Informational and Topological Characterization of CO and O3 Hourly Time Series in the Mexico City Metropolitan Area During the 2019–2023 Period: Insights into the Impact of the COVID-19 Pandemic
Abstract
1. Introduction
2. Materials
Dataset
3. Methods
3.1. The Fisher–Shannon Method
3.2. The Visibility Graph Analysis
4. Data Analysis
- is the original hourly value at time t;
- is the mean of the hourly values calculated for the same hour h, day d, and month m across different years;
- is the standard deviation calculated for the same hour h, day d, and month m across different years;
- is the resulting normalized value.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World-Health-Organization. Health Aspects of Air Pollution with Particulate Matter, Ozone and Nitrogen Dioxide: Report on a WHO Working Group, Bonn, Germany 13–15 January 2003; Technical Report; WHO Regional Office for Europe: Copenhagen, Denmark, 2003. [Google Scholar]
- Molina, L.T.; Madronich, S.; Gaffney, J.; Apel, E.; de Foy, B.; Fast, J.; Ferrare, R.; Herndon, S.; Jimenez, J.L.; Lamb, B.; et al. An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation. Atmos. Chem. Phys. 2010, 10, 8697–8760. [Google Scholar] [CrossRef]
- Garzón, J.P.; Huertas, J.I.; Magaña, M.; Huertas, M.E.; Cárdenas, B.; Watanabe, T.; Maeda, T.; Wakamatsu, S.; Blanco, S. Volatile organic compounds in the atmosphere of Mexico City. Atmos. Environ. 2015, 119, 415–429. [Google Scholar] [CrossRef]
- Cassiani, M.; Stohl, A.; Eckhardt, S. The dispersion characteristics of air pollution from the world’s megacities. Atmos. Chem. Phys. 2013, 13, 9975–9996. [Google Scholar] [CrossRef]
- Secretaría de Salud. NORMA Oficial Mexicana NOM-021-SSA1-2021, Salud ambiental. Criterio para evaluar la calidad del aire ambiente, con respecto al monóxido de carbono (CO). Valores normados para la concentración de monóxido de carbono (CO) en el aire ambiente, como medida de protección a la salud de la población. Diario Oficial de la Federación, 1 November 2021; 1–6. [Google Scholar]
- Monks, P.S.; Archibald, A.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.; et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar]
- Akimoto, H. Global air quality and pollution. Science 2003, 302, 1716–1719. [Google Scholar] [CrossRef] [PubMed]
- Secretaría del Medio Ambiente de la Ciudad de México, Dirección de Monitoreo de Calidad del Aire. Calidad del aire en la Ciudad de México, Informe 2022. 2024. Available online: http://www.aire.cdmx.gob.mx/default.php (accessed on 8 July 2025).
- Baklanov, A.; Molina, L.T.; Gauss, M. Megacities, air quality and climate. Atmos. Environ. 2016, 126, 235–249. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Z.; Zhang, X.; Li, Q.; Jensen, A.; Tan, W.; Huang, L.; Wang, Y.; de Gouw, J.; Li, L. Insights into the significant increase in ozone during COVID-19 in a typical urban city of China. Atmos. Chem. Phys. 2022, 22, 4853–4866. [Google Scholar] [CrossRef]
- Rathod, A.; Sahu, S.; Singh, S.; Beig, G. Anomalous behaviour of ozone under COVID-19 and explicit diagnosis of O3-NOx-VOCs mechanism. Heliyon 2021, 7, e06142. [Google Scholar] [CrossRef] [PubMed]
- Wałaszek, K.; Kryza, M.; Werner, M. The role of precursor emissions on ground level ozone concentration during summer season in Poland. J. Atmos. Chem. 2018, 75, 181–204. [Google Scholar] [CrossRef]
- Aguilar-Velázquez, D.; Reyes-Ramírez, I. A wavelet analysis of multiday extreme ozone and its precursors in Mexico city during 2015–2016. Atmos. Environ. 2018, 188, 112–119. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, H.; Zou, S.; Lyu, X.; Ling, Z.; Cheng, H.; Zeren, Y. Surface O3 photochemistry over the South China Sea: Application of a near-explicit chemical mechanism box model. Environ. Pollut. 2018, 234, 155–166. [Google Scholar] [CrossRef]
- Pavón-Domínguez, P.; Plocoste, T. Coupled multifractal methods to reveal changes in nitrogen dioxide and tropospheric ozone concentrations during the COVID-19 lockdown. Atmos. Res. 2021, 261, 105755. [Google Scholar] [CrossRef]
- Lee, C.K. Multifractal characteristics in air pollutant concentration time series. Water Air Soil Pollut. 2002, 135, 389–409. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Moustris, K.; Petraki, E.; Koulougliotis, D.; Cantzos, D. Fractal and long-memory traces in PM10 time series in Athens, Greece. Environments 2019, 6, 29. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, R.; Shu, S.; Gao, W. Ensemble and enhanced PM10 concentration forecast model based on stepwise regression and wavelet analysis. Atmos. Environ. 2013, 74, 346–359. [Google Scholar] [CrossRef]
- Guignard, F.; Laib, M.; Amato, F.; Kanevski, M. Advanced analysis of temporal data using Fisher-Shannon information: Theoretical development and application in geosciences. Front. Earth Sci. 2020, 8, 255. [Google Scholar] [CrossRef]
- Martin, M.; Pennini, F.; Plastino, A. Fisher’s information and the analysis of complex signals. Phys. Lett. A 1999, 256, 173–180. [Google Scholar] [CrossRef]
- Martin, M.; Perez, J.; Plastino, A. Fisher information and nonlinear dynamics. Phys. A Stat. Mech. Its Appl. 2001, 291, 523–532. [Google Scholar] [CrossRef]
- Gómez-Gómez, J.; Carmona-Cabezas, R.; Sánchez-López, E.; Gutierrez de Rave, E.; Jiménez-Hornero, F.J. Analysis of air mean temperature anomalies by using horizontal visibility graphs. Entropy 2021, 23, 207. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Cabezas, R.; Ariza-Villaverde, A.B.; de Ravé, E.G.; Jiménez-Hornero, F.J. Visibility graphs of ground-level ozone time series: A multifractal analysis. Sci. Total Environ. 2019, 661, 138–147. [Google Scholar] [CrossRef]
- Carmona-Cabezas, R.; Gómez-Gómez, J.; Ariza-Villaverde, A.B.; de Ravé, E.G.; Jiménez-Hornero, F.J. Can complex networks describe the urban and rural tropospheric O3 dynamics? Chemosphere 2019, 230, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Telesca, L.; Caggiano, R.; Lapenna, V.; Lovallo, M.; Trippetta, S.; Macchiato, M. Analysis of dynamics in Cd, Fe, and Pb in particulate matter by using the Fisher–Shannon method. Water Air Soil Pollut. 2009, 201, 33–41. [Google Scholar] [CrossRef]
- Amato, F.; Laib, M.; Guignard, F.; Kanevski, M. Analysis of air pollution time series using complexity-invariant distance and information measures. Phys. A Stat. Mech. Its Appl. 2020, 547, 124391. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M. Analysis of seismic sequences by using the method of visibility graph. Europhys. Lett. 2012, 97, 50002. [Google Scholar] [CrossRef]
- Ramírez-Rojas, A.; Flores-Márquez, E.L.; Vargas, C.A. Visibility Graph Analysis of the Seismic Activity of Three Areas of the Cocos Plate Mexican Subduction Where the Last Three Large Earthquakes (M> 7) Occurred in 2017 and 2022. Entropy 2023, 25, 799. [Google Scholar] [CrossRef] [PubMed]
- Telesca, L.; Lovallo, M.; Pierini, J.O. Visibility graph approach to the analysis of ocean tidal records. Chaos Solit. Fractals 2012, 45, 1087–1091. [Google Scholar] [CrossRef]
- Pierini, J.O.; Lovallo, M.; Telesca, L. Visibility graph analysis of wind speed records measured in central Argentina. Phys. A 2012, 391, 5041–5048. [Google Scholar] [CrossRef]
- Kernighan, B.W.; Lin, S. An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 1970, 49, 291–307. [Google Scholar] [CrossRef]
- Instituto Nacional de Ecología y Cambio Climático. Informe Nacional de Calidad del Aire 2022. 2025. Available online: https://sinaica.inecc.gob.mx/archivo/informes/Informe2022.pdf (accessed on 8 July 2025).
- Secretaría del Medio Ambiente de la Ciudad de México, Dirección de Monitoreo de Calidad del Aire. Caracterización, Evaluación y Análisis del Entorno Físico y de la Representatividad en las Estaciones del Sistema de Monitoreo Atmosférico de la Ciudad de México. 2021. Available online: http://www.aire.cdmx.gob.mx/descargas/publicaciones/simat-entornos.pdf (accessed on 15 April 2025).
- Diosdado, A.M.; Coyt, G.G.; López, J.B.; del Rio Correa, J. Multifractal analysis of air pollutants time series. Rev. Mex. Física 2013, 59, 7–13. [Google Scholar]
- De La Cruz-Hernández, S.I.; Álvarez Contreras, A.K. COVID-19 Pandemic in Mexico: The Response and Reopening. Disaster Med. Public Health Prep. 2022, 16, 2264–2266. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M. On the performance of Fisher Information Measure and Shannon entropy estimators. Phys. A Stat. Mech. Its Appl. 2017, 484, 569–576. [Google Scholar] [CrossRef]
- Troudi, M.; Alimi, A.; Saoudi, S. Analytical plug-in method for kernel density estimator applied to genetic neutrality study. EURASIP J. Adv. Signal Process. 2008, 2008, 739082. [Google Scholar] [CrossRef]
- Raykar, V.; Duraiswami, R. Fast optimal bandwidth selection for kernel density estimation. In Proceedings of the 2006 SIAM International Conference on Data Mining; SIAM: Philadelphia, PA, USA, 2006; pp. 524–528. [Google Scholar]
- Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuno, J.C. From time series to complex networks: The visibility graph. Proc. Natl. Acad. Sci. USA 2008, 105, 4972–4975. [Google Scholar] [CrossRef] [PubMed]
Series | FIM | ||||
---|---|---|---|---|---|
0.68 | 9.68 | 9.67 | 7.87 | 0.81 | |
0.69 | 3.65 | 8.29 | 6.19 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez-Rojas, A.; Cárdenas-Moreno, P.R.; Reyes-Ramírez, I.; Lovallo, M.; Telesca, L. Informational and Topological Characterization of CO and O3 Hourly Time Series in the Mexico City Metropolitan Area During the 2019–2023 Period: Insights into the Impact of the COVID-19 Pandemic. Appl. Sci. 2025, 15, 8775. https://doi.org/10.3390/app15168775
Ramirez-Rojas A, Cárdenas-Moreno PR, Reyes-Ramírez I, Lovallo M, Telesca L. Informational and Topological Characterization of CO and O3 Hourly Time Series in the Mexico City Metropolitan Area During the 2019–2023 Period: Insights into the Impact of the COVID-19 Pandemic. Applied Sciences. 2025; 15(16):8775. https://doi.org/10.3390/app15168775
Chicago/Turabian StyleRamirez-Rojas, Alejandro, Paulina Rebeca Cárdenas-Moreno, Israel Reyes-Ramírez, Michele Lovallo, and Luciano Telesca. 2025. "Informational and Topological Characterization of CO and O3 Hourly Time Series in the Mexico City Metropolitan Area During the 2019–2023 Period: Insights into the Impact of the COVID-19 Pandemic" Applied Sciences 15, no. 16: 8775. https://doi.org/10.3390/app15168775
APA StyleRamirez-Rojas, A., Cárdenas-Moreno, P. R., Reyes-Ramírez, I., Lovallo, M., & Telesca, L. (2025). Informational and Topological Characterization of CO and O3 Hourly Time Series in the Mexico City Metropolitan Area During the 2019–2023 Period: Insights into the Impact of the COVID-19 Pandemic. Applied Sciences, 15(16), 8775. https://doi.org/10.3390/app15168775