
Citation: Tiwari, P.; Sharma, A.; Bose,

S.K.; Park, K.-I. Advances in Orchid

Biology: Biotechnological

Achievements, Translational Success,

and Commercial Outcomes.

Horticulturae 2024, 10, 152.

https://doi.org/10.3390/

horticulturae10020152

Academic Editor: Anna Lenzi

Received: 31 December 2023

Revised: 30 January 2024

Accepted: 1 February 2024

Published: 6 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

horticulturae

Review

Advances in Orchid Biology: Biotechnological Achievements,
Translational Success, and Commercial Outcomes
Pragya Tiwari 1,* , Abhishek Sharma 2, Subir Kumar Bose 3 and Kyeung-Il Park 1,*

1 Department of Horticulture & Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
2 Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area,

Gandhinagar 382426, India; abhishek.sharma@iar.ac.in
3 Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut 250005, India;

bbausubir01@gmail.com
* Correspondence: pragyatiwari@ynu.ac.kr (P.T.); pki0217@yu.ac.kr (K.-I.P.)

Abstract: Orchids constitute the largest and most diverse group of flowering plants and are classified
in the family Orchidaceae. Exhibiting significance as the most exotic and ubiquitous flowering plant,
the cultivation of orchids on a commercial level is gaining momentum worldwide. In addition to
its ornamental and aesthetic value, the orchid industry has successfully generated employment for
people in developing countries. Recent advances in biotechnological interventions in orchids have
substantially contributed to the development of exotic varieties with novel traits, not to forget the
inputs of traditional plant breeding methods and tissue culture approaches. In addition, the scientific
developments in orchid biology have remarkably bridged the knowledge gaps in areas of orchid
classification, phytochemistry, and cultivation strategies. This has facilitated the commercialization of
novel varieties, opening new avenues in the orchid industry, and their global marketing as cut flowers
and artificially propagated plants. Orchids constitute the first floriculture crops that revolutionized
the orchid industry; however, they also hold several challenges in the natural propagation and
conservation of several species that are on the verge of extinction. International organizations like
CITES have come forward to address challenges associated with illegal global trade and indiscrim-
inate use of orchid varieties, aiming for conservation and legal commercial goals. This thematic
review is one-of-a-kind in providing comprehensive insights into the emerging momentum of orchid
biology and how its globalization projects to considerably impact the orchid industry in the coming
times. However, it is imperative to understand the challenges in the cultivation and conservation
of orchid varieties and ensure legislative guidelines both on domestic and global levels to ensure a
multipronged approach to the conservation and commercialization of orchids.

Keywords: aesthetic value; biotechnological interventions; commercial trade; conservation;
micropropagation; transgenic orchids

1. Orchid Biology: Recent Aspects and Emerging Perspectives

The emerging benefits and recognition of orchids for mankind have led to substantial
research in the present decade. Considered one of the most fascinating and diversified
plant families globally, Orchidaceae comprises more than 8000 genera and 35,000 natural
and artificial hybrid species distributed globally [1,2]. Within the family Orchidaceae, 70%
of species are epiphytic and constitute two-thirds of global epiphytes [3]. Of the remaining
orchid species, 25% are terrestrial and 5% require support for growth [4]. With specialized
structures and properties, orchids continue to fascinate researchers as they have since
time immemorial. The peculiar features demonstrated by orchids comprise specialized
pollination, thin non-endospermic seeds, diversified habitats, mycorrhizal-dependent
germination, and adaptive mechanisms, among others [5].

Presently, advances in orchid biology and biotechnologies have substantially con-
tributed to the development of new cultivars and hybrids with multiple ornamental values,
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contributing to the rapidly growing market and demand for exotic varieties. From 2007 to
2012, the cost of fresh orchid cuttings and buds traded was estimated to be 483 million US
dollars [6]. According to statistics, orchids are imported and exported by many countries,
amounting to 504 million US dollars in 2012 [6]. In addition, orchids are also harvested and
traded for medicinal value and food components. On a commercial level, Phalaenopsis is
the most important orchid genus, with a market share of 79% among all global orchids.
The European market is defined as highly competitive, with multiple cultivation prospects
and a commercial value of 182 million potted plants of more than EUR 620 million [7]. The
success in the cultivation and marketing of Phalaenopsis has been achieved via micropropa-
gation and breeding approaches in many countries, including the Netherlands, Taiwan,
Thailand, etc. [8]. In addition, Oncidium, Vanda, Dendrobium, and Cymbidium are other
popular orchid genera grown and marketed worldwide as cut flowers [8]. Vanilla planifolia
(vanilla orchid) is an interesting orchid species that produces edible fruit and vanillin, a
sought-after commodity across the globe.

The present era has witnessed unprecedented advancements in promoting orchid
cultivation, attributed to the dynamic progress in biotechnological interventions. Figure 1
illustrates advanced biotechnologies in orchids facilitating multi-faceted trait improvement.
Table 1 provides a comprehensive account of research studies on orchids for generating
hybrids with high-value traits. Their multi-faceted importance in floriculture, the food
sector, and medicine has substantially contributed to orchid commercialization, with a
multi-million-dollar global market [5,6]. The growing demand for exotic varieties and
the conservation of threatened species necessitates new scientific technologies such as
novel flower varieties, biotic/abiotic stress tolerance, and efficient propagation [5,8]. New
frontiers in plant science have focused on advanced studies in orchids including genetic
manipulations, proteome studies, and functional genomics, among others [1,2,5] for desired
outcomes. Moreover, high-throughput technologies have facilitated studies on orchid
phytochemicals, achieved by high-performance liquid chromatography (HPLC), nuclear
magnetic resonance (NMR), mass spectrometry (MS), and others. Recent advances in the
development of HPLC-DAD and MS have facilitated the precise detection of bioactive
components in biological samples and novel compounds with pharmacological attributes.
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Table 1. A comprehensive account of research studies on orchids for generating hybrids with
high-value traits.

Orchid Genus Biotechnological Interventions Research Outcome Reference

Oncidium sp. A. tumefaciens-mediated transformation of
OMADS1 gene
RNAi-induced silencing of PSY gene
Particle bombardment of construct
pCB199 plasmid

Increased flowering
and more flowers

White flowers

Disease resistance

[9]

[10]

[11]

Phalaenopsis sp. RNAi-mediated silencing (virus-induced gene
silencing) of the PeUFGT3 gene

Decreased anthocyanin and
variation in flower color

[12]

Phalaenopsis
amabilis

Coelogyne pandurata Lindley

A. tumefaciens-mediated transformation of
the orchid

A. tumefaciens-mediated transformation of the
KNAT1 gene

Transgenic orchids with the
highest frequency of shooting
Micropropagation of
orchid species

[13]

[14]

Cymbidium sinense A. tumefaciens-mediated transformation of
CsFT gene

Early flowering [15]

Vanda sp. Sonication-assisted
Agrobacterium-mediated
transformation (SAAT)

Enhanced disease resistance [16]

Dendrobium Phalaenopsis Agrobacterium-mediated transformation
of gusA,
nptII, hptII marker genes

Successful insertion of genes in
transgenic orchid

[17]

Phalaenopsis sp. A. tumefaciens-mediated transformation of
eGFP (fluorescent) gene
Particle bombardment of EgTCTP gene

Hygromycin resistance,
early initiation of primordial
shoots in the transformed PLBs

[18,19]

Cymbidium
niveo-marginum

A. tumefaciens-mediated transformation of gfp,
hptII, ORSV CP genes

Enhanced virus resistance [20]

Phalaenopsis sp. Genetic transformation of orchid with
Vitreoscilla hemoglobin (vhb) gene via injection
of DNA solution into immature capsules

Transgene with better metabolism
and growth

[21]

Erycina pusilla A. tumefaciens-mediated transformation of
MSRB7 gene

Enhanced disease resistance [22]

Dendrobium
Sonia ‘Earsakul’

RNAi-induced silencing of DseDFR and
DseCHS-B genes

Anthocyanin accumulation was
restricted in transgenic orchid

[23]

Cattleya sp. Agrobacterium-mediated genetic transformation
with an Odontoglossum
ringspot virus replicase gene

Enhanced virus resistance [24]

P. amabilis Genetic transformation of lipid transfer
protein-encoding gene

Improved adaptation
to cold stress

[25]

Phalaenopsis aphrodite A. tumefaciens-mediated transformation
of Pha21
gene

Enhanced virus resistance [26]

Phalaenopsis sp. Genetic transformation of Phalaenopsis
via pollen
tube pathway

Transgenic orchid with improved
traits

[27]

Dendrobium sp. Electro-injection of foreign DNA
into protocorms

Transgenic orchid with
improved traits

[28]

Oncidium sp. Genetic transformation of
pflp gene

Resistance against
E. carotovora pathogen

[29]
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Table 1. Cont.

Orchid Genus Biotechnological Interventions Research Outcome Reference

Dendrobium sp. Genetic transformation of
Firefly Luciferase gene

Transgenic orchid glows in
the dark

[30]

Dendrobium sp. Sense and anti-sense constructs used for
genetic transformation

Enhanced vase life of
transgenic orchid

[30]

Phalaenopsis sp. Genetic transformation of
ß-1,3-endoglucanase gene

Transgenic orchid is resistant
to fungus

[31]

Calanthe sp. Seed imbibition; electroporation of GUS, NPT
II gene

Transgenic orchid with
improved traits

[32]

However, overexploitation and the complex life cycles of orchids account for key
challenges: unsustainable/illegal collection, climatic fluctuations, and threatened habitats.
According to IUCN Global Red List statistics for 948 orchid species, 56.5% were classified as
threatened in 2017 (The International Union for Conservation of Nature, 2017). Furthermore,
attributing to their complicated lifestyles, orchids present a major challenge for restora-
tion/conservation and highlight an immediate requirement for integrated conservation
measures on broader levels (Table 1).

In the Cypripedioideae (the slipper orchids) subfamily, 90% of species were reported
threatened due to over-harvesting and a decline in habitats by the Global Red List [33].
Vogt-Schilb et al. [34] studied orchid species and distribution on Mediterranean islands and
reported a turnover in the composition of the species due to alterations in land usage and
variation in species distribution due to changes in worldwide levels [35]. The unsustainable
harvesting of orchid species represents a crucial factor. The indiscriminate use and collection
of notable orchid genera, namely Renanthera, Paphiopedilum, Cattleya, and Phragmipedium,
have resulted in their classification as being severely threatened. To curb the rising illegal
trade of commercial varieties, more than 70% of orchid species were categorized in the
appendices of the Convention on International Trade in Endangered Species (CITES) [36],
a fruitful global initiative toward restoration. However, considering that many other
orchid species are smuggled/traded across international borders for food, medicines, and
horticulture, attempts are being made to understand/estimate the unauthorized export of
orchids (under CITES) [37,38]. The steps toward orchid conservation and the development
of new varieties should address the conservation of habitats, proper monitoring, and the
implementation of guidelines for protection, and ensure legal marketing/global trade of
multi-attribute varieties. The thematic review discusses the growing significance of orchids
on a global platform with an emphasis on orchid biotechnologies to develop exotic varieties
via conventional and modern strategies. In addition, the contributions of international
and domestic organizations in monitoring illegal orchid trade and ensuring guidelines
for conservation are extensively discussed. The preservation of orchid biodiversity via
scientific approaches, contributions of computational resources in orchid biology, guidelines
for marketing/trade at the domestic/global levels, and translational success stories define
the underlying themes of the article.

2. Research Methodology: Literature Retrieval, Compilation, and Analysis

The conceptualization, implementation, and review writing spanned a time frame of
3–4 months. For the comprehensive study, an exhaustive literature survey and analysis
were performed. Several literature databases, including PubMed (https://pubmed.ncbi.
nlm.nih.gov (accessed on 28 January 2024) and Google Scholar (https://scholar.google.com
(accessed on 28 January 2024), were used to retrieve research and review papers discussing
various aspects of basic orchid biology and emerging biotechnologies for orchid cultivation,
conservation, and genetic engineering studies. Efforts were also made to understand and
discuss the impact of globalization and legislative guidelines at global/domestic levels

https://pubmed.ncbi.nlm.nih.gov
https://pubmed.ncbi.nlm.nih.gov
https://scholar.google.com
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for curbing illegal orchid trade and ensuring a legal framework for orchid cultivation
and trade.

3. Conventional Versus Modern Approaches for Orchid Cultivation and Conservation

Orchid cultivation is gaining momentum attributed to the development of new orchid
varieties with unique features of colors and appearance. To bridge this demand and supply
gap, both traditional and molecular breeding approaches are employed with consistent
efforts. The traditional breeding approaches of orchids, although time-consuming, have
remained the mainstream approach for orchid breeding until now. The traditional breeding
of orchid varieties includes their propagation through seeds, division of large clumps,
offshoots or keikis, cutting, and air layering [39,40]. However, the increased demands
of unique traits like flower/foliage color, morphology, and enhanced shelf life cannot be
attained by traditional cultivation approaches including crossbreeding-mediated hybridiza-
tion and mutation [1]. In recent years, these limitations have been actively addressed with
the help of modern breeding approaches via transgenic molecular breeding approaches.

3.1. Classical Breeding Strategies
3.1.1. Crossbreeding

Orchid genera Phalaenopsis and Oncidium are widely grown orchids for commercial
production. Orchids are both self-pollinated and cross-pollinated species. However, the
self-pollinating species sometimes produce a smaller number of seeds than cross-pollinated
flowers [1,41]. Crossbreeding or hybridization using both natural and artificial approaches
splendidly integrates the excellent traits of two parents in their hybrid offspring. One
of the oldest natural orchid hybrids, Phalaenopsis intermedia, which is a result of a cross
between P. aphrodite and P. rosea, was described in 1853. Meanwhile, the first commercial
artificial hybrid orchid Calanthe dominyi was developed as a cross between C. masuca and
C. furcate [42,43]. The production of these commercial natural and hybrid orchids was
achieved using crossbreeding approaches. However, several factors including hybrid
combination fertility, targeted traits quality assessment, and superior hybrid offspring
selection play an important role and must be considered [44]. The generation F1 derived
from the cross between parents with targeted contrasting traits usually has large phenotypic
differences from their parents. For example, the F1 generation derived from the parent
having a large flower and short flowering time compared to the parent having a small
flower and long flowering time, viz. Ionmesa Popcorn ‘Haruri’, produces flowers with
distinct notable differences from its parents. However, hybrids sometimes bear problems
associated with germination; for example, the occurrence of intraspecific < intrageneric
< intergeneric degree of genetic relationship in hybrid Cymbidium seeds results in difficult
seed germination and culturing [45]. Similar problems associated with the hybridization
process, parent incompatibility, and post-fertilization embryo abortion failing the distinct
hybridization have been reported [46]. Commercial orchid cultivation suffers from several
associated breeding barriers such as the large and complex polyploid genome, slow growth,
and long life cycle; consequently, it takes a long period to generate new cultivars using
cultivation through the traditional breeding system. The low transformation efficiency
makes the development of new varieties with desired traits a challenging task [47,48]. For
example, the high commercial value orchid Phalaenopsis takes more than 2 years to switch
from the vegetative to the reproductive phase [49]. Therefore, the applicability of these
conditions remains to be studied in major commercial orchid species. Seed germination is
one of the key aspects of the traditional breeding system, as it is directly associated with
the efficient success of crossbreeding; therefore, in-depth studies are required for a deeper
understanding of the seed germination mechanisms and plant developmental characteris-
tics of an effective breeding system. Hence, a suitable cultivation approach is required for
hybrid seeds developed from crossbreeding and stable growth of the hybrid population.
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3.1.2. Selection Breeding

Selection breeding differentiates from crossbreeding where hybrid selection is based
on natural variations in traits [50]. Selection breeding specifically concerns three important
genetic parameters: genetic correlations between traits, trait heritability, and interactions
between genotypes and the environment [1]. Like classical orchid breeding strategies
of crossbreeding and selection breeding, biotechnological interventions have resulted in
the origin of mutational breeding and molecular marker-assisted breeding approaches
for orchids.

3.1.3. Mutation Breeding

The mutational breeding approach utilizes physical and chemical mutagens to improve
individual traits and will shorten the breeding cycle in orchids. Mutational breeding has
produced several orchids with improved traits, viz. aroma, higher medicinal content,
enhanced shelf life, and stress resistance [43]. Polyploidization using colchicine and other
mutagen treatments is one of the key approaches used for mutation in orchids such as
Cymbidium, Dendrobium, Oncidium, and Phalaenopsis [51–56]. The higher levels of genomic
heterozygosity can allow the enhanced mutation rate in a short time duration; however, the
random and unpredictable nature of mutagenesis can take place throughout the genome
which can lead to other physio-morphological problems in orchid mutants. Therefore, a
lot of studies are still required to understand the basis of mutation breeding in orchids for
the identification of suitable genotypes, explants, mutagen types, and their optimized dose
concentration to produce mutant orchids with desired traits.

3.1.4. Molecular Marker-Assisted Breeding (MMAB)

The molecular marker-assisted breeding approach utilizes the accuracy of molecular
biology tools and techniques for fast, accurate, and environmental-influence-free orchid
breeding and natural and artificial hybrid selection [57]. The MMAB uses the most preva-
lent, versatile, and high-potential markers such as restriction fragment length polymerase
(RFLP), amplified fragment length polymerase (AFLP), insertional simple sequence repeats
(ISSR), and single nucleotide polymorphism (SNP) markers [1]. Most of these markers are
widely used in modern orchid breeding and have achieved good results. Li et al. [58] devel-
oped a set of wide-range genic SSR markers in Cymbidium ensifolium to evaluate the genetic
relationship and trait mapping in the orchid population. These SSR markers facilitate the
identification of genetic relationships and have been successively used for the identification
of root growth mechanisms and secondary metabolites-related gene identification, along
with flower shape and color-related genes in Phalaenopsis [59,60]. Similarly, SNP markers
were also utilized to construct integrated genetic maps of the Dendrobium genome along
with the identification of several important QTL sites [61]. Although MMAB has played
an important role as a modern orchid breeding approach, it mainly targets phylogenetics
for determining genetic relationships between orchid species. Therefore, co-integrated
approaches of traditional, and modern orchid breeding strategies and biotechnologies are
required for improved orchid breeding.

3.2. In Vitro Orchid Propagation in Plant Tissue Culture

In vitro micropropagation provides a convenient and feasible approach for orchids,
especially for orchid seeds that are difficult to germinate and grow in a natural environ-
ment [40]. Also, it provides a platform for biotechnologies for orchid improvements and
genetic engineering. In vitro micropropagation represents a promising tool for the conser-
vation of several threatened and endangered orchids and has been successfully applied in
several species such as Paphiopedilum armeniacum, Bulbophyllum nipondhii, Paphiopedilum
insigne, and Anoectochilus elatus [62–65].

In the last decades, plant tissue cultures have been instrumental in the rapid propaga-
tion and ex situ conservation of orchids, using different methods and explants including
flower stalks, shoot tip nodes, stem bids, root tips, and rhizome segments [66]. The composi-
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tion of culture media plays a major role in in vitro seed germination and micropropagation
using different explants [67,68]. For example, Murashige and Skoog (MS) medium enhances
germination in the orchid Geodorum densiflorum, whereas Knudson C medium [69] is more
suitable for Paphiopedilum seeds compared to other orchid-specific culture media [70]. It
was also observed that a low concentration of mineral salts in MS medium (viz. ½ MS or
¼ MS) promotes seed germination in some terrestrial orchids [71,72]. The constituents of
culture media, especially plant growth regulators, auxins, and cytokinins, have a signifi-
cant impact on the growth, germination, and development of orchid seeds and explants
in vitro [73,74]. Along with the plant growth promoters, the addition of organic nutrient
sources like coconut water and potato extract in culture media was also found to promote
orchid in vitro seed germination [63,75].

The different orchid species show great variations in physiological and morpholog-
ical features, requiring different conditions for growth in plant tissue culture. Different
species respond differently to growth factors (depending on the genotype), and some are
recalcitrant in in vitro conditions [76]. In terrestrial orchids, such as Paphiopedilum and
Cypripedium, meristem explant survival and PLB induction are difficult. In addition, a
method developed for a particular species may not work for another species. Therefore,
for targeted genetic transformation, a plant regeneration protocol must be developed for
a particular plant genotype [76], and the identification of variations in genotype must
occur before plant transformation is necessary. The subsequent discovery of asymbiotic
seed germination (for in vitro plant propagation) has been widely employed to develop
orchid plants in vitro and direct somatic embryogenesis [77], totipotent callus induction,
shoot-bud formation from different explants, PLB formation from cell suspension culture,
and others, which have immensely contributed to the micropropagation and creation of
transgenic hybrids [5].

3.3. Cryopreservation Techniques

Low temperature and dry storage-based preservation are key approaches to orchid
germplasm conservation [78,79]. However, this low temperature and dry storage-based
method is successful for 1 to 6 months of germplasm preservation but fails to provide
high viability of germplasm under preservation for longer durations [80,81]. Cryopreser-
vation is the best germplasm preservation approach as all the metabolic and physiolog-
ical processes cease at the temperature −196 ◦C [82]. The pretreatment of orchid seeds
and pollens germplasm through vitrification, desiccation, and encapsulation–dehydration
methods of removing the cell water content before cryopreserving in liquid nitrogen are
employed [83,84].

3.3.1. Vitrification

Sakai [85] introduced the technique of vitrification typically used for the longer preser-
vation of immature and mature orchid seeds with higher than average water content.
The vitrification method uses a high osmolarity vitrification solution containing glycerol,
dimethyl sulfoxide, and ethyl glycol as cryoprotectants. The seeds for preservation are kept
in this high osmolarity vitrification solution that reduces the intracellular water content of
seeds and vitrified by penetration of these cryoprotectants through osmoregulation, thus
reducing the freezing temperature and preventing cells from ice nucleation injuries [84,86].
Vitrification has helped in the conservation through cryopreservation of immature and
high-water-content seeds of several orchid genera, viz. Bletilla, Cymbidium, Dendrobium,
Encyclia, Phaius, and Vanda [82].

3.3.2. Desiccation

Desiccation-based cryopreservation is found to be more suitable for mature orchid
seeds. The process of desiccation includes the slow drying of seeds under a controlled des-
iccation rate under constant relative humidity or drying with silica gel or with CaCl2.6H2O
salt solution to reduce the water content of the seeds before preserving them in liquid
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nitrogen [82]. Several orchids, viz. Bletilla formosana, Caladenia flava, Dactylorhiza fuchsii, Di-
uris fragrantissima, Eulophia gonychlia, Gymnadenia conopsea, Orchis coriophora, Paphiopedilum
rothschildianum, Pterostylis sanguinea, Thelymitra macrophylla, and Dendrobium candidum, were
successively cryopreserved using the desiccation technique [82,87].

3.3.3. Encapsulation–Dehydration

Encapsulation–dehydration, a technique developed for artificial seed production, is
the third method for cryopreservation [88]. The encapsulation–dehydration approach
uses the in vitro cultured orchid plant tissues, seeds, and embryos, partially desiccated
with silica beads or airflow of the laminar bench to reduce the cellular water content.
These partially dried tissues are trapped and encapsulated in sodium alginate beads
before keeping them in liquid nitrogen for cryopreservation [87]. The encapsulation–
dehydration techniques are generally applied to a few orchids, viz. Cyrtopodium hatschbachii
and Oncidium bifolium [89,90].

3.4. Genetic Engineering and Generation of Hybrids with ‘High-Value’ Traits

Genetic engineering in orchids confers ‘high-value’ traits to the hybrids with desired
characteristics and has been attempted in the genera viz. Phalaenopsis, Cattleya, Cymbidium,
Dendrobium, Oncidium, Paphiopedilum, and Vanda, with documented translational success.
PLBs derived from shoot tip cultures are used as target material for transformation in Pha-
laenopsis sp., while protocorm has also been frequently used [91]. A relatively large number
of transgenic plants can be generated by protocorm transformation due to the presence
of thousands of seeds in one fruit of Phalaenopsis sp. However, to achieve a successful
outcome, it is indispensable to improve the transformation efficiency for efficient orchid
breeding. Furthermore, the genetic engineering procedures in orchids are applied through
either particle bombardment or Agrobacterium-mediated transformation to achieve the
delivery of the desired gene. The initial genetic transformation studies were limited to the
biolistic-mediated transformation [92,93]. The very first successful Agrobacterium-mediated
genetic transformation was achieved in the orchid genera Phalaenopsis expressing the GUS
gene construct [94]. The Agrobacterium-mediated genetic transformation was found to be
more efficient than the biolistic-mediated genetic transformation in terms of incorporation
of low copy number genes at transcriptionally active chromosomal regions [95].

The last decade has documented genetically engineered orchids through Agrobacterium-
mediated genetic transformation systems in Phalaenopsis, Dendrobium, Cymbidium, Oncidium,
and Vanda [18,96–99]. The genetic engineering approaches in orchids are not only restricted
to the overexpression of heterologous genes for the desired traits but also gene silencing
to knock out genes in Dendrobium ‘Sonia’ and Oncidium hybrids [100]. Now, with the
availability of the complete genomes of Dendrobium officinale and P. equestris, the genetic
engineering approaches facilitate CRISPR/Cas9-mediated genome editing in different
orchid species [101]. Liu et al. [100] delivered a phytoene synthase-RNAi construct into
PLBs of Oncidium hybrid. The downregulation of PSY and geranyl synthase genes was
observed in the transgenic orchid, and endogenous levels of abscisic acid and gibberellic
acid were decreased in dwarf plants [100]. In another study, Agrobacterium-mediated
insertion of KNAT1 (a key gene for bud apical meristem differentiation) and AtRKD4 (a
key gene for embryonic differentiation) into the orchid genome induced organogenesis and
bud development, thereby improving the yield of native and transgenic orchids.

4. Biotechnological Interventions in Orchids: Existing and Upcoming Trends

Biotechnological approaches play a key role in the development of ornamentals with
improved floral and ‘high-value’ attributes and are often employed to alter flower color,
fragrance, appearance, disease resistance, and shelf life, among others [79,102].
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4.1. Promoting Growth Vigor and Flowering

Desired traits can be selected in orchids with the help of genetic engineering along
with controlling the flowering time, fragrance, flower color, and vase life [103]. Table 2
discusses flowering mechanisms in diverse orchids as exemplified by key representative
genes and their multiple functions. Figure 2 illustrates the biological roles of MADS-box
genes in controlling flowering in the Arabidopsis and Orchid plants.

Table 2. Flowering mechanisms in diverse orchids as exemplified by key representative genes and
their multiple functions.

Orchid Genus Gene Name(s) Functional Role(s) Reference

Dendrobium DOH1: HOMEOBOX1 Floral transition and flower development [104]
Dendrobium DOSOC1 Promotes early flowering [105]
Dendrobium DnVRN1 Floral induction [106]
Dendrobium DnAGL19 Flowering regulation [107]
Dendrobium DOFT Inflorescence and flower development [108]
Dendrobium DOAP1 Formation of floral meristems [109]
Dendrobium DOFTIP1 Promotes flowering [108]

Doritaenopsis DhEFL4 Requirement for photoperiod perception and
circadian function [110]

Oncidium OMADS1 Induced precocious flowering [111]
Oncidium OnTFL1 Encoding floral activator [112]
Phalaenopsis PeMADS6 Flower longevity and ovary development [113]
Phalaenopsis PhalCOL Early flowering phenotype [54]
Phalaenopsis nation PeSEP Floral organ determination [114]
Phalaenopsis PaFT1 Precocious flowering [115]
Phalaenopsis PhapLFY Flower initiation [116]

Phalaenopsis ‘Formosa rose’ ORAP11 and ORAP13 Both genes are highly expressed during the early
stages of floral buds and vegetative organs [117]

P. aphrodite PaAP1-1 and PaAP1-2
PaAP1-1 is expressed in the inner whorls of the
pollinia and pedicel and PaAP1-2 is expressed in the
pedicel only

[118]

Cymbidium
ensifolium CeMADS

Reproductive organ development such as stamen
and carpel development and function in
the meristem

[119]

The very first genetic engineering attempts in Oncidium and Odontoglossum orchids
were carried out to enhance growth and vase life through the mutant ethylene receptor
gene [120]. Oncidium and Odontoglossum are commercially less viable orchids than Pha-
laenopsis due to their reduced vase life. Raffeiner et al. [120] engineered an ethylene receptor
mutant gene etr1-1 from Arabidopsis under the control of a flower-specific promoter to
reduce the sensitivity of transgenic orchids toward the exogenous ethylene, thus provid-
ing a prolonged vase life. In similar attempts, a virus-induced gene silencing approach
was applied in P. equestris by suppressing the P. equestris UDP glucose–flavonoid 3-O-
glucosyltransferase (PeUFT3), which significantly faded the flower color by decreasing
the anthocyanin content and altered the flower pigmentation due to reduced anthocyanin
biosynthesis [121]. Similarly, genetic engineering in orchids was successfully used to gener-
ate the adaptive response against cold stress in P. amabilis by introducing the cold-inducible
lipid transfer protein (LTP) gene from rice. To alter growth and morphology, genes like
the class 1 Knox DOH1 gene and Dendrobium Sonia cytokinin oxidase DSCKX1 gene were
introduced and overexpressed in Dendrobium under in vitro conditions, leading to abnor-
mal multiple shoot developments and reduced cytokinin content [122–124]. These plants
demonstrated slow shoot growth with an improved rooting system. These studies proved
the utility of the DSCKX1 gene as a growth rate-manipulating gene in the development
of orchids.
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of SOC1, AGL6, SVP, and AP1 have been isolated and functionally characterized either in heterolo-
gous systems (e.g., Arabidopsis) or orchids and shown to be involved in promoting flowering. 
MADS-box transcription factors that function as flowering activators and suppressors are shown in 
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Figure 2. Biological roles of MADS-box genes in controlling flowering in the Arabidopsis and Orchid
plants. (A) In Arabidopsis, the MADS-box genes including SOC1, FLC, SVP, and AGL24 integrate
signals for flowering from environmental and endogenous cues. (B) In orchids, orthologous genes of
SOC1, AGL6, SVP, and AP1 have been isolated and functionally characterized either in heterologous
systems (e.g., Arabidopsis) or orchids and shown to be involved in promoting flowering. MADS-box
transcription factors that function as flowering activators and suppressors are shown in green and red,
respectively, whereas the remaining flowering regulators are shown in black boxes. Promoting and re-
pressive flowering is indicated by black arrows and orange T bars, respectively. The dashed lines with
arrows indicate possible positive regulation based on the studies using a heterologous system. Double-
ended diamond arrows indicate protein–protein interactions. AGL6; AGL17; AGL19; AGL24; AP1;
CO; FLC; FLM; FT; FTIP1; FUL; LFY, MAF2; SOC1; SVP. Abbreviations: AGL—AGAMOUS-LIKE;
AP—APETALA; CO—CONSTANS; FLC—FLOWERING LOCUS; FLM—FLOWERING LOCUS;
FTIP—FT-INTERACTING PROTEIN; FUL—FRUITFULL; LFY—LEAFY; MAF—MADS AFFECT-
ING FLOWERING; SOC—SUPPRESSOR OF OVEREXPRESSION OF CONSTANS; SVP— SHORT
VEGETATIVE PHASE.
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4.2. Diagnosis of Pathogens

Most orchid species are faced with challenges of extinction due to global environmen-
tal changes and overexploitation; however, microbial pathogens equally threaten orchid
cultivation. The most common pathogen–fungal species are namely leaf spots from Ni-
grospora oryzae, leaf spots from Cladosporium cladosporioides, wilt from Fusarium oxysporum,
blight with root rot from Phytophthora capsica, anthracnose from Colletotrichum gloeospori-
oides, the black spot from Alternaria alternata, leaf spots from Phyllosticta capitalensis, and
leaf spots from Phoma multirostrata. Also, sometimes, endophytes can work as conditional
pathogens for orchids [79,125,126]. Biotechnological advancements have provided the
solution through modern disease diagnosis techniques, allowing detection within the
laboratory and in the field.

Droplet polymerase chain reaction (dPCR) is an innovative PCR-based disease diagno-
sis technique that utilizes the Taq DNA polymerase to unwind targeted DNA sequences
from a complex test through a pre-validated primer/probe test [127]. Along with the PCR-
based nucleic acid amplification detection technique, an advanced spectroscopy method is
also applied for disease diagnosis in orchids. Surface-Enhance Raman Spectroscopy (SERS)
is a Raman scrambling-based non-destructive and developing laser-based spectroscopy
method that utilizes resistance tests and atomic tests for pathogen detection in plants [128].
DNA hybridization and colorimetric biosensor-based approaches are being extensively
researched to establish a rapid, real-time disease diagnosis tool [129]. Similarly, an ad-
vanced chip-based integrated microfluidic system has been developed for automated rapid
virus detection, through nucleic acid amplification. This approach was utilized to identify
the most prevalent orchid virus, Cymbidium mosaic virus (CMV), with the purification of
pathogen-specific RNA from the diseased sample. The isolated RNA is amplified to cDNA,
and its optical detection is achieved using reverse transcription loop-mediated isothermal
amplification (RT-LAMP) for the detection of the pathogen in the sample [130].

4.3. CRISPR/Cas and Advanced Genome Editing in Orchids

Recent advances in the development of genetic manipulation techniques have com-
pletely revolutionized orchid biotechnologies and opened new avenues in ‘hybrid’ genera-
tion with desired characteristics. Gene editing has been performed in ornamental genera,
Dendrobium and Phalaenopsis, with low efficiency; however, CRISPR/Cas9 genome editing
research in orchids aims to facilitate the development of key orchid phenotypes. Tong
and coworkers [131] attempted a high-efficiency CRISPR/Cas-based editing of Phalaenop-
sis, wherein two CRISPR/Cas methods were employed to introduce three MAD sites
(MADS44, MADS36, and MADS8) together in pYLMADS8_36_44 [132] and vector and
single in separate vectors (P1300_MADS8, P1300_MADS36, and P1300_MADS44 [133] for
the production of multiple mutants in P. equestris MADS-box genes [131]. The genetic
manipulation of orchids has witnessed some success with the establishment of genetic
transformation systems and the creation of transgenic mutants with the desired traits;
however, the poor transformation efficiency of orchids defines a major challenge, and
limited knowledge about the gene function and breeding further adds to the limitations.
Further insights and research on achieving better transformation efficiency are needed for
the success of transgenic technologies in orchids. Semiarti and coworkers [134] developed
a CRISPR/Cas9 KO system for molecular breeding in P. amabilis. The Phytoene desaturase
3 (PDS3) gene was successfully integrated into the transformants and showed pale leaf
color, and the study showed prospects for functional gene editing in orchids. As a step
further, Xia et al. [135] successfully developed a multiplex genome editing system in Pha-
laenopsis orchids and protoplast-based screening, highlighting advanced precision breeding
in orchids. The CRISPR/Cas9 tool was employed for editing endogenous genes in the
D. officinale genome [136]. The study showed efficient genome editing in D. officinale paving
the way to create novel varieties.
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5. Ethnomedicinal and Edible Importance of Orchids

Represented as the diversified plants among the angiosperms, orchids are cultivated
for their attractive flowers and exotic varieties. Initially cultivated as ornamentals for their
multi-colored and attractive flowers, the medicinal applications of orchids are gaining
momentum in the present time. Studies have reported the initial cultivation of orchids
by the Chinese and documented orchids for their medicinal properties and use [137].
Researchers have traced orchid history and their medicinal uses to 120 million years ago,
probably cultivated for their health-promoting effects [66]. Early documented evidence
was found in the literature of Japan and China, approximately 3000 to 4000 years ago;
they are regarded as pioneers in describing the medicinal attributes of different orchid
species [138,139]. Shennung, a Chinese legend, described Dendrobium and Bletilla striata
species in the book Materia Medica in the 28 century BC [138]. The Indian traditional system
also reported the pharmacological uses of orchid species, namely Dendrobium macraei,
Orchis latifolia, and Eulophia campestris, among others, in Ayurveda [140]. The key genera of
medicinal orchids are as follows: Ephemerantha, Eria, Galeola, Cymbidium, Cypipedium, Nevilia,
Thunia, Bletilla, and Anoctochilus, with new orchid varieties being discovered [102,141,142].

The medicinal properties of orchids are gaining popularity and different species
are increasingly employed for medicinal attributes, attributed to the presence of diverse
phytochemicals present in different species. Alkaloids have been reported in several
medicinal orchids and demonstrate antimicrobial functions. Multiple studies in recent
times have focused on the isolation of phytochemicals with medicinal attributes from
different species and comprise Cypripedin, Orchinol, Nidemin, Hircinol, Loroglossin, and
Jibantine. A comprehensive overview of key orchid species, plant parts, phytochemicals,
and their ethnobotanical significance has been discussed. Table 3 provides key examples of
orchids with medicinal properties and their multi-faceted ethnobotanical attributes.

Table 3. Key examples of orchids with medicinal properties and their multi-faceted ethnobotanical
attributes.

Scientific Name Found in Habitat Plant Part Medicinal Attributes Reference

Aerides multiflora Roxb. India Epiphytic Roots, Leaves Wound and cuts,
Antibacterial [143]

Calanthe triplicata India Terrestrial Flowers, roots
Anti-inflammatory,
Diarrhea,
Gastric disorders

[144]

Brachycortis obcordata
(Lindl.) Summerh. ---- Terrestrial Roots Dysentery [66]

Dendrobium chrysanthum China Epiphytic Leaves
Skin diseases,
Anti-pyretic,
Immunoregulatory

[145]

Bulbophyllum umbellatum
Lindl. Asia Epiphytic All plant parts Increase congeniality [66]

Orchis latifolia L. India
Iran Afghanistan Terrestrial Roots Diabetes, Dysentry,

Malnutrition, Diarrhea [146]

Maxillaria densa Mexico Epiphytic All plant parts Analgesic, Relaxant [147]
Cymbidium aloifolium
(L.) Sw. Asia Epiphytic Bulbs,

Rhizomes
Dislocated bones and
fracture [148]

Acampe papillosa India Epiphytic Roots Rheumatism, Syphilis
Neuralgia [149]

Arundina graminifolia (D.
Don) Hochr.

Nepal
Thailand
China
Japan

Terrestrial Roots Bodyache [150]

Anoectochilus
formosanus Hayata Taiwan Terrestrial Tubers

Abdominal pain,
Nephritis,
Hypertension,
Anti-inflammatory

[151]
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Table 3. Cont.

Scientific Name Found in Habitat Plant Part Medicinal Attributes Reference

Epidendrum mosenii Korea
China

Mostly epiphytes,
some terrestrial Stem Antinociceptive [152]

Gastrodia elata Asia Heterotrophic All plant parts Epilepsy, Tetanus,
Neuroprotective [153]

Habenaria pectinata
D. Don India Terrestrial Tubers Snake-bite treatment,

Arthritis [154]

Cypripedium elegan
Reichenb .f. Nep

Asia
America Terrestrial Roots Epilepsy, Spasms,

Rheumatism [66]

Dendrobium densiflorum
Lindl. India Epiphytic Pseudobulbs Skin diseases [155]

Eulophia nuda Landl. India Terrestrial Tubers Bronchitis, Tumors [156]
Malaxis acuminta
D. Don India Terrestrial Pseudobulbs Antioxidant, Anti-aging [157]

Vanda roxburghii India Epiphytic Leaves Anti-pyretic, Sciatica,
Bronchitis [158]

Vanilla planifolia Mexico Epiphytic Sheath Rheumatism, Hysteria,
High-fever [159]

Satyrium nepalense India
Nepal Terrestrial Tubers Malaria, Dysentry [160]

Bletilla striata
Taiwan
Nepal
China

Terrestrial Tubers Cancer, blood disorders,
Tuberculosis [161]

Cymbidium goeringii Asia
Australia Epiphytic Whole plant Diuretic [162]

Coeloglossum viride England Terrestrial Rhizome Neuroprotective [163]
Goodyera discolor Asia Terrestrial Whole plant Antihepatotoxic [149]

Gymnadenia conopsea Europe
Asia Terrestrial Tubers Anti-allergic,

Aphrodisiac [164]

Pholidota yunnanensis China Epiphytic --- Antioxidant [165]
Orchis laxiflora
Lam.

Europe, Africa,
Asia Heterotrophic Bulbs Bronchitis, Diarrhea [166]

Luisia zeylanica Lindl.
India,
Sri lanka
Thailand

Epiphytic Leaves Wound healing, Treating
burns [145]

Pholidota pallida Lindl. India Epiphytic Roots
Pseudobulbs Analgesic [167]

Thunia alba (Lindl.)
Rchb. F

India
Myanmar
Thailand

Epiphytic All plant Treatment of dislocated
bones [66]

Zeuxine strateumatica (L.)
Schltr.

China
Japan
India

Terrestrial Tubers
Roots Tonic [168]

Trudelia cristata (Lindl.)
Senghas

India
Bangladesh
Bhutan

Epiphytic Leaves
Roots

Wound healing,
Treatment of dislocated
bones

[66]

Vanda tessellata (Roxb.)
Rchb. f.

India
Sri lanka
Burma

Epiphytic Leaves
Roots

Rheumatism,
Anti-pyretic [169]

Platanthera sikkimensis
(Hook. f.) Kraenzlin. India Terrestrial Pseudobulbs

Bulbs Analgesic [66]

Pleione humilis (Sm.)
D. Don India Epiphytic Pseudobulbs Wound healing, Tonic [170]

The beneficial effects of phytochemicals from orchids on human health have been well
known since ancient times and include anti-inflammatory, neuroprotective, antimicrobial,
anticancer, hypoglycemic, anti-rheumatic, and wound-healing properties among other
significant effects [141]. Traditional Chinese medicine suggested the routine use of B. striata,
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D. nobile, and G. elata for medication, with different Dendrobium species widely used in
China to cure various diseases [171]. Moreover, the tubers of B. striata were widely used
in traditional systems for the treatment of pneumono-phthisis and pneumonorrhagia, in
addition to treating gastritis and duodenal ulcers, bleeding, hemoptysis, and tuberculosis.
In addition, Ayurvedic literature reported the active use of orchids in herbal formulations,
viz. Habenaria intermedia, Malaxis muscifrea, Habenaria edgeworthi, and Malaxis acuminata,
which were active ingredients in Chavyanprasa [169]. Similarly, pseudobulbs and tubers
of key species, namely Zeuxine strateumatica, Habenaria, Orchis mascula, Eulophia, Orchis
latifolia, and Cymbidium aloifolium, were used as restorative therapy in several diseases, with
a discussion of key orchid species found in Table 3. Studies have reported the isolation
of more than 100 bioactive alkaloids from orchids [141,166,172] and the pharmaceutical
constituents comprise Dendrocandin-A, Dendrocandin B, Phenanthrenes, Bulbophythrins
A, Bulbophythrins B, Nobilin-E, Nobilin-D, Rotundatin, Ochracinone, Ochracinanthrone,
Ochrolic acid, Ochrolone, and many more that have recently been discovered [173–179].

The flavonol and flavonoid components (of medicinal significance) isolated from
orchid species include Apigenin 7-O-glucoside, 8-C-p-hydroxybenzylquercetin, Scutellarein
6-methyl ether, Apigenin-6-O-β-d-glucopyranosil-3-O-α-l-rhamnopyranoside, Quercetin,
Chrysin, Homo-isoflavone, etc. [180,181]. The emerging medicinal importance of orchids
has necessitated the need for clinical validations [181,182]. A clinical trial by Khouri
et al. [183] suggested the efficacy of plant extract (Orchis anatolica) in improving fertility in
male mice. In another study, constituents from the orchid Scaphyglottis livida were evaluated
as relaxants of heart contractions in mice. The study further showed that stilbenoids limited
aortic contractions and led to vasodilation and relaxation and are supposed to have major
potential in cardiac treatment [184]. A terrestrial orchid, Eulophia epidendraea, is traditionally
used for wound healing, tumors, and antidiarrhoeal activity, attributed to the presence of
terpenoids, saponins, alkaloids, etc. [185,186]. Dendrobium and its bioactive constituents
display effective hepatoprotective and immunomodulatory functions [187]. Gastrodia elata
and its active ingredients have been widely used to treat rheumatism, brain disorders,
inflammatory diseases, and headaches, due to the presence of Gastrodin, Gastrodioside,
Vanillin, β-sitosterol, Vanillyl alcohol, and ρ-hydroxybenzyl alcohol [188,189].

In China and other Asian countries, multiple orchids have been employed to develop
functional food products since 1990. The bioactive constituents and micronutrients present
in orchid tubers make them a nutritional supplement in Cameroon and African coun-
tries [190]. Fonmboh and coworkers [191] provided literature insights into the medicinal
and edible properties of wild root tuber orchids in Cameroon. While the medicinal proper-
ties of multiple orchid species are well known, the use of orchids as food constituents and
flavoring agents makes them a key economic resource in food industries. In recent times,
studies exploring the orchid flora in South Africa have investigated the edible properties
and constituents facilitating the orchid trade. Orchid tubers are used as a food source
and harvested from the wild species. The tubers are processed as a sausage and locally
named chikande and chinaka, relished by the local Mawai population [192]. In addition,
tubers are added as ingredients in soups and included in dishes in international hotels [193].
In Cameroon, orchids are mainly epiphytic, and the edible orchids belong to the genera
Disa, Satyrium, and Habenaria. Moreover, new food products have been developed from
Dendrobium and Gastrodia spp. Food items and healthy drinks as functional food have been
processed from the flower and stem of D. officinale and another Dendrobium sp. [194]. A key
example is the use of G. elata tubers in soup and Cymbidium flowers in healthy drinks and
herbal tea [195,196]. In east and central Africa, tubers of the terrestrial orchids are used to
prepare ‘Chikanda’, a traditional cake recipe. ‘Salep’ is another food ingredient in ice cream
and drinks, mainly consumed in Turkey and adjoining countries [37]. While edible orchids
represent an alternative food source in countries in the Global South, Zambian, Tanzanian,
and Malawi people consume orchid tubers for food and trade [197]. In a key study, the
nutritional content of wild orchid species from Tanzania was studied and included fiber
(2.7%), protein (5.36 g), minerals ash (2.2%), and fat (1.57%), among others, highlighting
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the use of edible orchids as a functional food. Additionally, the concerns about malnu-
trition in children/infants can be treated by products developed from orchids [37]. The
powdered form of tubers of Orchis mascula is used as a food component in ‘Salep’ beverage
or the Turkish food ‘Dondurma’. In Turkey, ice creams from orchid constituents, known as
‘Dondurma’, are relished by the locals. Other popular food items prepared from different
edible orchids comprise flavor rum from the dried leaves of Jumellea fragrans in Reunion
Island, underground tubers of Gastrodia sesamoides as food in Australia, and Chikanda
from Satyrium cursoni [40]. V. planifolia is found in tropical lowlands and inhabits Central
America, Brazil, and Mexico [198]. Regarded as endangered by IUCN [199], the plant is
the main source of vanilla, a food flavoring agent. While vanillin comprises 80% of total
bioactive metabolites in the pods of V. planifolia, vanillic acids such as 4-hydroxybenzoic
acid and vanillic alcohols such as Guaiacol, 4-hydroxybenzaldehyde, etc. are the other
metabolites [200]. A chromosome-scale V. planifolia genome was reported by Hasing and
coworkers [201] that revealed gene variants that affect the pathway of vanillin biosynthesis
and bean quality and facilitate orchid breeding for improved traits.

6. Computational and Omics Approaches in Orchid Biology

The discovery of new orchid species and their emerging prospects has necessitated the
need to address the knowledge gaps and improve the understanding of key areas in orchid
biology. The last few decades have witnessed substantial contributions of computational
and omics approaches in providing comprehensive insights into orchid genomes and the
molecular and physiological mechanisms, respectively.

Omics refers to a group of disciplines in the areas of genomics, transcriptomics,
proteomics, and metabolomics, among others, which contribute to a better understanding
of the roles and pathways of different molecules in living organisms [202]. Genomics
provides an overview of the complete set of genetic instructions provided by DNA. Orchid
genomes are typically larger than those of most model plants and there is remarkable
variability in genome size across the family, with the amount of nuclear DNA varying
by up to 168-fold [203]. It is difficult to analyze Phalaenopsis orchid via genomics due
to its large genome and long life cycle. Lin et al. [204] employed the flow cytometry
method for the estimation of DNA content in Doritis pulcherrima Lindl. and Phalaenopsis
‘Blume’ species. The results showed variation in genome size within 18 Phalaenopsis species.
Further, new commercial hybrids were produced via chromosome doubling [21] and
can be used for the comparative assessment of DNA content, providing insights into
the evolution of Phalaenopsis orchids and assisting the orchid breeders in the selection of
parent varieties for the hybridization process. Further, to understand the relationship and
molecular characterization of different species, sequence-based microsatellite markers were
used [205]. Ko and coworkers [206] employed polymorphic microsatellite markers for
delimiting species within the Phalaenopsis genus.

Transcriptome studies were performed in C. ensifolium pooled flower buds and mature
flowers [207]. The Cymbidium sinense mature plant transcriptome was studied for the
identification of genes associated with floral development [208]. MicroRNAs (miRNAs)
are short RNA molecules that regulate gene expression in eukaryotes, and they influence
physiological mechanisms such as development, cell proliferation, cell death, and differenti-
ation [209,210]. The different techniques used for the study of the entire “miRNome” allow
for exploring these novel mechanisms of gene expression regulation [210]. In Orchis italica
inflorescence, miRNome revealed the presence of conserved and novel miRNAs. The insil-
ico search for the possible miRNA targets showed a conserved miRNA cleavage site within
the four OitaDEF-like transcripts, which experimentally validated for OitaDEF2 [209]. This
result reveals that miRNAs play an important role in the diversification of the organs of
the perianth in orchids through the inhibitory regulation of the clade-2 DEF-like gene.
Different mechanisms might act to regulate the expression level of the other DEF-like genes,
suggesting the existence of lineage-specific regulatory mechanisms contributing to the
functional specialization of the DEF-like clades in orchids. Advances in next-generation
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sequencing (NGS) technologies and new algorithms have improved the computational
analysis of genome-scale RNA-seq transcriptomes [211–213]. The characterization of the
plant transcriptome provides useful information into genomic features and functions, in-
cluding protein-coding/noncoding gene transcripts and alternative splicing for species
that lack reference genomes [214,215]. In recent years, genomic and transcriptomics studies
have been performed for orchids, namely Dendrobium ssp., Erycina pusilla, Phalaenopsis ssp.,
and Orchis italica, among others, that provided key insights into the functional role of genes
in polyploidy, MADS-box genes diversification, flower development, etc., enriching our
knowledge [7].

To accommodate the increasing amount of orchid transcriptome data and house more
comprehensive information, the Orchidstra 2.0 database was created with a new database
system to store the annotations of 510,947 protein-coding genes and 161,826 noncoding
transcripts, including 18 orchid species belonging to 12 genera in 5 subfamilies of Orchi-
daceae. The Orchidstra 2.0 database showed that RNA-seq-based gene expression data
showed that the KNOX genes were highly expressed in the developing flower stalks at its
early stage and in germinating seeds in P. phrodite and mesocarp tissues of the developing
vanilla six- and eight-week-old pods in V. planifolia [213].

The fungal association affects both the symbiotic and asymbiotic germination of
orchids. Liu and coworkers [216] studied the large-scale transcriptome dataset of Anoec-
tochilus roxburghii (Wall.) Lindl. seeds for both symbiotic and asymbiotic germinated seeds.
The study identified forty-nine genes involved in regulation, of which six genes were
differentially expressed in symbiotic germination vs. asymbiotic germination, suggesting
the induction or suppression of these six genes by fungi. Valadares et al. [217] characterized
88 proteins related to energy metabolism, cell rescue and defense, molecular signaling,
and secondary metabolism in Oncidium sphacelatum Lindl. at different trophic stages of
symbiotic germination. In addition, the proteomic analysis showed the upregulation of
proteins that are involved in purine recycling, ribosome biogenesis, energy metabolism,
and secretion in O. sphacelatum.

The proteomic studies on orchids focused on flower development and tissue culture
studies for mass production. By elucidating developmental processes in orchids, omics
approaches can assist with breeding, genetic improvement, conservation, and commercial
production in orchids. Comparative proteomics analyses of pollination response in the
endangered orchid species Dendrobium chrysanthum were carried out [218]. For a better un-
derstanding of the mechanism of pollination in D. chrysanthum, the differentially expressed
proteins (DEP) between the self-pollination and cross-pollination pistil of D. chrysanthum
were investigated via two-dimensional electrophoresis (2-DE) coupled with tandem mass
spectrometry [218]. A total of 54 DEP spots were identified in the two-dimensional elec-
trophoresis (2-DE) maps between the self-pollination and cross-pollination. Gene ontology
analysis revealed an array of proteins belonging to the functional categories: metabolic
process (8.94%), response to stimulus (5.69%), biosynthetic process (4.07%), protein folding
(3.25%), and transport (3.25%). The identification of these DEPs at the early response stage
of pollination provides new insights into the mechanism of pollination response and assists
in the conservation of the orchid species [218]. By proteomics techniques (LC–MS/MS,
LTQ (HPLC)), flower labellum tissues sampled from Ophrys exaltata subsp. Archipelagi,
O. garganica, and O. sphegodes were used for the identification of candidate genes for polli-
nator attraction and reproductive isolation (e.g., genes for hydrocarbon and anthocyanin
biosynthesis and regulation and the development of floral morphology) [219]. Proteomic
studies (employing 2 DE MALDI ToF/ToF) were performed in the C. ensifolium flower
(structures including labellum and inner lateral petals proteins) [220]. In another study, the
DNA-binding properties and protein–protein interactions of the floral homeotic MADS-box
protein complexes in P. equestris were analyzed by a Yeast two-hybrid system [221].

Reports on the molecular mechanisms of mycorrhizal association and seed germination
in orchids are limited. So, the question will be, is there any difference in seed development
and germination between orchids and other flowering plants at the molecular level or not?
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Chen et al. [222] reported that some genes such as PaMADS39 and PaMADS51 belong to
the Ma-subclass of type I MADS-box genes and are detected at the cellularization stage
of developing endosperm during seed development. These genes are closely related to
Arabidopsis (AGL23 and AGL62.1) and they have similar expression patterns in reproductive
tissues when fertilization occurs and embryo development initiates. MIKC-type genes
were identified from streptophyte lineages, revealing new insights into their evolution and
development relationships. The study reported that MIKC-type genes might play a role
in seed germination in D. officinale. Some MIKC genes from D. officinale showed different
expression during seed germination, including SVP and SQUA subfamily genes, as well as
the MIKC gene, and these genes have the same role in other flowering plants [223]. So, it
was concluded that the expression pattern in seed germination of orchids was like other
plants, like Arabidopsis.

7. Strategies/Guidelines for Orchid Conservation and Utilization

The commercialization of orchid species has witnessed a tremendous upsurge in recent
times. The classification of the orchid trade has been performed accordingly: specialist
growers-driven market—people who have a collection of orchid species and purchase
diverse hybrids and species; and the mass-market trade—comprising casual buyers of
potted varieties and easily cultivated varieties. The demand for rare orchid varieties in the
floriculture market has partially led to the illegal trade. However, casual buyers sometimes
purchase unknowingly with prices like plants that are artificially propagated [224]. Initially,
the orchid varieties were sold and purchased in the local markets, but with the advent
of e-commerce platforms, the orchid species availability has increased to both online and
offline sellers in the networks.

International/National Guidelines for the Preservation of Orchid Biodiversity

On a global level, the trade of all orchid species is monitored by CITES, and legal
marketing (to a considerable level) particularly for artificially propagated plants occurs
according to the established guidelines. However, the rising incidences of illegal trade have
severely hampered the orchid industry. Southeast Asia, an orchid-rich habitat, contributes
to a significant share of wild species collection, [225] and countries in Southeast Asia as
well as the United States, Europe, and Japan are the emerging specialist markets. However,
in the present time, there has been a tremendous upsurge in the illegal trade of commercial
orchid varieties; for example, Paphiopedilum spp. highlights the risk of extinction and are cat-
egorized as “critically endangered” by CITES owing to extensive reports of over-collection.
CITES has three distinct Appendices for different species. Appendix I contains species
threatened with extinction conditions, whose international trade is possible only under
exceptional conditions. Presently, Appendix I lists two genera of orchids, Paphiopedilum and
Phragmipedium, representing 240 species, more than 180 varieties, and 30 natural hybrids,
along with Aerangis ellipsis, Dendrobium cruentum, Laelia jongheana, Laelia lobata, Peristeria
elata, and Renanthera imschootiana. The rest of the orchids are listed in Appendix II, which
includes the species not necessarily threatened with extinction conditions, and Appendix III,
which contains species that are protected in one country at least. This extensive protection
of orchids makes them the largest plant family protected under CITES [226]. Along with
the conservation and protection under CITES, there are several orchid societies around the
globe aiding cultivation and conservation efforts under the two major approaches, i.e., in
situ conservation and ex situ conservation.

On a worldwide level, several orchid species with ornamental attributes are traded in
the legal trade of reasonable potted plants for non-specialist buyers, usually Dendrobium
and Phalaenopsis genera, with the key exported countries being the Netherlands, Taiwan,
and Thailand. Among the most popular products, cut flowers and orchid plants comprise
the maximum share of the global platform, with less expertise and expenses involved
in maintenance. The specialized trade includes specialists, and the consumers include
specialists’ growers with expertise in orchid cultivation who have a broad collection of
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exotic germplasms. According to statistics by CITES on legal orchid trade, orchid plants
witnessed a large global export between 1996 and 2015 [225]. Considering no in-depth
studies exist on the global levels of illegal orchid trade, only commercial harvesting of
wild varieties from approximately 10 countries has been documented [225]. In Europe,
the legal international market is declining, owing to the increasing costs of propagated
orchid species and restrictions by CITES. Given the conservation and protection of several
orchid varieties, guidelines have been issued on national/international levels for the
preservation of orchid biodiversity. While individual countries have defined parameters
and legislation for the cultivation, conservation, and marketing of wild orchids, the legal
guidelines are more precise and defined at global levels. Some orchid species may be
illegal for local/global trade in a few countries, while in others these may be allowed. On
the global platform, 70% of the orchid species are classified in CITES, and a few species,
namely Peristeria elata, Dendrobium cruentum, Renanthera imschootiana, Laelia jongheana, and
Paphiopedilum sp. are classified in Appendix I, which identifies their trading as prohibited
(CITES, Appendices I, II and III. https://cites.org/eng/app/E-Apr27.pdf accessed on
20 October 2023). In an international move, the decision was made to list orchids at the
family level, considering the identification of 300–500 new orchid species annually [227].
With guidelines and initiatives being made at domestic and international levels for orchid
conservation, the legal framework is still defined by complexity, as it is difficult to clearly
define the legal or illegal nature of trade and therefore difficult to implement proper
guidelines. In addition, the emergence of e-commerce platforms for online trading has
further contributed to the rise in the unauthorized trading of orchids, with access to people
across the globe and no clearly defined parameters for orchid trade. In a specific instance
on a social media platform (2014), the trading of 46% of species for 150 orchid groups was
performed in five languages [228]. In this direction, IUCN Species Survival Commission
Orchid Specialist Group’s Global Trade Programme has made efforts to streamline online
orchid trading and report these incidents to concerned committees (Orchid Specialist Group
Global Trade program, https://globalorchidtrade.wixsite.com/home/about-us (accessed
on 28 January 2024)). Floraguard is an established project (established in 2017), aimed at
implementing better policies to monitor the online trading of all plant species, including
orchids (Floraguard, http://floraguard.org (accessed on 28 January 2024)). According to
Article 038 of the Convention on Biological Diversity (1994), the rights of natural resources
are under the jurisdiction of respective countries, allowing the maximum utilization of
traditional knowledge and resources. Among others, the Nagoya Protocol (2010) includes
international consent to deriving shared benefits from the utilization of genetic resources in
a transparent manner, while the Cartagena Protocol (2003) on an international platform
ensures the safe use and transport of living modified organisms (LMOs).

8. Translational Success, Restoration Initiatives, and Future Research

Research advances in the cultivation and commercialization of orchids have witnessed
unprecedented success, witnessing an expanding global market. The Phalaenopsis orchid
is cultivated and marketed worldwide, accounting for 500 million USD in the United
States, Japan, and the Netherlands, among other countries. The statistics suggest that
Phalaenopsis was the most exported orchid in 2018 (76.4%), followed by Oncidium (6.9%)
and Cymbidium (3.2%) [8]. From the perspective of the Indian sub-continent, it has about
1350 species classified in 186 genera and represents approximately 5.98% of the orchid
flora existing across the world. CITES (administered by the United Nations Environment
Programme, located in Geneva, Switzerland) plays a pivotal role in the conservation
measures for plant species, including orchids. Moreover, three approaches are primarily
adopted for the conservation of genetic resources (in orchids) and are defined as follows: in
situ conservation in sanctuaries, legislative guidelines, and ex situ conservation in botanical
gardens. In addition to the above conservation measures, there are international laws and
guidelines to preserve biodiversity and stop the bio-piracy of natural resources.

https://cites.org/eng/app/E-Apr27.pdf
https://globalorchidtrade.wixsite.com/home/about-us
http://floraguard.org
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While significant success has been achieved on different levels from basic biology stud-
ies on orchids to implementing biotechnologies for sustainable living, the future directions
in orchid research aim to address the knowledge gaps and bottlenecks in cultivation studies.
The advent of genetic engineering and high-throughput sequencing defines a big boost in
orchid research, enabling solutions to intriguing puzzles in orchid biology. While to date,
16 orchid genomes have been elucidated, a lot remains to be uncovered. Orchid genome
sequencing has opened new avenues in multi-omics-guided studies for gene expression,
mapping, and comparative genomics. The progress achieved in distinct areas has enabled
information on the origin and diversification of orchids and the molecular mechanisms in
growth stages, reproduction, and complex life cycles.

9. Concluding Remarks

In the present decade, the orchid industry has flourished with leaps and bounds on
domestic and international platforms. The aesthetic and ornamental attributes of novel
orchid species have gained the attention of plant biologists as well as agriculturists. To date,
orchids have been cultivated for their cut flowers and artificially propagated varieties, with
the multi-faceted applications of orchids in the food sector and medicine gaining global
recognition in recent times. Plant tissue culture, breeding approaches, and biotechnologies
have made substantial contributions in introducing and improving the plant traits of novel
attributes and remarkably improved commercialization on a global platform.

Advances in whole genome sequencing have facilitated the understanding of orchid
genomes, providing key insights into the cultivation of new orchid cultivars for commer-
cialization. Furthermore, tools in genomics and proteomics employed for orchid genome
assembly provided valuable insights about orchid genomes. The genomic insights showed
gene function in heterozygosity, MADS-box gene diversification, and CAM photosyn-
thesis evolution concerning physiological responses, flower development, and the effect
of climatic fluctuations on the productivity of orchids [7]. Studies on the function and
composition of SSRs and microRNAs in orchids’ growth and development facilitate studies
in functional genomics. Recent innovations in biotechnologies have opened new avenues
in the development of ornamental plants with desired multi-faceted and novel attributes.
Biotechnological interventions such as genetic engineering and in vitro tissue culture along
with classical breeding approaches have been regularly employed to alter flower color,
fragrance, appearance, disease resistance, and shelf life, as discussed with key examples.
The progress in the development of scientific techniques such as HPLC-DAD and MS has
facilitated the precise detection of bioactive components from multiple orchids and their
emerging prospects in drug discovery and research. Omics biology-guided elucidation
of important traits linked to gene families and their regulatory components has key po-
tential to revolutionize orchid improvement. While advances in plant genome editing
have enabled precise gene modifications and genome engineering, next-generation tools
like the CRISPR-Cas9 system define the key potential for ‘gene stacking’, where multiple
gene modification steps can be attempted in a single procedure [229]. Although limited
genetic manipulation studies are attempted in orchids, these advanced tools offer great
opportunities to design orchids with ‘high-value’ traits in the near future.

The cultivation and export of new orchid varieties are gaining momentum, with an
expanding global market generating significant economic returns. However, with the
unprecedented rise in exports and global orchid trade, rare and exotic varieties are over-
harvested and illegally traded by suppliers across the boundaries. Restoration measures
have been undertaken to safeguard the interests of people and orchid specialists through
guidelines to monitor and prevent the indiscriminate use and trading of orchid species. The
guidelines by CITES and the Convention on Biological Diversity and Wildlife Protection
Act 1972, by the Government of India, have been successful in reducing bio-piracy and
conservation of natural resources to a greater extent, introducing legislative measures and
guidelines for monitoring the conservation and trade of wild orchid species. For the orchid
industry to flourish, it is imperative to explore orchid biology and biotechnologies and
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to ensure legal international trade by implementing guidelines towards a multipronged
approach for the conservation and commercialization of orchids.
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