Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (436)

Search Parameters:
Keywords = traffic carbon emission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3824 KiB  
Article
Sustainable Data Construction and CLS-DW Stacking for Traffic Flow Prediction in High-Altitude Plateau Regions
by Wu Bo, Xu Gong, Fei Chen, Haisheng Ren, Junhao Chen, Delu Li and Fengying Gou
Sustainability 2025, 17(16), 7427; https://doi.org/10.3390/su17167427 (registering DOI) - 17 Aug 2025
Abstract
This study proposes a novel vehicle speed prediction model for plateau transportation—CLS-DW Stacking (Constrained Least Squares Dynamic Weighting Model Stacking)—which holds significant implications for the sustainable development of transportation systems in high-altitude regions. Research on sharp-curved roads on mountainous plateaus remains scarce. Compared [...] Read more.
This study proposes a novel vehicle speed prediction model for plateau transportation—CLS-DW Stacking (Constrained Least Squares Dynamic Weighting Model Stacking)—which holds significant implications for the sustainable development of transportation systems in high-altitude regions. Research on sharp-curved roads on mountainous plateaus remains scarce. Compared with plain areas, data acquisition in such regions is constrained by government confidentiality policies, while complex environmental and topographical conditions lead to substantial variations in road alignment and elevation. To address these challenges, this study presents a sustainable data acquisition and construction method: unmanned aerial vehicle (UAV) video data are processed through road image segmentation, trajectory tracking, and three-dimensional modeling to generate multi-source heterogeneous datasets for both single-curve and continuous-curve scenarios. Building upon these datasets, the proposed framework integrates constrained least squares with multiple deep learning methods to achieve accurate traffic flow prediction. Bi-LSTM (Bidirectional Long Short-Term Memory), Informer, and GRU (Gated Recurrent Unit) are employed as base learners, and the loss function is redefined with non-negativity and normalization constraints on the weights. This ensures optimal weight coefficients for each base learner, with the final prediction obtained via weighted summation. The experimental results show that, compared with single deep learning models such as Informer, the proposed model reduces the mean squared error (MSE) by 1.9% on the single curve dataset and by 7.7% on the continuous curve dataset. Furthermore, by combining vehicle speed predictions across different altitude gradients with decision tree-based interpretable analysis, this research provides scientific support for developing altitude-specific and precision-oriented speed limit policies. The outcomes contribute to accident risk reduction, traffic congestion mitigation, and carbon emission reduction, thereby improving road resource utilization efficiency. This work not only fills the research gap in traffic prediction for sharp-curved plateau roads but also supports the construction of green transportation systems and the broader objectives of sustainable development in high-altitude regions. Full article
Show Figures

Figure 1

26 pages, 1065 KiB  
Article
Electric Vehicles Sustainability and Adoption Factors
by Vitor Figueiredo and Goncalo Baptista
Urban Sci. 2025, 9(8), 311; https://doi.org/10.3390/urbansci9080311 - 11 Aug 2025
Viewed by 322
Abstract
Sustainability has an ever-increasing importance in our lives, mainly due to climate changes, finite resources, and a growing population, where each of us is called to make a change. Although climate change is a global phenomenon, our individual choices can make the difference. [...] Read more.
Sustainability has an ever-increasing importance in our lives, mainly due to climate changes, finite resources, and a growing population, where each of us is called to make a change. Although climate change is a global phenomenon, our individual choices can make the difference. The transportation sector is one of the largest contributors to global carbon emissions, making the transition toward sustainable mobility a critical priority. The adoption of electric vehicles is widely recognized as a key solution to reduce the environmental impact of transportation. However, their widespread acceptance depends on various technological, behavioral, and economical factors. Within this research we use as an artifact the CO2 Emission Management Gauge (CEMG) devices to better understand how the manufacturers, with integrated features on vehicles, could significantly enhance sales and drive the movement towards electric vehicle adoption. This study proposes an innovative new theoretical model based on Task-Technology Fit, Technology Acceptance, and the Theory of Planned Behavior to understand the main drivers that may foster electric vehicle adoption, tested in a quantitative study with structural equation modelling (SEM), and conducted in a South European country. Our findings, not without some limitations, reveal that while technological innovations like CEMG provide consumers with valuable transparency regarding emissions, its influence on the intention of adoption is dependent on the attitude towards electric vehicles and subjective norm. Our results also support the influence of task-technology fit on perceived usefulness and perceived ease-of-use, the influence of perceived usefulness on consumer attitude towards electric vehicles, and the influence of perceived ease-of-use on perceived usefulness. A challenge is also presented within our work to expand CEMG usage in the future to more intrinsic urban contexts, combined with smart city algorithms, collecting and proving CO2 emission information to citizens in locations such as traffic lights, illumination posts, streets, and public areas, allowing the needed information to better manage the city’s quality of air and traffic. Full article
Show Figures

Figure 1

34 pages, 23162 KiB  
Article
Analysis and Evaluation of Sulfur Dioxide and Equivalent Black Carbon at a Southern Italian WMO/GAW Station Using the Ozone to Nitrogen Oxides Ratio Methodology as Proximity Indicator
by Francesco D’Amico, Luana Malacaria, Giorgia De Benedetto, Salvatore Sinopoli, Teresa Lo Feudo, Daniel Gullì, Ivano Ammoscato and Claudia Roberta Calidonna
Environments 2025, 12(8), 273; https://doi.org/10.3390/environments12080273 - 9 Aug 2025
Viewed by 305
Abstract
The measurement and evaluation of the atmospheric background levels of greenhouse gases (GHGs) and aerosols are useful to determine long-term tendencies and variabilities, and pinpoint peaks attributable to anthropogenic emissions and exceptional natural emissions such as volcanoes. At the Lamezia Terme (code: LMT) [...] Read more.
The measurement and evaluation of the atmospheric background levels of greenhouse gases (GHGs) and aerosols are useful to determine long-term tendencies and variabilities, and pinpoint peaks attributable to anthropogenic emissions and exceptional natural emissions such as volcanoes. At the Lamezia Terme (code: LMT) World Meteorological Organization–Global Atmosphere Watch (WMO/GAW) observation site located in the south Italian region of Calabria, the “Proximity” methodology based on photochemical processes, i.e., the ratio of tropospheric ozone (O3) to nitrogen oxides (NOx) has been used to discriminate the local and remote atmospheric concentrations of GHGs. Local air masses are heavily affected by anthropogenic emissions while remote air masses are more representative of atmospheric background conditions. This study applies, to eight continuous years of measurements (2016–2023), the Proximity methodology to sulfur dioxide (SO2) for the first time, and also extends it to equivalent black carbon (eBC) to assess whether the methodology can be applied to aerosols. The results indicate that SO2 follows a peculiar pattern, with LOC (local) and BKG (background) levels being generally lower than their N–SRC (near source) and R–SRC (remote source), thus corroborating previous hypotheses on SO2 variability at LMT by which the Aeolian Arc of volcanoes and maritime traffic could be responsible for these concentration levels. The anomalous behavior of SO2 was assessed using the Proximity Progression Factor (PPF) introduced in this study, which provides a value representative of changes from local to background concentrations. This finding, combined with an evaluation of known sources on a regional scale, has been used to provide an estimate on the spatial resolution of proximity categories, which is one of the known limitations of this methodology. Furthermore, the results confirm the potential of using the Proximity methodology for aerosols, as eBC shows a pattern consistent with local sources of emissions, such as wildfires and other forms of biomass burning, being responsible for the observed peaks. Full article
Show Figures

Figure 1

14 pages, 1721 KiB  
Article
Informational and Topological Characterization of CO and O3 Hourly Time Series in the Mexico City Metropolitan Area During the 2019–2023 Period: Insights into the Impact of the COVID-19 Pandemic
by Alejandro Ramirez-Rojas, Paulina Rebeca Cárdenas-Moreno, Israel Reyes-Ramírez, Michele Lovallo and Luciano Telesca
Appl. Sci. 2025, 15(16), 8775; https://doi.org/10.3390/app15168775 - 8 Aug 2025
Viewed by 126
Abstract
The main anthropogenic sources of air pollution in big cities are vehicular traffic and industrial activities. The emissions of primary pollutants are produced directly from the combustion of fossil fuels of vehicles and industry, whilst the secondary pollutants, such as tropospheric ozone ( [...] Read more.
The main anthropogenic sources of air pollution in big cities are vehicular traffic and industrial activities. The emissions of primary pollutants are produced directly from the combustion of fossil fuels of vehicles and industry, whilst the secondary pollutants, such as tropospheric ozone (O3), are produced from precursors like Carbon monoxide (CO), among others, and meteorological factors such as radiation. In this study, we analyze the time series of CO and O3 concentrations monitored by the RAMA program between 2019 and 2023 in the southwest of the Mexico City Metropolitan Area, encompassing the COVID-19 lockdown period declared from March to September–October 2020. After removing cyclic patterns and normalizing the data, we applied informational and topological methods to investigate variability changes in the concentration time series, particularly in response to the lockdown. Following the onset of lockdown measures in March 2020—which led to a significant reduction in industrial activity and vehicular traffic—the informational quantities NX and Fisher Information Measure (FIM) for CO revealed significant shifts during the lockdown, while these metrics remained stable for O3. Also, the coefficient of variation of the degree CVk, which was defined for the network constructed for each series by the Visibility Graph, showed marked changes for CO but not for O3. The combined informational and topological analysis highlighted distinct underlying structures: CO exhibited localized, intermittent emission patterns leading to greater structural complexity, while O3 displayed smoother, less organized variability. Also, the temporal variation of the FIM and NX provides a means to monitor the evolving statistical behavior of the CO and O3 time series over time. Finally, the Visibility Graph (VG) method shows a behavioral trend similar to that shown by the informational quantifiers, revealing a significant change during the lockdown for CO, although remaining almost stable for O3. Full article
Show Figures

Figure 1

24 pages, 23907 KiB  
Article
Optimizing Data Pipelines for Green AI: A Comparative Analysis of Pandas, Polars, and PySpark for CO2 Emission Prediction
by Youssef Mekouar, Mohammed Lahmer and Mohammed Karim
Computers 2025, 14(8), 319; https://doi.org/10.3390/computers14080319 - 7 Aug 2025
Viewed by 354
Abstract
This study evaluates the performance and energy trade-offs of three popular data processing libraries—Pandas, PySpark, and Polars—applied to GreenNav, a CO2 emission prediction pipeline for urban traffic. GreenNav is an eco-friendly navigation app designed to predict CO2 emissions and determine low-carbon [...] Read more.
This study evaluates the performance and energy trade-offs of three popular data processing libraries—Pandas, PySpark, and Polars—applied to GreenNav, a CO2 emission prediction pipeline for urban traffic. GreenNav is an eco-friendly navigation app designed to predict CO2 emissions and determine low-carbon routes using a hybrid CNN-LSTM model integrated into a complete pipeline for the ingestion and processing of large, heterogeneous geospatial and road data. Our study quantifies the end-to-end execution time, cumulative CPU load, and maximum RAM consumption for each library when applied to the GreenNav pipeline; it then converts these metrics into energy consumption and CO2 equivalents. Experiments conducted on datasets ranging from 100 MB to 8 GB demonstrate that Polars in lazy mode offers substantial gains, reducing the processing time by a factor of more than twenty, memory consumption by about two-thirds, and energy consumption by about 60%, while maintaining the predictive accuracy of the model (R2 ≈ 0.91). These results clearly show that the careful selection of data processing libraries can reconcile high computing performance and environmental sustainability in large-scale machine learning applications. Full article
(This article belongs to the Section Internet of Things (IoT) and Industrial IoT)
Show Figures

Figure 1

12 pages, 8263 KiB  
Proceeding Paper
Comparing Dynamic Traffic Flow Between Human-Driven and Autonomous Vehicles Under Cautious and Aggressive Vehicle Behavior
by Maftuh Ahnan and Dukgeun Yun
Eng. Proc. 2025, 102(1), 11; https://doi.org/10.3390/engproc2025102011 - 5 Aug 2025
Viewed by 160
Abstract
This study explores the impact of driving behaviors, specifically cautious and aggressive, on the performance of human-driven vehicles (HDVs) and autonomous vehicles (AVs) in traffic flow dynamics. It focuses on various metrics, including level of service (LOS), average speed, traffic volume, queue delays, [...] Read more.
This study explores the impact of driving behaviors, specifically cautious and aggressive, on the performance of human-driven vehicles (HDVs) and autonomous vehicles (AVs) in traffic flow dynamics. It focuses on various metrics, including level of service (LOS), average speed, traffic volume, queue delays, carbon emissions, and fuel consumption, to assess their effects on overall performance. The findings reveal significant differences between cautious and aggressive AVs, particularly at varying market penetration rates (MPRs). Aggressive autonomous vehicles demonstrate greater traffic efficiency compared to their cautious counterparts. They achieve higher levels of service, improving from poor performance at low MPRs to significantly better performance at higher MPRs and in fully autonomous scenarios. In contrast, cautious AVs often experience poor service ratings at low MPRs, with an improvement in performance only at higher MPRs. Regarding environmental performance, aggressive AVs outperform cautious ones in terms of reduced emissions and fuel consumption. The emissions produced by aggressive AVs are significantly lower than those from cautious AVs, and they further decrease as the MPRs increases. Additionally, aggressive AVs show a considerable reduction in fuel usage compared to cautious AVs. While cautious AVs improve slightly at higher MPRs, they continue to generate higher emissions and consume more fuel than their aggressive counterparts. In conclusion, aggressive AVs offer better traffic efficiency and environmental performance than both cautious AVs. Their ability to improve road efficiency and reduce congestion positions them as a valuable asset for sustainable transportation. Strategically incorporating aggressive AVs into transportation systems could lead to significant advancements in traffic management and environmental sustainability. Full article
(This article belongs to the Proceedings of The 2025 Suwon ITS Asia Pacific Forum)
Show Figures

Figure 1

27 pages, 2929 KiB  
Article
Comparative Performance Analysis of Gene Expression Programming and Linear Regression Models for IRI-Based Pavement Condition Index Prediction
by Mostafa M. Radwan, Majid Faissal Jassim, Samir A. B. Al-Jassim, Mahmoud M. Elnahla and Yasser A. S. Gamal
Eng 2025, 6(8), 183; https://doi.org/10.3390/eng6080183 - 3 Aug 2025
Viewed by 333
Abstract
Traditional Pavement Condition Index (PCI) assessments are highly resource-intensive, demanding substantial time and labor while generating significant carbon emissions through extensive field operations. To address these sustainability challenges, this research presents an innovative methodology utilizing Gene Expression Programming (GEP) to determine PCI values [...] Read more.
Traditional Pavement Condition Index (PCI) assessments are highly resource-intensive, demanding substantial time and labor while generating significant carbon emissions through extensive field operations. To address these sustainability challenges, this research presents an innovative methodology utilizing Gene Expression Programming (GEP) to determine PCI values based on International Roughness Index (IRI) measurements from Iraqi road networks, offering an environmentally conscious and resource-efficient approach to pavement management. The study incorporated 401 samples of IRI and PCI data through comprehensive visual inspection procedures. The developed GEP model exhibited exceptional predictive performance, with coefficient of determination (R2) values achieving 0.821 for training, 0.858 for validation, and 0.8233 overall, successfully accounting for approximately 82–85% of PCI variance. Prediction accuracy remained robust with Mean Absolute Error (MAE) values of 12–13 units and Root Mean Square Error (RMSE) values of 11.209 and 11.00 for training and validation sets, respectively. The lower validation RMSE suggests effective generalization without overfitting. Strong correlations between predicted and measured values exceeded 0.90, with acceptable relative absolute error values ranging from 0.403 to 0.387, confirming model effectiveness. Comparative analysis reveals GEP outperforms alternative regression methods in generalization capacity, particularly in real-world applications. This sustainable methodology represents a cost-effective alternative to conventional PCI evaluation, significantly reducing environmental impact through decreased field operations, lower fuel consumption, and minimized traffic disruption. By streamlining pavement management while maintaining assessment reliability and accuracy, this approach supports environmentally responsible transportation systems and aligns contemporary sustainability goals in infrastructure management. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

17 pages, 1597 KiB  
Article
Harmonized Autonomous–Human Vehicles via Simulation for Emissions Reduction in Riyadh City
by Ali Louati, Hassen Louati and Elham Kariri
Future Internet 2025, 17(8), 342; https://doi.org/10.3390/fi17080342 - 30 Jul 2025
Viewed by 350
Abstract
The integration of autonomous vehicles (AVs) into urban transportation systems has significant potential to enhance traffic efficiency and reduce environmental impacts. This study evaluates the impact of different AV penetration scenarios (0%, 10%, 30%, 50%) on traffic performance and carbon emissions along Prince [...] Read more.
The integration of autonomous vehicles (AVs) into urban transportation systems has significant potential to enhance traffic efficiency and reduce environmental impacts. This study evaluates the impact of different AV penetration scenarios (0%, 10%, 30%, 50%) on traffic performance and carbon emissions along Prince Mohammed bin Salman bin Abdulaziz Road in Riyadh, Saudi Arabia. Using microscopic simulation (SUMO) based on real-world datasets, we assess key performance indicators such as travel time, stop frequency, speed, and CO2 emissions. Results indicate notable improvements with increasing AV deployment, including up to 25.5% reduced travel time and 14.6% lower emissions at 50% AV penetration. Coordinated AV behavior was approximated using adjusted simulation parameters and Python-based APIs, effectively modeling vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-network (V2N) communications. These findings highlight the benefits of harmonized AV–human vehicle interactions, providing a scalable and data-driven framework applicable to smart urban mobility planning. Full article
(This article belongs to the Section Smart System Infrastructure and Applications)
Show Figures

Figure 1

17 pages, 26388 KiB  
Article
City-Level Road Traffic CO2 Emission Modeling with a Spatial Random Forest Method
by Hansheng Jin, Dongyu Wu and Yingheng Zhang
Systems 2025, 13(8), 632; https://doi.org/10.3390/systems13080632 - 28 Jul 2025
Viewed by 322
Abstract
In the era of “carbon dioxide peaking and carbon neutrality”, low-carbon development of road traffic and transportation has now become a rigid demand in China. Considering the fact that socioeconomic and demographic characteristics vary significantly across Chinese cities, proper city-level transportation development strategies [...] Read more.
In the era of “carbon dioxide peaking and carbon neutrality”, low-carbon development of road traffic and transportation has now become a rigid demand in China. Considering the fact that socioeconomic and demographic characteristics vary significantly across Chinese cities, proper city-level transportation development strategies should be established. Using detailed data from cities at prefecture level and above in China, this study investigates the spatially heterogeneous effects of various factors on road traffic CO2 emissions. Another theoretical issue is concerned with the analytic method for zonal CO2 emission modeling. We combine the concepts of geographically weighted regression (GWR) and machine learning for nonparametric regression, proposing a modified random forest (RF) algorithm, named “geographically weighted random forest” (GWRF). Our empirical analysis indicates that, when an appropriate weight parameter is applied, GWRF is able to achieve significantly superior performance compared to both the traditional RF and GWR methods. Moreover, the influences of various explanatory variables on CO2 emissions differ across cities. These findings suggest that low-carbon transportation strategies should be customized to reflect regional heterogeneity, rather than relying on a unified national policy. Full article
Show Figures

Figure 1

20 pages, 11386 KiB  
Article
Real-Time Source Dynamics of PM2.5 During Winter Haze Episodes Resolved by SPAMS: A Case Study in Yinchuan, Northwest China
by Huihui Du, Tantan Tan, Jiaying Pan, Meng Xu, Aidong Liu and Yanpeng Li
Sustainability 2025, 17(14), 6627; https://doi.org/10.3390/su17146627 - 20 Jul 2025
Viewed by 473
Abstract
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry [...] Read more.
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry (SPAMS) to investigate PM2.5 sources and dynamics during winter haze episodes in Yinchuan, Northwest China. Results showed that the average PM2.5 concentration was 57 μg·m−3, peaking at 218 μg·m−3. PM2.5 was dominated by organic carbon (OC, 17.3%), mixed carbonaceous particles (ECOC, 17.0%), and elemental carbon (EC, 14.3%). The primary sources were coal combustion (26.4%), fugitive dust (25.8%), and vehicle emissions (19.1%). Residential coal burning dominated coal emissions (80.9%), highlighting inefficient decentralized heating. Source contributions showed distinct diurnal patterns: coal combustion peaked nocturnally (29.3% at 09:00) due to heating and inversions, fugitive dust rose at night (28.6% at 19:00) from construction and low winds, and vehicle emissions aligned with traffic (17.5% at 07:00). Haze episodes were driven by synergistic increases in local coal (+4.0%), dust (+2.7%), and vehicle (+2.1%) emissions, compounded by regional transport (10.1–36.7%) of aged particles from northwestern zones. Fugitive dust correlated with sulfur dioxide (SO2) and ozone (O3) (p < 0.01), suggesting roles as carriers and reactive interfaces. Findings confirm local emission dominance with spatiotemporal heterogeneity and regional transport influence. SPAMS effectively resolved short-term pollution dynamics, providing critical insights for targeted air quality management in arid regions. Full article
Show Figures

Figure 1

19 pages, 3568 KiB  
Article
Research on the Pavement Performance of Slag/Fly Ash-Based Geopolymer-Stabilized Soil
by Chenyang Yang, Yan Jiang, Zhiyun Li, Yibin Huang and Jinchao Yue
Materials 2025, 18(13), 3173; https://doi.org/10.3390/ma18133173 - 4 Jul 2025
Viewed by 425
Abstract
The road construction sector urgently requires environmentally friendly, low-carbon, and high-performance base materials. Traditional materials exhibit issues of high energy consumption and carbon emissions, making it difficult for them to align with sustainable development requirements. While slag- and fly ash-based geopolymers demonstrate promising [...] Read more.
The road construction sector urgently requires environmentally friendly, low-carbon, and high-performance base materials. Traditional materials exhibit issues of high energy consumption and carbon emissions, making it difficult for them to align with sustainable development requirements. While slag- and fly ash-based geopolymers demonstrate promising application potential in civil engineering, research on their application in road-stabilized soils remains insufficient. To address the high energy consumption and carbon emissions associated with conventional road base materials and to fill this research gap, this study investigated the utilization of industrial solid wastes through slag-based geopolymer and fly ash as stabilizers, systematically evaluating the pavement performance of two distinct soil types. Unconfined compressive strength tests and freeze–thaw cycling tests were conducted to elucidate the effects of stabilizer dosage, fly ash co-stabilization, and compaction degree on mechanical properties. The results demonstrated that the compressive strength of both stabilized soils increased significantly with higher slag-based geopolymer content, achieving peak values of 5.2 MPa (soil sample 1) and 4.5 MPa (soil sample 2), representing a 30% improvement over cement-stabilized soils with identical mix proportions. Fly ash co-stabilization exhibited more pronounced reinforcement effects on soil sample 2. At a 98% compaction degree, soil sample 1 maintained a stable 50% strength enhancement, whereas soil sample 2 displayed a dose-dependent exponential strength increase. Freeze–thaw resistance tests revealed the superior performance of soil sample 1, showing a loss of compressive strength (BDR) of 78% with 8% geopolymer stabilization alone, which improved to 90% after fly ash co-stabilization. For soil sample 2, the BDR increased from 64% to 80% through composite stabilization. This study confirms that slag/fly ash-based geopolymer-stabilized soils not only meet the strength requirements for heavy-traffic subbases and light-traffic base courses, but also demonstrates its great potential as a low-carbon and environmentally friendly material to replace traditional road base materials. Full article
Show Figures

Figure 1

24 pages, 2295 KiB  
Article
Multi-Objective Coordinated Control Model for Paths Considering Left-Turn Speed Guidance
by Jiao Yao, Xiaoxiao Zhu and Chengyi Yang
Systems 2025, 13(7), 516; https://doi.org/10.3390/systems13070516 - 26 Jun 2025
Viewed by 228
Abstract
Urban traffic signal coordination often prioritizes straight-through traffic, causing inefficiencies at intersections with high left-turn volumes. This study addresses left-turn traffic in path coordination control. First, using an enhanced FVD car-following model with acceleration decay and a minimum-jerk turning trajectory model, speed guidance [...] Read more.
Urban traffic signal coordination often prioritizes straight-through traffic, causing inefficiencies at intersections with high left-turn volumes. This study addresses left-turn traffic in path coordination control. First, using an enhanced FVD car-following model with acceleration decay and a minimum-jerk turning trajectory model, speed guidance is provided at intersections. For paths where left turns dominate, the traditional AM-BAND model is modified to maximize the green wave bandwidth for turning traffic and minimize carbon emissions, forming a multi-objective coordination control model with speed guidance. A case study was conducted on a typical path in Shanghai’s Jinqiao area. The results show that the left-turn-optimized model increases the green wave bandwidth by 16.67% over the traditional model, with an additional 9.52% improvement when speed guidance is included. For carbon emissions, the left-turn model reduces emissions by 12.99%, with a further 6.47% reduction under speed guidance. This approach effectively enhances efficiency and sustainability for left-turn-dominated paths, meeting urban commuter demands. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

21 pages, 3019 KiB  
Article
Spatiotemporal Patterns and Drivers of Urban Traffic Carbon Emissions in Shaanxi, China
by Yongsheng Qian, Junwei Zeng, Wenqiang Hao, Xu Wei, Minan Yang, Zhen Zhang and Haimeng Liu
Land 2025, 14(7), 1355; https://doi.org/10.3390/land14071355 - 26 Jun 2025
Viewed by 484
Abstract
Mitigating traffic-related carbon emissions is pivotal for achieving carbon peaking targets and advancing sustainable urban development. This study employs spatial autocorrelation and high-low clustering analyses to analyze the spatial correlation and clustering patterns of urban road traffic carbon emissions in Shaanxi Province. The [...] Read more.
Mitigating traffic-related carbon emissions is pivotal for achieving carbon peaking targets and advancing sustainable urban development. This study employs spatial autocorrelation and high-low clustering analyses to analyze the spatial correlation and clustering patterns of urban road traffic carbon emissions in Shaanxi Province. The spatiotemporal evolution and structural impacts of emissions are quantified through a systematic framework, while the GTWR (Geographically Weighted Temporal Regression) model uncovers the multidimensional and heterogeneous driving mechanisms underlying carbon emissions. Findings reveal that road traffic CO2 emissions in Shaanxi exhibit an upward trajectory, with a temporal evolution marked by distinct phases: “stable growth—rapid increase—gradual decline”. Emission dynamics vary significantly across transport modes: private vehicles emerge as the primary emission source, taxi/motorcycle emissions remain relatively stable, and bus/electric vehicle emissions persist at low levels. Spatially, the province demonstrates a pronounced high-carbon spillover effect, with persistent high-value clusters concentrated in central Shaanxi and the northern region of Yan’an City, exhibiting spillover effects on adjacent urban areas. Notably, the spatial distribution of CO2 emissions has evolved significantly: a relatively balanced pattern across cities in 2010 transitioned to a pronounced “M”-shaped gradient along the north–south axis by 2015, stabilizing by 2020. The central urban cluster (Yan’an, Tongchuan, Xianyang, Baoji) initially formed a secondary low-carbon core, which later integrated into the regional emission gradient. By focusing on the micro-level dynamics of urban road traffic and its internal structural complexities—while incorporating built environment factors such as network layout, travel behavior, and infrastructure endowments—this study contributes novel insights to the transportation carbon emission literature, offering a robust framework for regional emission mitigation strategies. Full article
Show Figures

Figure 1

21 pages, 4833 KiB  
Article
Evaluation of Turkey’s Road-Based Greenhouse Gas Inventory and Future Projections
by Şenay Çetin Doğruparmak, Kazım Onur Demirarslan and Samet Volkan Çavuşoğlu
Appl. Sci. 2025, 15(13), 7007; https://doi.org/10.3390/app15137007 - 21 Jun 2025
Viewed by 995
Abstract
As road traffic in Turkey is a significant source of emissions due to the increasing number of vehicles on the road, the goal of this study is to calculate greenhouse gas emissions from Turkey’s roads between 2010 and 2020, create an inventory, and [...] Read more.
As road traffic in Turkey is a significant source of emissions due to the increasing number of vehicles on the road, the goal of this study is to calculate greenhouse gas emissions from Turkey’s roads between 2010 and 2020, create an inventory, and estimate possible emissions until 2050. In the study, both greenhouse gases (carbon dioxide (CO2) and nitrous oxide (N2O) and co-emitting air pollutants that indirectly contribute to climate change (ammonia—NH3, nitrogen oxide—NOX, sulfur dioxide—SO2, carbon monoxide—CO, non-methane volatile organic compounds—NMVOC, and particulate matter—PM) were investigated. The study revealed that the total number of vehicles using state roads in Turkey increased by 60% between 2010 and 2020. As a result, emissions of CO2, N2O, NH3, NOX, SO2, CO, NMVOC, and PM increased by 29.6%, 24.2%, 0.5%, 19.9%, 9.9%, 18.2%, 21.5%, and 39.7%, respectively. When emissions were analyzed on a provincial basis, particular attention was drawn to provinces with high levels of urbanization. Based on forecast studies, the total number of vehicles registered for traffic will increase by 105% by 2050. Due to this increase, CO2, N2O, NH3, NOX, SO2, CO, NMVOC, and PM emissions are estimated to increase by 149.17%, 151.78%, 154.39%, 138.95%, 150.97%, 153.09%, 152.09%, and 151.47%, respectively. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

15 pages, 214 KiB  
Article
Electric and Autonomous Vehicles in Italian Urban Logistics: Sustainable Solutions for Last-Mile Delivery
by Abdullah Alsaleh
World Electr. Veh. J. 2025, 16(7), 338; https://doi.org/10.3390/wevj16070338 - 20 Jun 2025
Viewed by 572
Abstract
Urban logistics are facing growing sustainability challenges, particularly in last-mile delivery operations, which contribute significantly to traffic congestion, emissions and operational inefficiencies. The COVID-19 pandemic further exposed the vulnerabilities in traditional logistics systems, accelerating interest in innovative solutions such as electric vehicles (EVs) [...] Read more.
Urban logistics are facing growing sustainability challenges, particularly in last-mile delivery operations, which contribute significantly to traffic congestion, emissions and operational inefficiencies. The COVID-19 pandemic further exposed the vulnerabilities in traditional logistics systems, accelerating interest in innovative solutions such as electric vehicles (EVs) and autonomous vehicles (AVs) for last-mile delivery. This study investigates the potential of EV and AV technologies to enhance sustainable urban logistics by integrating cleaner, smarter transportation into delivery networks. Drawing on survey data from logistics professionals and consumers in Italy, the findings highlight the key benefits of EV and AV adoption, including reduced emissions, improved delivery efficiency and increased resilience during global disruptions. Autonomous delivery robots and EV fleets can reduce labor costs, traffic congestion and carbon footprints while meeting evolving consumer demands. However, barriers such as limited charging infrastructure, range constraints, and technological readiness remain critical challenges. By addressing these issues and aligning EV and AV strategies with urban mobility policies, last-mile delivery systems can play a crucial role in advancing cleaner, more efficient and sustainable urban logistics. This research emphasizes the need for continued investment, policy support and public–private collaboration to fully realize the potential of EVs and AVs in reshaping future urban delivery systems. Full article
Back to TopTop