Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = traditional cut flower

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2857 KiB  
Article
Identification of the MADS-Box Gene Family and Development of Simple Sequence Repeat Markers in Chimonanthus praecox
by Huafeng Wu, Bin Liu, Yinzhu Cao, Guanpeng Ma, Xiaowen Zheng, Ximeng Yang, Qianli Dai, Hengxing Zhu, Haoxiang Zhu, Xingrong Song and Shunzhao Sui
Plants 2025, 14(15), 2450; https://doi.org/10.3390/plants14152450 - 7 Aug 2025
Abstract
Chimonanthus praecox, a traditional ornamental plant in China, is admired for its ability to bloom during the cold winter season and is recognized as an outstanding woody cut flower. MADS-box genes encode transcription factors essential for plant growth and development, with key [...] Read more.
Chimonanthus praecox, a traditional ornamental plant in China, is admired for its ability to bloom during the cold winter season and is recognized as an outstanding woody cut flower. MADS-box genes encode transcription factors essential for plant growth and development, with key functions in regulating flowering time and the formation of floral organs. In this study, 74 MADS-box genes (CpMADS1–CpMADS74) were identified and mapped across 11 chromosomes, with chromosome 1 harboring the highest number (13 genes) and chromosome 3 the fewest (3 genes). Physicochemical property analysis revealed that all CpMADS proteins are hydrophilic and predominantly nuclear-localized. Phylogenetic analysis classified these genes into Type I and Type II subfamilies, highlighting a clear divergence in domain structure. Eighty simple sequence repeat (SSR) loci were detected, with dinucleotide repeats being the most abundant, and the majority located in Type II MADS genes. From 23 C. praecox samples, 10 polymorphic SSR markers were successfully developed and PCR-validated, enabling a cluster analysis that grouped these cultivars into three distinct clusters. This study offers significant insights into the regulation of flowering, floral organ development, genetic linkage map construction, and the application of marker-assisted selection in C. praecox. Full article
Show Figures

Figure 1

14 pages, 3844 KiB  
Article
Cultivated St. John’s Wort Flower Heads Accumulate Tocotrienols over Tocopherols, Regardless of the Year of the Plant
by Ieva Miķelsone, Elise Sipeniece, Inga Mišina, Elvita Bondarenko and Paweł Górnaś
Plants 2025, 14(6), 852; https://doi.org/10.3390/plants14060852 - 9 Mar 2025
Cited by 2 | Viewed by 698
Abstract
St. John’s wort (Hypericum perforatum L.) has been extensively utilized across various traditional medicinal systems, including ancient Greek medicine, traditional Chinese medicine, and Islamic medicine. H. perforatum is a well-known medicinal plant due to the presence of hypericin and hyperforin, which are [...] Read more.
St. John’s wort (Hypericum perforatum L.) has been extensively utilized across various traditional medicinal systems, including ancient Greek medicine, traditional Chinese medicine, and Islamic medicine. H. perforatum is a well-known medicinal plant due to the presence of hypericin and hyperforin, which are natural antidepressants. Recent studies indicate that the inflorescences of wild H. perforatum are a source of rare tocotrienols, primarily δ-T3. Similar studies are lacking for cultivated species. H. perforatum was grown for three years. At full bloom each year, the plant was cut and separated into its parts: stems, leaves, flower buds, and flowers. Tocotrienols (T3s) were present in each part of the H. perforatum. The lowest concentration of tocotrienols was recorded in stems and the highest in flower buds (1.7–4.2 and 88.2–104.7 mg/100 g dry weight, respectively). Flower buds and flowers were the main source of α-T3 and δ-T3 tocotrienols. The plant part has a significant impact on the tocochromanol profile and concentration, while the year of harvest/plant aging does not. The present study demonstrates that cultivated H. perforatum flower heads are the first known flowers with relatively high concentrations of tocotrienols. St. John’s wort flower buds accumulate tocotrienols over tocopherols, regardless of the year of the plant. Full article
Show Figures

Figure 1

16 pages, 6335 KiB  
Article
Melatonin Treatment Delays the Senescence of Cut Flowers of “Diguan” Tree Peony by Affecting Water Balance and Physiological Properties
by Mengdi Wu, Peidong Zhang, Yuke Sun, Wenqian Shang, Liyun Shi, Shuiyan Yu, Songlin He, Yinglong Song and Zheng Wang
Horticulturae 2025, 11(2), 181; https://doi.org/10.3390/horticulturae11020181 - 8 Feb 2025
Viewed by 855
Abstract
Tree peony (Paeonia suffruticosa Andr.), which is a traditional flower cultivated in China, is rapidly becoming an important species in the cut flower industry. Thus, extending the vase life of tree peony cut flowers is a major goal in the cut flower [...] Read more.
Tree peony (Paeonia suffruticosa Andr.), which is a traditional flower cultivated in China, is rapidly becoming an important species in the cut flower industry. Thus, extending the vase life of tree peony cut flowers is a major goal in the cut flower industry. Melatonin, which is a new type of antioxidant, plays an important regulatory role in the preservation of cut flowers. Therefore, this study employed the cut flower of tree peony “Diguan” as the test material to investigate the preservative effects of the antioxidant melatonin on the cut flower of tree peony “Diguan”. We examined tree peony cut flowers in terms of their morphology, lifespan, relative fresh weight, relative diameter, and water balance value after treatments with different melatonin concentrations (0.2, 0.3, 0.4, and 0.5 mg·L−1) to select the optimal treatment concentration. Considered together, these analyses clarified the effects of melatonin on the preservation of “Diguan” tree peony cut flowers. Specifically, the exogenous application of melatonin positively affected the preservation of tree peony cut flowers by improving the water balance value and increasing the soluble protein content and antioxidant enzyme activities, thereby prolonging the ornamental period of tree peony cut flowers. The fresh weight of flower branches is significantly positively correlated with soluble protein, and cut flower lifespan increases with the values of soluble protein and the fresh weight of flower branches, with a large correlation coefficient. It can be used as an important indicator to measure cut flower lifespan in subsequent research. The 0.4 mg L−1 melatonin treatment was optimal for preserving tree peony cut flowers because of its positive effects on the duration of the ornamental period and ornamental quality. Full article
Show Figures

Figure 1

24 pages, 9966 KiB  
Article
Enhancing Sensing Performance of Capacitive Sensors Using Kirigami Structures
by Chor-Kheng Lim
Sensors 2024, 24(21), 6930; https://doi.org/10.3390/s24216930 - 29 Oct 2024
Viewed by 2166
Abstract
Capacitive sensors have widespread applications in human-machine interaction, Internet of Things, and smart home systems due to their low cost, high sensitivity, and ease of integration. However, improving the sensitivity and sensing distance of capacitive sensors remains a challenging issue. This study proposes [...] Read more.
Capacitive sensors have widespread applications in human-machine interaction, Internet of Things, and smart home systems due to their low cost, high sensitivity, and ease of integration. However, improving the sensitivity and sensing distance of capacitive sensors remains a challenging issue. This study proposes a novel capacitive sensor design method based on Kirigami structures, which enhances sensor performance by introducing specific cutting patterns into the conductive layer to leverage edge effects. Through experimental testing and statistical analysis, we systematically investigated the influence of Kirigami geometric parameters on sensor sensitivity and sensing distance. We designed and fabricated 12 different Kirigami structures, including circular flower patterns, array patterns, layered pointed flower patterns, and circular strip structures, and compared them with traditional non-cut structures. The results show that Kirigami structures significantly improved sensor performance. Compared to traditional sensors without Kirigami structures, optimally designed Kirigami capacitive sensors demonstrated approximately a 3-fold increase in sensitivity and up to 170 percent extension in sensing distance. Multivariate regression analysis and nonlinear models revealed complex relationships between Kirigami structural parameters and sensor performance. Notably, the circular strip (three-layer) structure exhibited the best performance, possibly due to its maximization of edge effects and optimization of electric field distribution. This study provides new design insights for developing high-performance capacitive sensors, with potential applications in improving smart home systems and indoor activity monitoring for solitary elderly individuals. Full article
(This article belongs to the Special Issue Intelligent Sensing Technologies in Structural Health Monitoring)
Show Figures

Figure 1

20 pages, 493 KiB  
Article
Jeevamrit: A Sustainable Alternative to Chemical Fertilizers for Marigold (Tagetes erecta cv. Siracole) Cultivation under Mid-Hills of Himachal Pradesh
by Nitesh Kaushal, Bharati Kashyap, Suman Bhatia, Manish Kumar, Ali Haidar Shah, Ragini Bhardwaj, Balbir Singh Dilta and Priyanka Thakur
Horticulturae 2024, 10(8), 846; https://doi.org/10.3390/horticulturae10080846 - 9 Aug 2024
Cited by 3 | Viewed by 2612
Abstract
Using desi-cow waste products like Jeevamrit under natural farming is widespread among farmers for improving soil biology and productivity. Jeevamrit enhances soil chemical and microbiological properties without needing a large quantity of farmyard manure (FYM) as a sustainable farming practice with a reduced [...] Read more.
Using desi-cow waste products like Jeevamrit under natural farming is widespread among farmers for improving soil biology and productivity. Jeevamrit enhances soil chemical and microbiological properties without needing a large quantity of farmyard manure (FYM) as a sustainable farming practice with a reduced carbon footprint. Despite its traditional use, Jeevamrit faces criticism due to a lack of scientific evidence. This study investigated the comparative effect of Jeevamrit and chemical fertilizers on the growth and yield of marigold cv. Siracole. The experiment employed a randomized block design (RBD) with three replications. The mother block of marigolds was raised for both the summer and winter seasons. From this mother block, three harvesting flushes were taken and propagated from cuttings. The rooted cuttings were planted at monthly intervals and evaluated for flowering parameters and compared to those treated with RDF (30:20:20 N, P, and K g/m2). Soil supplied with Jeevamrit showed enhanced bacteria (26.33%), fungi (18.92%), and actinomycetes (31.21%) populations compared to the recommended dose of fertilizers (RDF) (i.e., N–P–K @ 30:20:20 g m−2). Jeevamrit-treated plants have a more marketable flower yield per square meter (3.98%) and a longer shelf life (9.93%) compared to RDF. The study concludes that Jeevamrit @ 2 liters m−2 is a sustainable and effective alternative to traditional fertilizers for enhancing marigold production in the mid-hills of Himachal Pradesh, where natural farming is already accepted. Full article
Show Figures

Figure 1

12 pages, 3405 KiB  
Article
Double-Heading Produces Larger Fruit via Inhibiting EjFWLs Expression and Promoting Cell Division at the Early Stage of Loquat Fruit Development
by Wenbing Su, Chaojun Deng, Weilin Wei, Xiuping Chen, Han Lin, Yongping Chen, Qizhi Xu, Zhihong Tong, Shaoquan Zheng and Jimou Jiang
Horticulturae 2024, 10(8), 793; https://doi.org/10.3390/horticulturae10080793 - 27 Jul 2024
Viewed by 1254
Abstract
Loquat is an evergreen fruit crop which blooms from autumn–winter, and supports human beings with juicy fruit from late spring to early summer. However, the most traditional cultivars of this crop produce small fruit and bear a much lower yield than its relatives [...] Read more.
Loquat is an evergreen fruit crop which blooms from autumn–winter, and supports human beings with juicy fruit from late spring to early summer. However, the most traditional cultivars of this crop produce small fruit and bear a much lower yield than its relatives like apple, pear and peach. Large-size cultivars have long been a cherished aim of breeders for improving the production yield of loquat. Agronomic practices like panicle thinning, fruit thinning, growth regulator application, fertilization and so on are easier and more accessible ways for growers to produce large-size loquat fruit on existing production trees. Here, we develop a novel pruning method with an annual double back-cut, which provides vigorous shoot with more leaves and thicker branches for bearing much larger loquat fruit. Cellular observation determined that the vigorous shoot training method motivated cell division to produce larger loquat fruit, and that most of these cell layers were proliferated before the appearance of flower blossoms. Gene expression data of four development stages showed that EjFWL1 and EjFWL2 were notably downregulated in flower buds of the vigorously pruned tree. The data here further confirmed that the cell division capacity during flower development greatly influenced both the flower and fruit size of loquat. More importantly, we developed a novel pruning method to inhibit cell division repressors, promote cell proliferation and enlarge fruit size in loquat. Full article
(This article belongs to the Special Issue Advances in Physiology Studies in Fruit Development and Ripening)
Show Figures

Figure 1

28 pages, 1619 KiB  
Review
Advances in Orchid Biology: Biotechnological Achievements, Translational Success, and Commercial Outcomes
by Pragya Tiwari, Abhishek Sharma, Subir Kumar Bose and Kyeung-Il Park
Horticulturae 2024, 10(2), 152; https://doi.org/10.3390/horticulturae10020152 - 6 Feb 2024
Cited by 17 | Viewed by 7594
Abstract
Orchids constitute the largest and most diverse group of flowering plants and are classified in the family Orchidaceae. Exhibiting significance as the most exotic and ubiquitous flowering plant, the cultivation of orchids on a commercial level is gaining momentum worldwide. In addition to [...] Read more.
Orchids constitute the largest and most diverse group of flowering plants and are classified in the family Orchidaceae. Exhibiting significance as the most exotic and ubiquitous flowering plant, the cultivation of orchids on a commercial level is gaining momentum worldwide. In addition to its ornamental and aesthetic value, the orchid industry has successfully generated employment for people in developing countries. Recent advances in biotechnological interventions in orchids have substantially contributed to the development of exotic varieties with novel traits, not to forget the inputs of traditional plant breeding methods and tissue culture approaches. In addition, the scientific developments in orchid biology have remarkably bridged the knowledge gaps in areas of orchid classification, phytochemistry, and cultivation strategies. This has facilitated the commercialization of novel varieties, opening new avenues in the orchid industry, and their global marketing as cut flowers and artificially propagated plants. Orchids constitute the first floriculture crops that revolutionized the orchid industry; however, they also hold several challenges in the natural propagation and conservation of several species that are on the verge of extinction. International organizations like CITES have come forward to address challenges associated with illegal global trade and indiscriminate use of orchid varieties, aiming for conservation and legal commercial goals. This thematic review is one-of-a-kind in providing comprehensive insights into the emerging momentum of orchid biology and how its globalization projects to considerably impact the orchid industry in the coming times. However, it is imperative to understand the challenges in the cultivation and conservation of orchid varieties and ensure legislative guidelines both on domestic and global levels to ensure a multipronged approach to the conservation and commercialization of orchids. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

16 pages, 2317 KiB  
Article
Warm Bulb Storage Optimises Flowering Attributes and Foliage Characteristics in Amaryllis belladonna L.
by Carolyn Margaret Wilmot, Muhali Olaide Jimoh and Charles Petrus Laubscher
Horticulturae 2023, 9(12), 1271; https://doi.org/10.3390/horticulturae9121271 - 27 Nov 2023
Cited by 1 | Viewed by 1970
Abstract
Amaryllis belladonna is an autumn-flowering bulbous geophyte endemic to the Western Cape, South Africa. The species’ erratic flowering disposition and brief flowering period upon maturity limit its economic productivity and competitiveness within the traditional genera of cut flowers and potted plants. However, it [...] Read more.
Amaryllis belladonna is an autumn-flowering bulbous geophyte endemic to the Western Cape, South Africa. The species’ erratic flowering disposition and brief flowering period upon maturity limit its economic productivity and competitiveness within the traditional genera of cut flowers and potted plants. However, it can be an attractive, eco-friendly, seasonal addition to the specialty floriculture market. A 10-month study evaluated the effects of a warm storage period on A. belladonna bulbs’ flowering yield, flowering time, quality characteristics, and foliage growth. The experiment comprised dormant flower-sized bulbs randomly assigned to one of six storage regimes of either a 0- (no storage control), 4-, 6-, 8-, 10-, or 12-week interval periods at a continuous warm temperature of 23 ± 1 °C before planting into pots between mid-November 2021 and mid-February 2022 in the greenhouse. The results showed that flowering production (64.3% flowering after the 12-week storage), flowering time (anthesis occurring 9 days after the 10- and 12-week storage), and quality attributes (number of florets in the inflorescence, scape diameter, inflorescence fullness ratio, and pot longevity) of A. belladonna scapes were significantly impacted by warm bulb storage, but not foliage growth. Irrespective of bulb storage, inflorescence abortion occurred. An extended bulb storage did not advance the flowering time despite a greater harvest and shorter cultivation periods after planting. This study established that a cumulative temperature range during bulb dormancy is crucial for supporting the A. belladonna inflorescence maturity’s energetic demands and the opening of floret buds. Bulbs should be stored at elevated temperatures for at least 8–10 weeks to attain the best floret-quality attributes and longevity. However, for an economical and sustainable greenhouse and specialty cut flower production, 12-week warm bulb storage is recommended to achieve the optimal anthesis in the shortest interval for this seasonal single-harvest species after planting. Full article
Show Figures

Figure 1

17 pages, 2547 KiB  
Review
Presenting the Secrets: Exploring Endogenous Defense Mechanisms in Chrysanthemums against Aphids
by Changchen Xia, Wanjie Xue, Zhuozheng Li, Jiaxu Shi, Guofu Yu and Yang Zhang
Horticulturae 2023, 9(8), 937; https://doi.org/10.3390/horticulturae9080937 - 17 Aug 2023
Cited by 6 | Viewed by 4169
Abstract
As the second-largest cut flower plant globally and one of the top ten traditional flowers in China, chrysanthemums hold significant economic value, encompassing both ornamental and medicinal applications. However, aphids pose a considerable threat as one of the most critical pests affecting chrysanthemums. [...] Read more.
As the second-largest cut flower plant globally and one of the top ten traditional flowers in China, chrysanthemums hold significant economic value, encompassing both ornamental and medicinal applications. However, aphids pose a considerable threat as one of the most critical pests affecting chrysanthemums. These pests not only diminish the ornamental value of chrysanthemums through feeding and reproduction but also transmit numerous plant viruses, causing irreversible damage. This review examines aphids’ feeding and damage patterns as a starting point, highlighting the unique endogenous defense mechanisms that have evolved in chrysanthemums during their continuous struggle against aphids. These mechanisms include constitutive defense and induced defense. In addition, we enumerate aphid-resistance genes that have been reported in chrysanthemums. Furthermore, this paper compares and predicts the aphid-resistance genes of other species based on the published Chrysanthemum nankingense genome, aiming to provide a valuable reference for future research on aphid-resistance genes in chrysanthemums. Full article
(This article belongs to the Special Issue Plant-Parasitic Nematodes in Horticultural Crops)
Show Figures

Figure 1

14 pages, 3151 KiB  
Article
Cross-Compatibility in Interspecific Hybridization of Different Curcuma Accessions
by Yuanjun Ye, Yiwei Zhou, Jianjun Tan, Genfa Zhu, Jinmei Liu and Yechun Xu
Plants 2023, 12(10), 1961; https://doi.org/10.3390/plants12101961 - 11 May 2023
Cited by 6 | Viewed by 2504
Abstract
Curcuma is extensively cultivated as a medicinal and ornamental plant in tropical and subtropical regions. Due to the bright bract color, distinctive inflorescence and long blooming period, it has become a new favorite in terms of the urban landscape, potted flowers and cut [...] Read more.
Curcuma is extensively cultivated as a medicinal and ornamental plant in tropical and subtropical regions. Due to the bright bract color, distinctive inflorescence and long blooming period, it has become a new favorite in terms of the urban landscape, potted flowers and cut flowers. However, little research on breeding new cultivars using traditional plant breeding methods is available on the genus Curcuma. In the present study, pollen viability and stigma receptivity evaluation were performed, and the genetic relationship of 38 Curcuma accessions was evaluated, then 5 C. alismatifolia Gagnep. (Ca), 2 C. hybrid (Ch), 2 C. sparganiifolia Gagnep. cultivars and 4 Curcuma native species were selected as parents for subsequent interspecific cross-breeding. A total of 132 reciprocal crosses were carried out for interspecific hybridization, including 70 obverse and 62 inverse crosses. Obvious discrepancies among fruit-setting rates were manifested in different combinations and in reciprocal crosses. Results showed that the highest fruit-setting rate (87.5%) was observed in the Ca combinations. There were 87 combinations with a fruit-setting rate of 0%, which meant nearly 65.9% was incompatible. We concluded that C. alismatifolia ‘Siam Shadow’ (Ch34) was suitable as a male parent and C. petiolata Roxb. (Cpet) was suitable as a female parent to improve the fruit-setting rates. The maximum number of seeds per fruit (45.4) was obtained when C. alismatifolia ‘Chiang Mai Pink’ (Ca01) was used as a female parent followed by C. attenuata Wall. ex Baker (Catt) (42.8) and C. alismatifolia ‘Splash’ (Ca63) (39.6) as male parents. The highest germination rate was observed for the Ca group followed by Catt and C. sparganiifolia ‘Maetang Sunrise’ (Csms). The germination rates of Ca accessions ranged from 58.2% (C. alismatifolia ‘Siam Scarlet’ (Ca06) as a male parent) to 89.3% (C. alismatifolia ‘Sitone’ (Ca10) as a male parent) with an average value of 74.0%. Based on the results of hybrid identification, all the individuals from the four combinations exhibited paternal-specific bands, indicating that the true hybrid rates of crossings were 100%. Our results would facilitate the interspecific hybridization and introduction of genetic variation from wild species into the cultivars in Curcuma in the future, which could be helpful in realizing the sustainable application in urban green areas. Full article
(This article belongs to the Special Issue Ornamental Plants and Urban Gardening)
Show Figures

Figure 1

16 pages, 2662 KiB  
Article
Effect-Directed Profiling of Akebia quinata and Clitoria ternatea via High-Performance Thin-Layer Chromatography, Planar Assays and High-Resolution Mass Spectrometry
by Hanna Nikolaichuk, Irena M. Choma and Gertrud E. Morlock
Molecules 2023, 28(7), 2893; https://doi.org/10.3390/molecules28072893 - 23 Mar 2023
Cited by 5 | Viewed by 3023
Abstract
Two herbal plants, Akebia quinata D. leaf/fruit and Clitoria ternatea L. flower, well-known in traditional medicine systems, were investigated using a non-target effect-directed profiling. High-performance thin-layer chromatography (HPTLC) was combined with 11 different effect-directed assays, including two multiplex bioassays, for assessing their bioactivity. [...] Read more.
Two herbal plants, Akebia quinata D. leaf/fruit and Clitoria ternatea L. flower, well-known in traditional medicine systems, were investigated using a non-target effect-directed profiling. High-performance thin-layer chromatography (HPTLC) was combined with 11 different effect-directed assays, including two multiplex bioassays, for assessing their bioactivity. Individual active zones were heart-cut eluted for separation via an orthogonal high-performance liquid chromatography column to heated electrospray ionization high-resolution mass spectrometry (HPLC–HESI-HRMS) for tentative assignment of molecular formulas according to literature data. The obtained effect-directed profiles provided information on 2,2-diphenyl-1-picrylhydrazyl scavenging, antibacterial (against Bacillus subtilis and Aliivibrio fischeri), enzyme inhibition (tyrosinase, α-amylase, β-glucuronidase, butyrylcholinesterase, and acetylcholinesterase), endocrine (agonists and antagonists), and genotoxic (SOS-Umu-C) activities. The main bioactive compound zones in A. quinata leaf were tentatively assigned to be syringin, vanilloloside, salidroside, α-hederin, cuneataside E, botulin, and oleanolic acid, while salidroside and quinatic acids were tentatively identified in the fruit. Taraxerol, kaempherol-3-rutinoside, kaempferol-3-glucoside, quercetin-3-rutinoside, and octadecenoic acid were tentatively found in the C. ternatea flower. This straightforward hyphenated technique made it possible to correlate the biological properties of the herbs with possible compounds. The meaningful bioactivity profiles contribute to a better understanding of the effects and to more efficient food control and food safety. Full article
(This article belongs to the Special Issue Chromatographic Screening of Natural Products)
Show Figures

Graphical abstract

15 pages, 3791 KiB  
Article
Assessing Effect of Rootstock Micropropagation on Field Performance of Grafted Peach Varieties by Fitting Mixed-Effects Models: A Longitudinal Study
by Juan A. Marín, Elena García, Pilar Lorente, Pilar Andreu and Arancha Arbeloa
Plants 2023, 12(3), 674; https://doi.org/10.3390/plants12030674 - 3 Feb 2023
Cited by 3 | Viewed by 2102
Abstract
Rootstock micropropagation has been extensively used as an alternative to propagation by cuttings. Although studies have recently been conducted on other species, no conclusive reports have been published on the effect of rootstock micropropagation on the field performance of fruit trees. Here, we [...] Read more.
Rootstock micropropagation has been extensively used as an alternative to propagation by cuttings. Although studies have recently been conducted on other species, no conclusive reports have been published on the effect of rootstock micropropagation on the field performance of fruit trees. Here, we present the results of a five-year study of peach varieties grafted on two rootstocks (Adesoto 101 and Adafuel), either micropropagated or propagated by cuttings, to ascertain the effect of the rootstock propagation method on field performance. Fruit trees are woody plants with a long life cycle; so, to reduce the influence of environmental or cultural factors on the agronomical results, studies need to last for several years, in which data are obtained from the same individuals over time (longitudinal data). This hinders the analysis because these data lack independence. In contrast with a more traditional approach with data aggregation and repeated-measures ANOVA analysis, in this study, we used linear mixed-effects models to control the variance associated with random factors without data aggregation. The growth of the fruit trees did not appreciably differ between the rootstock propagation methods, neither in the flowering period nor in the yield. The models constructed for different parameters of the field performance (trunk cross-sectional area (TCSA), cumulative yield, cumulative yield efficiency, and cumulative crop load) showed a very good fit (R2 > 0.97), allowing the conclusion that the rootstock propagation method did not affect the field performance of fruit trees in this study. Full article
(This article belongs to the Special Issue Application of Biotechnology to Woody Propagation)
Show Figures

Figure 1

15 pages, 1913 KiB  
Article
Anemone Cut Flower Timing, Yield, and Quality in a High-Elevation Field and High Tunnel
by Shannon Rauter, Melanie Stock, Brent Black, Dan Drost, Xin Dai and Ruby Ward
Horticulturae 2023, 9(1), 2; https://doi.org/10.3390/horticulturae9010002 - 20 Dec 2022
Cited by 4 | Viewed by 2951
Abstract
A narrow window of optimal spring temperatures limits anemone (Anemone coronaria L.) cut flower production in the US Intermountain West, where fall plantings risk winter injury and spring plantings are limited by summer dormancy. Regional management recommendations are needed to improve anemone harvest [...] Read more.
A narrow window of optimal spring temperatures limits anemone (Anemone coronaria L.) cut flower production in the US Intermountain West, where fall plantings risk winter injury and spring plantings are limited by summer dormancy. Regional management recommendations are needed to improve anemone harvest timing and yield for growers in USDA hardiness zones 6 and below (average annual minimum temperatures below −18 °C). The aim of this research was to optimize flower timing, yield, quality, and profitability in high tunnel and field production systems by evaluating planting dates, winter insulation, tuber preparation, and cultivar selection. High tunnel and field trials were conducted from fall 2020 to spring 2022 in North Logan, UT (41.767° N, −111.811° W, 1405 m elevation, USDA hardiness zone 5). Tubers were pre-sprouted or directly planted into a high tunnel (left bare or covered with low tunnels) or field (left bare or covered with mulch, a low tunnel, or mulch and a low tunnel) from November to April. Harvest began as early as 2 March in the high tunnel and 9 April in the field, with overall average marketable yields (stems per m2 ± SE) of 142 ± 7 in the high tunnel and 85 ± 4 in the field. Planting pre-sprouted tubers under low tunnels in the high tunnel in November delivered the earliest harvest (2 March), greatest marketable yield (280 stems per m2 ± 73 SE), and greatest net returns ($38 per m2). For November field plantings, insulation improved emergence by 75% and marketable yield by 77 stems per m2 ± 15 SE. Combining high tunnel and field production with the season advancement techniques of fall planting dates, low-cost insulation, and pre-sprouting resulted in high total yields in the Intermountain West compared to traditional industry recommendations. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

19 pages, 3911 KiB  
Article
Non-Invasive Probing of Winter Dormancy via Time-Frequency Analysis of Induced Chlorophyll Fluorescence in Deciduous Plants as Exemplified by Apple (Malus × domestica Borkh.)
by Boris Shurygin, Ivan Konyukhov, Sergei Khruschev and Alexei Solovchenko
Plants 2022, 11(21), 2811; https://doi.org/10.3390/plants11212811 - 22 Oct 2022
Cited by 3 | Viewed by 2171
Abstract
Dormancy is a physiological state that confers winter hardiness to and orchestrates phenological phase progression in temperate perennial plants. Weather fluctuations caused by climate change increasingly disturb dormancy onset and release in plants including tree crops, causing aberrant growth, flowering and fruiting. Research [...] Read more.
Dormancy is a physiological state that confers winter hardiness to and orchestrates phenological phase progression in temperate perennial plants. Weather fluctuations caused by climate change increasingly disturb dormancy onset and release in plants including tree crops, causing aberrant growth, flowering and fruiting. Research in this field suffers from the lack of affordable non-invasive methods for online dormancy monitoring. We propose an automatic framework for low-cost, long-term, scalable dormancy studies in deciduous plants. It is based on continuous sensing of the photosynthetic activity of shoots via pulse-amplitude-modulated chlorophyll fluorescence sensors connected remotely to a data processing system. The resulting high-resolution time series of JIP-test parameters indicative of the responsiveness of the photosynthetic apparatus to environmental stimuli were subjected to frequency-domain analysis. The proposed approach overcomes the variance coming from diurnal changes of insolation and provides hints on the depth of dormancy. Our approach was validated over three seasons in an apple (Malus × domestica Borkh.) orchard by collating the non-invasive estimations with the results of traditional methods (growing of the cuttings obtained from the trees at different phases of dormancy) and the output of chilling requirement models. We discuss the advantages of the proposed monitoring framework such as prompt detection of frost damage along with its potential limitations. Full article
(This article belongs to the Topic Biophysics of Photosynthesis: From Molecules to the Field)
Show Figures

Figure 1

18 pages, 6282 KiB  
Article
Evaluation of the Microclimate in a Traditional Colombian Greenhouse Used for Cut Flower Production
by Edwin Villagrán, Jorge Flores-Velazquez, Carlos Bojacá and Mohammad Akrami
Agronomy 2021, 11(7), 1330; https://doi.org/10.3390/agronomy11071330 - 30 Jun 2021
Cited by 13 | Viewed by 3450
Abstract
Cut flower production in the Bogotá savanna is one of Colombia’s main export products. Flower production is mainly carried out in greenhouses, as this type of production system has substantial advantages over crops grown in open fields. Protected agriculture provides timely climate management [...] Read more.
Cut flower production in the Bogotá savanna is one of Colombia’s main export products. Flower production is mainly carried out in greenhouses, as this type of production system has substantial advantages over crops grown in open fields. Protected agriculture provides timely climate management that improves crop yields. The objective of this work was to build and validate a 3D CFD numerical model to understand the spatial distribution of temperatures because of the air flow dynamics inside a typical greenhouse in the Bogotá savanna. Root mean square error (RMSE) and mean absolute percentage error (MAPE) were the statistical indicators used between experimental and simulated wind speed and temperature data. The simulations considered twelve evaluation scenarios that were established based on the climatic conditions characteristic of the study region. The results indicate that under regional conditions of temperature and wind for this type of passive greenhouse, there is a deficient ventilation rate. This rate does not exceed 35 exchanges h−1 compared to the recommended rates for crops, which is between 45 and 60 air exchanges h−1. This renewal rate contributes to the heterogeneity of the microclimatic dynamics of the greenhouse, presenting hot spots with temperature values above 32 °C in all examined scenarios. For the lower air speed scenarios (<1 ms−1), these areas of high temperature can reach up to 50% of the cultivated area. Therefore, it is suggested that future studies should seek technical solutions to optimize the microclimatic conditions of the greenhouse design used in the Colombian floriculture sector. Full article
(This article belongs to the Special Issue Sustainable Urban Agriculture in the 21st Century)
Show Figures

Figure 1

Back to TopTop