodemographic disparities in New York State. J. Hazard. Mater. 2024, 471, 134317. [Google Scholar] [CrossRef]
- Zhang, S.; Breitner, S.; Pickford, R.; Lanki, T.; Okokon, E.; Morawska, L.; Samoli, E.; Rodopoulou, S.; Stafoggia, M.; Renzi, M.; et al. Short-term effects of ultrafine particles on heart rate variability: A systematic review and meta-analysis. Environ. Pollut. 2022, 314, 120245. [Google Scholar] [CrossRef]
- Carnerero Quintero, C. Dynamics of Ultrafine Particles and Tropospheric Ozone Episodes. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2021. [Google Scholar] [CrossRef]
- Tran, K.L. Air Pollution in Different Microenvironments in Vietnam. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2022. [Google Scholar]
- Lv, W.; Wu, Y.; Zang, J. A Review on the Dispersion and Distribution Characteristics of Pollutants in Street Canyons and Improvement Measures. Energies 2021, 14, 6155. [Google Scholar] [CrossRef]
- Henderson, M.R. Characterization of Scanning Mobility Particle Sizers for Use with Nanoaerosols. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2018. [Google Scholar]
- Duelge, K.; Mulholland, G.; Zachariah, M.; Hackley, V.A. Accurate Nanoparticle Size Determination using Electrical Mobility Measurements in the Step and Scan Modes. Aerosol Sci. Technol. 2022, 56, 1096–1113. [Google Scholar] [CrossRef]
- Goodsite, M.E.; Hertel, O.; Johnson, M.S.; Jørgensen, N.R.; Johnson, M.S. Urban Air Quality: Sources and Concentrations. In Air Pollution Sources, Statistics and Health Effects; Goodsite, M.E., Johnson, M.S., Hertel, O., Eds.; Springer: New York, NY, USA, 2021; pp. 193–214. [Google Scholar]
- Kuang, A.S.C. Scanning Mobility Particle Sizer (SMPS) Instrument Handbook; DOE/SC-ARM-TR-147; U.S. Department of Energy, Atmospheric Radiation Measurement User Facility: Richland, WA, USA, 2024. [Google Scholar]
- Yuan, Y.; Yu, T.; Yang, Y.; Gui, H.; Liu, J. Design and Experimental Validation of a High-Resolution Nanoparticle Differential Mobility Analyzer. Instrum. Exp. Tech. 2023, 66, 649–660. [Google Scholar] [CrossRef]
- Jakubiak, S.; Oberbek, P. Determination of the Concentration of Ultrafine Aerosol Using an Ionization Sensor. Nanomaterials 2021, 11, 1625. [Google Scholar] [CrossRef] [PubMed]
- TSI. Nanoscan SMPS Nanoparticle Sizer Model 3910, Expanding Nanoparticle Measurement Capabilities. 2023. Available online: https://tsi.com/getmedia/b2cdf436-3299-496e-b067-59bc18937e76/NanoScan_SMPS_Theory_of_Operation_US_SMPS-005A-web?ext=.pdf (accessed on 10 June 2025).
- Shirman, T.; Shirman, E.; Liu, S. Evaluation of Filtration Efficiency of Various Filter Media in Addressing Wildfire Smoke in Indoor Environments: Importance of Particle Size and Composition. Atmosphere 2023, 14, 1729. [Google Scholar] [CrossRef]
- Liati, A.; Schreiber, D.; Dasilva, Y.A.R.; Eggenschwiler, P.D. Ultrafine particle emissions from modern Gasoline and Diesel vehicles: An electron microscopic perspective. Environ. Pollut. 2018, 239, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Kolluru, S.S.R.; Penchala, A.; Kumar, S.; Mishra, N.; Sree, N.B.; Santra, S.; Dubey, R. Assessment of seasonal variability of PM, BC and UFP levels at a highway toll stations and their associated health risks. Environ. Res. 2024, 245, 118028. [Google Scholar]
- Stahlhofen, W.; Rudolf, G.; James, A.C. Intercomparison of Experimental Regional Aerosol Deposition Data. J. Aerosol Med. 1989, 2, 285–308. [Google Scholar] [CrossRef]
- Hewett, P. Limitations in the Use of Particle Size-Selective Sampling Criteria in Occupational Epidemiology. Appl. Occup. Environ. Hyg. 1991, 6, 290–300. [Google Scholar] [CrossRef]
- Borisova, A.; Rudus, K.; Pavlovska, I.; Martinsone, Ž.; Mārtiņsone, I. Multiple path particle dosimetry model concept and its application to determine respiratory tract hazards in the 3d printing. In Environment. Technologies. Resources. Proceedings of the International Scientific and Practical Conference; RTU Rezekne Academy: Rēzekne, Latvia, 2023; Volume 2, pp. 23–27. [Google Scholar]
- Balmes, J.R.; Hansel, N.N. Tiny Particles, Big Health Impacts. Am. J. Respir. Crit. Care Med. 2024, 210, 1291–1292. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Campagnolo, D.; Cattaneo, A.; Corbella, L.; Borghi, F.; Del Buono, L.; Rovelli, S.; Spinazzé, A.; Cavallo, D.M. In-vehicle airborne fine and ultra-fine particulate matter exposure: The impact of leading vehicle emissions. Environ. Int. 2019, 123, 407–416. [Google Scholar] [CrossRef]
- Kittelson, D.B. Ultrafine Particle Emission & Control Strategies, in South Coast Air Quality Management District Conference on Ultrafine Particles: The Science, Technology, and Policy Issues; Wilshire Grand Hotel: Los Angeles, CA, USA, 2006. [Google Scholar]
- Hussain, R.; Graham, U.; Elder, A.; Nedergaard, M. Air pollution, glymphatic impairment, and Alzheimer's disease. Trends Neurosci. 2023, 46, 901–911. [Google Scholar] [CrossRef]
- Dong, J.; Shang, Y.; Tian, L.; Inthavong, K.; Qiu, D.; Tu, J. Ultrafine particle deposition in a realistic human airway at multiple inhalation scenarios. Int. J. Numer. Method. Biomed. Eng. 2019, 35, e3215. [Google Scholar] [CrossRef] [PubMed]
Category | Diameter Size | Common Name | Health Relevance | EPA Standard (NAAQS) | Typical Background Concentration |
---|---|---|---|---|---|
PM10 | ≤10 µm | Coarse particles | Reach upper airways (nose/throat) | 24 h:150 µg/m3 (not to be exceeded more than once per year on average over 3 years) | Rural: ~10–30 µg/m3 Urban: ~20–60 µg/m3 |
PM2.5 | ≤2.5 µm | Fine particles | Penetrate deep into lungs | Annual: 12 µg/m3 (primary); 15 µg/m3 (secondary) | Rural: ~5–15 µg/m3 Urban: ~10–30 µg/m3 |
PM0.1 | ≤0.1 µm | Ultrafine particles | Reach alveoli, enter bloodstream | Not regulated under NAAQS | Non-diesel/traffic-area (UFP background Morgantown) < 2400 particles/cm3 |
Location | Date | Barometric Pressure (in. Hg) | Humidity | Wind Speed (mph) | Temperature (°F) | Wind Direction |
---|---|---|---|---|---|---|
Beechurst Avenue | 7 August 2024 | 29.84 | 90% | 1 | 69 | East |
Beechurst Avenue | 8 August 2024 | 29.85 | 85% | 0 | 73 | East |
Beechurst Avenue | 12 August 2024 | 30.09 | 93% | 3 | 54 | East |
Beechurst Avenue | 13 August 2024 | 30.05 | 79% | 0 | 63.3 | East |
Beechurst Avenue | 14 August 2024 | 30 | 93% | 0.1 | 54.9 | East |
Beechurst Avenue | 15 August 2024 | 30.04 | 93% | 0 | 57.2 | East |
Brockway Avenue | 19 August 2024 | 29.89 | 89% | 0.5 | 67 | South |
Brockway Avenue | 20 August 2024 | 29.72 | 95% | 1.5 | 67 | South |
Brockway Avenue | 21 August 2024 | 29.93 | 88% | 1.3 | 59 | South |
Brockway Avenue | 23 August 2024 | 30.1 | 96% | 0.4 | 46 | South |
Brockway Avenue | 27 August 2024 | 30.18 | 97% | 0 | 64 | South |
Brockway Avenue | 19 August 2024 | 30.2 | 99% | 0 | 65.8 | South |
Brockway Avenue | ||||
---|---|---|---|---|
Term | Estimate | Std Error | t Ratio | Prob>|t| |
Intercept | −3295.57 | 1738.675 | −1.9 | 0.0789 |
No. of Trucks | 277.6243 | 129.4606 | 2.14 | 0.05 |
Truck Speed (miles per hour) | 345.1936 | 148.376 | 2.33 | * 0.0355 |
Beechurst Avenue | ||||
Term | Estimate | Std Error | t Ratio | Prob>|t| |
Intercept | 2522.49 | 621.9073 | 4.06 | *0.0023 |
No. of Trucks | −102.924 | 64.72284 | −1.59 | 0.1429 |
Truck Speed (miles per hour) | −83.5287 | 29.97084 | −2.79 | *0.0192 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isa, N.O.; Reggetz, B.; Thomas, O.A.; Nix, A.C.; Wen, S.; Knuckles, T.; Cervantes, M.; Misra, R.; McCawley, M. Quantifying Topography-Dependent Ultrafine Particle Exposure from Diesel Emissions in Appalachia Using Traffic Counts as a Surrogate Measure. Appl. Sci. 2025, 15, 7415. https://doi.org/10.3390/app15137415
Isa NO, Reggetz B, Thomas OA, Nix AC, Wen S, Knuckles T, Cervantes M, Misra R, McCawley M. Quantifying Topography-Dependent Ultrafine Particle Exposure from Diesel Emissions in Appalachia Using Traffic Counts as a Surrogate Measure. Applied Sciences. 2025; 15(13):7415. https://doi.org/10.3390/app15137415
Chicago/Turabian StyleIsa, Nafisat O., Bailley Reggetz, Ojo. A. Thomas, Andrew C. Nix, Sijin Wen, Travis Knuckles, Marcus Cervantes, Ranjita Misra, and Michael McCawley. 2025. "Quantifying Topography-Dependent Ultrafine Particle Exposure from Diesel Emissions in Appalachia Using Traffic Counts as a Surrogate Measure" Applied Sciences 15, no. 13: 7415. https://doi.org/10.3390/app15137415
APA StyleIsa, N. O., Reggetz, B., Thomas, O. A., Nix, A. C., Wen, S., Knuckles, T., Cervantes, M., Misra, R., & McCawley, M. (2025). Quantifying Topography-Dependent Ultrafine Particle Exposure from Diesel Emissions in Appalachia Using Traffic Counts as a Surrogate Measure. Applied Sciences, 15(13), 7415. https://doi.org/10.3390/app15137415