Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,746)

Search Parameters:
Keywords = traditional application

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7533 KiB  
Article
Risk Management of Rural Road Networks Exposed to Natural Hazards: Integrating Social Vulnerability and Critical Infrastructure Access in Decision-Making
by Marta Contreras, Alondra Chamorro, Nikole Guerrero, Carolina Martínez, Tomás Echaveguren, Eduardo Allen and Nicolás C. Bronfman
Sustainability 2025, 17(15), 7101; https://doi.org/10.3390/su17157101 - 5 Aug 2025
Abstract
Road networks are essential for access, resource distribution, and population evacuation during natural events. These challenges are pronounced in rural areas, where network redundancy is limited and communities may have social disparities. While traditional risk management systems often focus on the physical consequences [...] Read more.
Road networks are essential for access, resource distribution, and population evacuation during natural events. These challenges are pronounced in rural areas, where network redundancy is limited and communities may have social disparities. While traditional risk management systems often focus on the physical consequences of hazard events alone, specialized literature increasingly suggests the development of a more comprehensive approach for risk assessment, where not only physical aspects associated with infrastructure, such as damage level or disruptions, but also the social and economic attributes of the affected population are considered. Consequently, this paper proposes a Vulnerability Access Index (VAI) to support road network decision-making that integrates the social vulnerability of rural communities exposed to natural events, their accessibility to nearby critical infrastructure, and physical risk. The research methodology considers (i) the Social Vulnerability Index (SVI) calculation based on socioeconomic variables, (ii) Importance Index estimation (Iimp) to evaluate access to critical infrastructure, (iii) VAI calculation combining SVI and Iimp, and (iv) application to a case study in the influence area of the Villarrica volcano in southern Chile. The results show that when incorporating social variables and accessibility, infrastructure criticality varies significantly compared to the infrastructure criticality assessment based solely on physical risk, modifying the decision-making regarding road infrastructure robustness and resilience improvements. Full article
Show Figures

Figure 1

14 pages, 1563 KiB  
Article
A Portable and Thermally Degradable Hydrogel Sensor Based on Eu-Doped Carbon Dots for Visual and Ultrasensitive Detection of Ferric Ion
by Hongyuan Zhang, Qian Zhang, Juan Tang, Huanxin Yang, Xiaona Ji, Jieqiong Wang and Ce Han
Molecules 2025, 30(15), 3280; https://doi.org/10.3390/molecules30153280 - 5 Aug 2025
Abstract
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require [...] Read more.
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require effective monitoring. In this study, we developed a thermally degradable fluorescent hydrogel sensor (Eu-CDs@DPPG) based on europium-doped carbon dots (Eu-CDs). The Eu-CDs, synthesized via a hydrothermal method, exhibited selective fluorescence quenching by Fe3+ through the inner filter effect (IFE). Embedding Eu-CDs into the hydrogel significantly enhanced their stability and dispersibility in aqueous environments, effectively resolving issues related to aggregation and matrix interference in traditional sensing methods. The developed sensor demonstrated a broad linear detection range (0–2.5 µM), an extremely low detection limit (1.25 nM), and rapid response (<40 s). Furthermore, a smartphone-assisted LAB color analysis allowed portable, visual quantification of Fe3+ with a practical LOD of 6.588 nM. Importantly, the hydrogel was thermally degradable at 80 °C, thus minimizing environmental impact. The sensor’s practical applicability was validated by accurately detecting Fe3+ in spinach and human urine samples, achieving recoveries of 98.7–108.0% with low relative standard deviations. This work provides an efficient, portable, and sustainable sensing platform that overcomes the limitations inherent in conventional analytical methods. Full article
(This article belongs to the Section Photochemistry)
22 pages, 2669 KiB  
Article
Data-Driven Fault Diagnosis for Rotating Industrial Paper-Cutting Machinery
by Luca Viale, Alessandro Paolo Daga, Ilaria Ronchi and Salvatore Caronia
Machines 2025, 13(8), 688; https://doi.org/10.3390/machines13080688 - 5 Aug 2025
Abstract
Machine learning and artificial intelligence have transformed fault detection and maintenance strategies for industrial machinery. This study applies well-established data-driven techniques to a rarely explored industrial application—the condition monitoring of high-precision paper cutting machines—enhancing condition-based maintenance to improve operational efficiency, safety, and cost-effectiveness. [...] Read more.
Machine learning and artificial intelligence have transformed fault detection and maintenance strategies for industrial machinery. This study applies well-established data-driven techniques to a rarely explored industrial application—the condition monitoring of high-precision paper cutting machines—enhancing condition-based maintenance to improve operational efficiency, safety, and cost-effectiveness. A key element of the proposed approach is the integration of an infrared pyrometer into vibration monitoring, utilizing accelerometer data to evaluate the state of health of machinery. Unlike traditional fault detection studies that focus on extreme degradation states, this work successfully identifies subtle deviations from optimal, which even expert technicians struggle to detect. Building on a feasibility study conducted with Tecnau SRL, a comprehensive diagnostic system suitable for industrial deployment is developed. Endurance tests pave the way for continuous monitoring under various operating conditions, enabling real-time industrial diagnostic applications. Multi-scale signal analysis highlights the significance of transient and steady-state phase detection, improving the effectiveness of real-time monitoring strategies. Despite the physical similarity of the classified states, simple time-series statistics combined with machine learning algorithms demonstrate high sensitivity to early-stage deviations, confirming the reliability of the approach. Additionally, a systematic analysis to downgrade acquisition system specifications identifies cost-effective sensor configurations, ensuring the feasibility of industrial implementation. Full article
Show Figures

Figure 1

21 pages, 4331 KiB  
Article
Research on Lightweight Tracking of Small-Sized UAVs Based on the Improved YOLOv8N-Drone Architecture
by Yongjuan Zhao, Qiang Ma, Guannan Lei, Lijin Wang and Chaozhe Guo
Drones 2025, 9(8), 551; https://doi.org/10.3390/drones9080551 - 5 Aug 2025
Abstract
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To [...] Read more.
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To tackle these issues, this paper presents an enhanced YOLOv8N-Drone-based algorithm for improved target tracking of small UAVs. Firstly, a novel module named C2f-DSFEM (Depthwise-Separable and Sobel Feature Enhancement Module) is designed, integrating Sobel convolution with depthwise separable convolution across layers. Edge detail extraction and multi-scale feature representation are synchronized through a bidirectional feature enhancement mechanism, and the discriminability of target features in complex backgrounds is thus significantly enhanced. For the feature confusion problem, the improved lightweight Context Anchored Attention (CAA) mechanism is integrated into the Neck network, which effectively improves the system’s adaptability to complex scenes. By employing a position-aware weight allocation strategy, this approach enables adaptive suppression of background interference and precise focus on the target region, thereby improving localization accuracy. At the level of loss function optimization, the traditional classification loss is replaced by the focal loss (Focal Loss). This mechanism effectively suppresses the contribution of easy-to-classify samples through a dynamic weight adjustment strategy, while significantly increasing the priority of difficult samples in the training process. The class imbalance that exists between the positive and negative samples is then significantly mitigated. Experimental results show the enhanced YOLOv8 boosts mean average precision (Map@0.5) by 12.3%, hitting 99.2%. In terms of tracking performance, the proposed YOLOv8 N-Drone algorithm achieves a 19.2% improvement in Multiple Object Tracking Accuracy (MOTA) under complex multi-scenario conditions. Additionally, the IDF1 score increases by 6.8%, and the number of ID switches is reduced by 85.2%, indicating significant improvements in both accuracy and stability of UAV tracking. Compared to other mainstream algorithms, the proposed improved method demonstrates significant advantages in tracking performance, offering a more effective and reliable solution for small-target tracking tasks in UAV applications. Full article
Show Figures

Figure 1

17 pages, 3870 KiB  
Review
Eco-Friendly, Biomass-Derived Materials for Electrochemical Energy Storage Devices
by Yeong-Seok Oh, Seung Woo Seo, Jeong-jin Yang, Moongook Jeong and Seongki Ahn
Coatings 2025, 15(8), 915; https://doi.org/10.3390/coatings15080915 (registering DOI) - 5 Aug 2025
Abstract
This mini-review emphasizes the potential of biomass-derived materials as sustainable components for next-generation electrochemical energy storage systems. Biomass obtained from abundant and renewable natural resources can be transformed into carbonaceous materials. These materials typically possess hierarchical porosities, adjustable surface functionalities, and inherent heteroatom [...] Read more.
This mini-review emphasizes the potential of biomass-derived materials as sustainable components for next-generation electrochemical energy storage systems. Biomass obtained from abundant and renewable natural resources can be transformed into carbonaceous materials. These materials typically possess hierarchical porosities, adjustable surface functionalities, and inherent heteroatom doping. These physical and chemical characteristics provide the structural and chemical flexibility needed for various electrochemical applications. Additionally, biomass-derived materials offer a cost-effective and eco-friendly alternative to traditional components, promoting green chemistry and circular resource utilization. This review provides a systematic overview of synthesis methods, structural design strategies, and material engineering approaches for their use in lithium-ion batteries (LIBs), lithium–sulfur batteries (LSBs), and supercapacitors (SCs). It also highlights key challenges in these systems, such as the severe volume expansion of anode materials in LIBs and the shuttle effect in LSBs and discusses how biomass-derived carbon can help address these issues. Full article
Show Figures

Figure 1

19 pages, 3220 KiB  
Review
Integrated Technology of CO2 Adsorption and Catalysis
by Mengzhao Li and Rui Wang
Catalysts 2025, 15(8), 745; https://doi.org/10.3390/catal15080745 - 5 Aug 2025
Abstract
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and [...] Read more.
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and absorbent loss, while the integrated technology realizes the adsorption, conversion, and catalyst regeneration of CO2 in a single reaction system, avoiding complex desorption steps. Through micropore confinement and surface electron transfer mechanism, the technology improves the reactant concentration and mass transfer efficiency, reduces the activation energy, and realizes the low-temperature and high-efficiency conversion of CO2. In terms of materials, MOF-based composites, alkali metal modified oxides, and carbon-based hybrid materials show excellent performance, helping to efficiently adsorb and transform CO2. However, the design and engineering of reactors still face challenges, such as the development of new moving bed reactors. This technology provides a new idea for CO2 capture and resource utilization and has important environmental significance and broad application prospects. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

22 pages, 6187 KiB  
Article
Device Modeling Method for the Entire Process of Energy-Saving Retrofit of a Refrigeration Plant
by Xuanru Xu, Lun Zhang, Jun Chen, Qingbin Lin and Junjie Chen
Energies 2025, 18(15), 4147; https://doi.org/10.3390/en18154147 - 5 Aug 2025
Abstract
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the [...] Read more.
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the equipment within the chiller plants of central air-conditioning systems. Traditional modeling approaches have been static and have focused on modeling within narrow time frames when a certain amount of equipment operating data has accumulated, thus prioritizing the precision of the model itself while overlooking the fact that energy-saving retrofits are a long-term process. This study proposes a modeling scheme for the equipment within chiller plants throughout the energy-saving retrofit process. Based on the differences in the amount of available operating data for the equipment and the progress of retrofit implementation, the retrofit process was divided into three stages, each employing different modeling techniques and ensuring smooth transitions between the stages. The equipment within the chiller plants is categorized into two types based on the clarity of their operating characteristics, and two modeling schemes are proposed accordingly. Based on the proposed modeling scheme, chillers and chilled-water pumps were selected to represent the two types of equipment. Real operating data from actual retrofit projects was used to model the equipment and evaluate the accuracy of the model predictions. The results indicate that the models established by the proposed modeling scheme exhibit good accuracy at each stage of the retrofit, with the coefficients of variation (CV) remaining below 6.88%. Furthermore, the prediction accuracy improved as the retrofitting process progressed. The modeling scheme performs better on equipment with simpler and clearer operating characteristics, with a CV as low as 0.67% during normal operation stages. This underscores the potential application of the proposed modeling scheme throughout the energy-saving retrofit process and provides a model foundation for the subsequent optimization of the refrigeration system. Full article
Show Figures

Figure 1

24 pages, 11081 KiB  
Article
Quantifying Wildfire Dynamics Through Spatio-Temporal Clustering and Remote Sensing Metrics: The 2023 Quebec Case Study
by Tuğrul Urfalı and Abdurrahman Eymen
Fire 2025, 8(8), 308; https://doi.org/10.3390/fire8080308 - 5 Aug 2025
Abstract
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the [...] Read more.
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the differenced Normalized Burn Ratio (ΔNBR) to characterize the dynamics and ecological impacts of large-scale wildfires, using the extreme 2023 Quebec fire season as a case study. The analysis of 80,228 VIIRS fire detections resulted in 19 distinct clusters across four fire zones. Validation against the National Burned Area Composite (NBAC) showed high spatial agreement in densely burned areas, with Intersection over Union (IoU) scores reaching 62.6%. Gaussian Process Regression (GPR) revealed significant non-linear relationships between FRP and key fire behavior metrics. Higher mean FRP was associated with both longer durations and greater burn severity. While FRP was also linked to faster spread rates, this relationship varied by zone. Notably, Fire Zone 2 exhibited the most severe ecological impact, with 83.8% of the area classified as high-severity burn. These findings demonstrate the value of integrating spatial clustering, radiative intensity, and post-fire vegetation damage into a unified analytical framework. Unlike traditional methods, this approach enables scalable, hypothesis-driven assessment of fire behavior, supporting improved fire management, ecosystem recovery planning, and climate resilience efforts in fire-prone regions. Full article
Show Figures

Figure 1

17 pages, 909 KiB  
Review
Potential of Natural Esters as Immersion Coolant in Electric Vehicles
by Raj Shah, Cindy Huang, Gobinda Karmakar, Sevim Z. Erhan, Majher I. Sarker and Brajendra K. Sharma
Energies 2025, 18(15), 4145; https://doi.org/10.3390/en18154145 - 5 Aug 2025
Abstract
As the popularity of electric vehicles (EVs) continues to increase, the need for effective and efficient driveline lubricants and dielectric coolants has become crucial. Commercially used mineral oils or synthetic ester-based coolants, despite performing satisfactorily, are not environmentally friendly. The fatty esters of [...] Read more.
As the popularity of electric vehicles (EVs) continues to increase, the need for effective and efficient driveline lubricants and dielectric coolants has become crucial. Commercially used mineral oils or synthetic ester-based coolants, despite performing satisfactorily, are not environmentally friendly. The fatty esters of vegetable oils, after overcoming their shortcomings (like poor oxidative stability, higher viscosity, and pour point) through chemical modification, have recently been used as potential dielectric coolants in transformers. The benefits of natural esters, including a higher flash point, breakdown voltage, dielectric character, thermal conductivity, and most importantly, readily biodegradable nature, have made them a suitable and sustainable substitute for traditional coolants in electric transformers. Based on their excellent performance in transformers, research on their application as dielectric immersion coolants in modern EVs has been emerging in recent years. This review primarily highlights the beneficial aspects of natural esters performing dual functions—cooling as well as lubricating, which is necessary for “wet” e-motors in EVs—through a comparative study with the commercially used mineral and synthetic coolants. The adoption of natural fatty esters of vegetable oils as an immersion cooling fluid is a significant sustainable step for the battery thermal management system (BTMS) of modern EVs considering environmental safety protocols. Continued research and development are necessary to overcome the ongoing challenges and optimize esters for widespread use in the rapidly expanding electric vehicle market. Full article
Show Figures

Figure 1

18 pages, 1814 KiB  
Article
Student’s t Kernel-Based Maximum Correntropy Criterion Extended Kalman Filter for GPS Navigation
by Dah-Jing Jwo, Yi Chang, Yun-Han Hsu and Amita Biswal
Appl. Sci. 2025, 15(15), 8645; https://doi.org/10.3390/app15158645 (registering DOI) - 5 Aug 2025
Abstract
Global Navigation Satellite System (GNSS) receivers may produce measurement outliers in real-world applications owing to various circumstances, including poor signal quality, multipath effects, data loss, satellite signal loss, or electromagnetic interference. This can lead to a noise distribution that is non-Gaussian heavy-tailed, affecting [...] Read more.
Global Navigation Satellite System (GNSS) receivers may produce measurement outliers in real-world applications owing to various circumstances, including poor signal quality, multipath effects, data loss, satellite signal loss, or electromagnetic interference. This can lead to a noise distribution that is non-Gaussian heavy-tailed, affecting the effectiveness of satellite navigation filters. This paper presents a robust Extended Kalman Filter (EKF) based on the Maximum Correntropy Criterion with a Student’s t kernel (STMCCEKF) for GPS navigation under non-Gaussian noise. Unlike traditional EKF and Gaussian-kernel MCCEKF, the proposed method enhances robustness by leveraging the heavy-tailed Student’s t kernel, which effectively suppresses outliers and dynamic observation noise. A fixed-point iterative algorithm is used for state update, and a new posterior error covariance expression is derived. The simulation results demonstrate that STMCCEKF outperforms conventional filters in positioning accuracy and robustness, particularly in environments with impulsive noise and multipath interference. The Student’s t-distribution kernel efficiently mitigates heavy-tailed non-Gaussian noise, while it adaptively adjusts process and measurement noise covariances, leading to improved estimation performance. A detailed explanation of several key concepts along with practical examples are discussed to aid in understanding and applying the Global Positioning System (GPS) navigation filter. By integrating cutting-edge reinforcement learning with robust statistical approaches, this work advances adaptive signal processing and estimation, offering a significant contribution to the field. Full article
Show Figures

Figure 1

27 pages, 14684 KiB  
Article
SDT4Solar: A Spatial Digital Twin Framework for Scalable Rooftop PV Planning in Urban Environments
by Athenee Teofilo, Qian (Chayn) Sun and Marco Amati
Smart Cities 2025, 8(4), 128; https://doi.org/10.3390/smartcities8040128 - 4 Aug 2025
Abstract
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. [...] Read more.
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. However, their application in solar energy planning remains underexplored. This study introduces SDT4Solar, a novel SDT-based framework designed to integrate city-scale rooftop solar planning through 3D building semantisation, solar modelling, and a unified geospatial database. By leveraging advanced spatial modelling and Internet of Things (IoT) technologies, SDT4Solar facilitates high-resolution 3D solar potential simulations, improving the accuracy and equity of solar infrastructure deployment. We demonstrate the framework through a proof-of-concept implementation in Ballarat East, Victoria, Australia, structured in four key stages: (a) spatial representation of the urban built environment, (b) integration of multi-source datasets into a unified geospatial database, (c) rooftop solar potential modelling using 3D simulation tools, and (d) dynamic visualization and analysis in a testbed environment. Results highlight SDT4Solar’s effectiveness in enabling data-driven, spatially explicit decision-making for rooftop PV deployment. This work advances the role of SDTs in urban energy transitions, demonstrating their potential to optimise efficiency in solar infrastructure planning. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

19 pages, 29727 KiB  
Review
A Review of Methods for Increasing the Durability of Hot Forging Tools
by Jan Turek and Jacek Cieślik
Materials 2025, 18(15), 3669; https://doi.org/10.3390/ma18153669 - 4 Aug 2025
Abstract
The article presents a comprehensive review of key issues and challenges related to enhancing the durability of hot forging tools. It discusses modern strategies aimed at increasing tool life, including modifications to tool materials, heat treatment, surface engineering, tool and die design, die [...] Read more.
The article presents a comprehensive review of key issues and challenges related to enhancing the durability of hot forging tools. It discusses modern strategies aimed at increasing tool life, including modifications to tool materials, heat treatment, surface engineering, tool and die design, die geometry, tribological conditions, and lubrication. The review is based on extensive literature data, including recent publications and the authors’ own research, which has been implemented under industrial conditions at the modern forging facility in Forge Plant “Glinik” (Poland). The study introduces original design and technological solutions, such as an innovative concept for manufacturing forging dies from alloy structural steels with welded impressions, replacing traditional hot-work tool steel dies. It also proposes a zonal hardfacing approach, which involves applying welds with different chemical compositions to specific surface zones of the die impressions, selected according to the dominant wear mechanisms in each zone. General guidelines for selecting hardfacing material compositions are also provided. Additionally, the article presents technological processes for die production and regeneration. The importance and application of computer simulations of forging processes are emphasized, particularly in predicting wear mechanisms and intensity, as well as in optimizing tool and forging geometry. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

31 pages, 1583 KiB  
Article
Ensuring Zero Trust in GDPR-Compliant Deep Federated Learning Architecture
by Zahra Abbas, Sunila Fatima Ahmad, Adeel Anjum, Madiha Haider Syed, Saif Ur Rehman Malik and Semeen Rehman
Computers 2025, 14(8), 317; https://doi.org/10.3390/computers14080317 - 4 Aug 2025
Abstract
Deep Federated Learning (DFL) revolutionizes machine learning (ML) by enabling collaborative model training across diverse, decentralized data sources without direct data sharing, emphasizing user privacy and data sovereignty. Despite its potential, DFL’s application in sensitive sectors is hindered by challenges in meeting rigorous [...] Read more.
Deep Federated Learning (DFL) revolutionizes machine learning (ML) by enabling collaborative model training across diverse, decentralized data sources without direct data sharing, emphasizing user privacy and data sovereignty. Despite its potential, DFL’s application in sensitive sectors is hindered by challenges in meeting rigorous standards like the GDPR, with traditional setups struggling to ensure compliance and maintain trust. Addressing these issues, our research introduces an innovative Zero Trust-based DFL architecture designed for GDPR compliant systems, integrating advanced security and privacy mechanisms to ensure safe and transparent cross-node data processing. Our base paper proposed the basic GDPR-Compliant DFL Architecture. Now we validate the previously proposed architecture by formally verifying it using High-Level Petri Nets (HLPNs). This Zero Trust-based framework facilitates secure, decentralized model training without direct data sharing. Furthermore, we have also implemented a case study using the MNIST and CIFAR-10 datasets to evaluate the existing approach with the proposed Zero Trust-based DFL methodology. Our experiments confirmed its effectiveness in enhancing trust, complying with GDPR, and promoting DFL adoption in privacy-sensitive areas, achieving secure, ethical Artificial Intelligence (AI) with transparent and efficient data processing. Full article
Show Figures

Figure 1

22 pages, 4189 KiB  
Article
A Hierarchical Path Planning Framework of Plant Protection UAV Based on the Improved D3QN Algorithm and Remote Sensing Image
by Haitao Fu, Zheng Li, Jian Lu, Weijian Zhang, Yuxuan Feng, Li Zhu, He Liu and Jian Li
Remote Sens. 2025, 17(15), 2704; https://doi.org/10.3390/rs17152704 - 4 Aug 2025
Abstract
Traditional path planning algorithms often fail to simultaneously ensure operational efficiency, energy constraint compliance, and environmental adaptability in agricultural scenarios, thereby hindering the advancement of precision agriculture. To address these challenges, this study proposes a deep reinforcement learning algorithm, MoE-D3QN, which integrates a [...] Read more.
Traditional path planning algorithms often fail to simultaneously ensure operational efficiency, energy constraint compliance, and environmental adaptability in agricultural scenarios, thereby hindering the advancement of precision agriculture. To address these challenges, this study proposes a deep reinforcement learning algorithm, MoE-D3QN, which integrates a Mixture-of-Experts mechanism with a Bi-directional Long Short-Term Memory model. This design enhances the efficiency and robustness of UAV path planning in agricultural environments. Building upon this algorithm, a hierarchical coverage path planning framework is developed. Multi-level task maps are constructed using crop information extracted from Sentinel-2 remote sensing imagery. Additionally, a dynamic energy consumption model and a progressive composite reward function are incorporated to further optimize UAV path planning in complex farmland conditions. Simulation experiments reveal that in the two-level scenario, the MoE-D3QN algorithm achieves a coverage efficiency of 0.8378, representing an improvement of 37.84–63.38% over traditional algorithms and 19.19–63.38% over conventional reinforcement learning methods. The redundancy rate is reduced to 3.23%, which is 38.71–41.94% lower than traditional methods and 4.46–42.77% lower than reinforcement learning counterparts. In the three-level scenario, MoE-D3QN achieves a coverage efficiency of 0.8261, exceeding traditional algorithms by 52.13–71.45% and reinforcement learning approaches by 10.15–50.2%. The redundancy rate is further reduced to 5.26%, which is significantly lower than the 57.89–92.11% observed with traditional methods and the 15.57–18.98% reported for reinforcement learning algorithms. These findings demonstrate that the MoE-D3QN algorithm exhibits high-quality planning performance in complex farmland environments, indicating its strong potential for widespread application in precision agriculture. Full article
Show Figures

Figure 1

18 pages, 7432 KiB  
Article
Design and Optimization of a Pneumatic Microvalve with Symmetric Magnetic Yoke and Permanent Magnet Assistance
by Zeqin Peng, Zongbo Zheng, Shaochen Yang, Xiaotao Zhao, Xingxiao Yu and Dong Han
Actuators 2025, 14(8), 388; https://doi.org/10.3390/act14080388 - 4 Aug 2025
Abstract
Electromagnetic pneumatic microvalves, widely used in knitting machines, typically operate based on a spring-return mechanism. When the coil is energized, the electromagnetic force overcomes the spring force to attract the armature, opening the valve. Upon de-energization, the armature returns to its original position [...] Read more.
Electromagnetic pneumatic microvalves, widely used in knitting machines, typically operate based on a spring-return mechanism. When the coil is energized, the electromagnetic force overcomes the spring force to attract the armature, opening the valve. Upon de-energization, the armature returns to its original position under the restoring force of the spring, closing the valve. However, most existing electromagnetic microvalves adopt a radially asymmetric magnetic yoke design, which generates additional radial forces during operation, leading to armature misalignment or even sticking. Additionally, the inductance effect of the coil causes a significant delay in the armature release response, making it difficult to meet the knitting machine’s requirements for rapid response and high reliability. To address these issues, this paper proposes an improved electromagnetic microvalve design. First, the magnetic yoke structure is modified to be radially symmetric, eliminating unnecessary radial forces and preventing armature sticking during operation. Second, a permanent magnet assist mechanism is introduced at the armature release end to enhance release speed and reduce delays caused by the inductance effect. The effectiveness of the proposed design is validated through electromagnetic numerical simulations, and a multi-objective genetic algorithm is further employed to optimize the geometric dimensions of the electromagnet. The optimization results indicate that, while maintaining the fundamental power supply principle of conventional designs, the new microvalve structure achieves a pull-in time comparable to traditional designs during engagement but significantly reduces the release response time by approximately 80.2%, effectively preventing armature sticking due to radial forces. The findings of this study provide a feasible and efficient technical solution for the design of electromagnetic microvalves in textile machinery applications. Full article
(This article belongs to the Section Miniaturized and Micro Actuators)
Show Figures

Figure 1

Back to TopTop