Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (347)

Search Parameters:
Keywords = traditional Chinese medicine processing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2092 KiB  
Article
Predicting Adsorption Performance Based on the Properties of Activated Carbon: A Case Study of Shenqi Fuzheng System
by Zhilong Tang, Bo Chen, Wenhua Huang, Xuehua Liu, Xinyu Wang and Xingchu Gong
Chemosensors 2025, 13(8), 279; https://doi.org/10.3390/chemosensors13080279 - 1 Aug 2025
Viewed by 132
Abstract
This work aims to solve the problem of product quality fluctuations caused by batch-to-batch variations in the adsorption capacity of activated carbon during the production of traditional Chinese medicine (TCM) injections. In this work, Shenqi Fuzheng injection was selected as an example. Diluted [...] Read more.
This work aims to solve the problem of product quality fluctuations caused by batch-to-batch variations in the adsorption capacity of activated carbon during the production of traditional Chinese medicine (TCM) injections. In this work, Shenqi Fuzheng injection was selected as an example. Diluted Shenqi Extract (DSE), an intermediate in the production process of Shenqi Fuzheng injection, was adsorbed with different batches of activated carbon. The adsorption capacities of adenine, adenosine, calycosin-7-glucoside, and astragaloside IV in DSE were selected as evaluation indices for activated carbon absorption. Characterization methods such as nitrogen adsorption, X-ray photoelectron spectrum (XPS), and Fourier transform infrared (FTIR) were chosen to explore the quantitative relationships between the properties of activated carbon (i.e., specific surface area, pore volume, surface elements, and spectrum) and the adsorption capacities of these four components. It was found that the characteristic wavelengths from FTIR characterization, i.e., 1560 cm−1, 2325 cm−1, 3050 cm−1, and 3442 cm−1, etc., showed the strongest correlation with the adsorption capacities of these four components. Prediction models based on the transmittance at characteristic wavelengths were successfully established via multiple linear regression. In validation experiments of models, the relative errors of predicted adsorption capacities of activated carbon were mostly within 5%, indicating good predictive ability of the models. The results of this work suggest that the prediction method of adsorption capacity based on the mid-infrared spectrum can provide a new way for the quality control of activated carbon. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
Show Figures

Figure 1

22 pages, 5830 KiB  
Article
Design of and Experimental Study on Drying Equipment for Fritillaria ussuriensis
by Liguo Wu, Jiamei Qi, Liping Sun, Sanping Li, Qiyu Wang and Haogang Feng
Appl. Sci. 2025, 15(15), 8427; https://doi.org/10.3390/app15158427 - 29 Jul 2025
Viewed by 138
Abstract
To address the problems of the time consumption, labor intensiveness, easy contamination, uneven drying, and impact on the medicinal efficacy of Fritillaria ussuriensis in the traditional drying method, the hot-air-drying characteristics of Fritillaria ussuriensis were studied. The changes in the moisture ratio and [...] Read more.
To address the problems of the time consumption, labor intensiveness, easy contamination, uneven drying, and impact on the medicinal efficacy of Fritillaria ussuriensis in the traditional drying method, the hot-air-drying characteristics of Fritillaria ussuriensis were studied. The changes in the moisture ratio and drying rate of Fritillaria ussuriensis under different hot-air-drying conditions (45 °C, 55 °C, 65 °C) were compared and analyzed. Six common mathematical models were used to fit the moisture change law, and it was found that the cubic model was the most suitable for describing the drying characteristics of Fritillaria ussuriensis. The R2 values after fitting under the three temperature conditions were all greater than 0.99, and the maximum was achieved at 45 °C. Based on the principle of hot-air drying, a drying device for Fritillaria ussuriensis with a processing capacity of 15 kg/h was designed. It adopted a thermal circulation structure of inner and outer drying ovens, with the heating chamber separated from the drying chamber. The structural parameters were optimized based on Fluent simulation analysis. After optimization, the temperature of each layer was stable at 338 K ± 2 K, and the pressure field and velocity field were evenly distributed. The drying process parameters of Fritillaria ussuriensis were optimized based on response surface analysis, and the optimal process parameters were obtained as follows: inlet temperature: 338 K (65 °C), inlet air velocity: 3 m/s, and drying time: 10 h. The simulation results showed that the predicted moisture content of Fritillaria ussuriensis under the optimal working conditions was 12.58%, the temperature difference of Fritillaria ussuriensis at different positions was within 0.8 °C, and the humidity deviation was about 1%. A prototype of the drying device was built, and the drying test of Fritillaria ussuriensis was carried out. It was found that the temperature and moisture content of Fritillaria ussuriensis were consistent with the simulation results and met the design requirements, verifying the rationality of the device structure and the reliability of the simulation model. This design can significantly improve the distribution of the internal flow field and temperature field of the drying device, improve the drying quality and production efficiency of Fritillaria ussuriensis, and provide a technical reference for the Chinese herbal medicine-drying industry. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

36 pages, 4549 KiB  
Review
Therapeutic Potential of Bioactive Compounds from Traditional Chinese Medicine in Modulating Macrophage Cholesterol Metabolism for Atherosclerosis Treatment
by Lijiao Yan, Jiageng Guo, Dan Huang, Fan Zhang, Zhengcai Du, Xiaotao Hou, Jiagang Deng, Yan Xie and Erwei Hao
Pharmaceuticals 2025, 18(8), 1113; https://doi.org/10.3390/ph18081113 - 25 Jul 2025
Viewed by 271
Abstract
Atherosclerosis (AS) is a complex pathological process characterized by the pivotal involvement of foam cells in its pathogenesis. As the primary cellular components of arterial plaques, foam cells critically determine plaque stability. Foam cells derive mainly from macrophages, and their formation is driven [...] Read more.
Atherosclerosis (AS) is a complex pathological process characterized by the pivotal involvement of foam cells in its pathogenesis. As the primary cellular components of arterial plaques, foam cells critically determine plaque stability. Foam cells derive mainly from macrophages, and their formation is driven by dysregulated lipid metabolism within these immune cells. Macrophage cholesterol metabolism is a highly regulated process comprising four key phases: uptake, esterification, hydrolysis, and efflux. Under physiological conditions, these four phases maintain a delicate balance. However, disruption of cholesterol homeostasis results in the excessive accumulation of intracellular lipid, promoting the formation of foam cell and inflammasome activation, thereby accelerating the atherosclerotic progression. Therefore, targeting macrophage cholesterol metabolism has emerged as a promising therapeutic approach for AS. This review summarizes the mechanisms underlying macrophage cholesterol metabolism and highlights recent progress in identifying bioactive components of traditional Chinese medicines (TCMs) that mitigate AS through the modulation of macrophage cholesterol homeostasis. These findings may offer novel insights into the development of clinically effective therapies for the prevention of AS. Full article
Show Figures

Graphical abstract

15 pages, 1493 KiB  
Review
Research Progress on the Effect of Thesium chinense Turcz. on Neurodegenerative Diseases
by Ziyi Li, Yanfang Zhao, Rong Wang, Ruoxuan Zhou, Xuehua Chen, Jingchen Jiang, Yilan Dai and Huaiqing Luo
Int. J. Mol. Sci. 2025, 26(15), 7079; https://doi.org/10.3390/ijms26157079 - 23 Jul 2025
Viewed by 251
Abstract
Thesium chinense Turcz., a traditional Chinese medicinal herb, is enriched with bioactive constituents such as flavonoids and polysaccharides, demonstrating multifaceted therapeutic properties including anti-inflammatory, antioxidant, and neuroprotective effects. This review systematically elucidates the regulatory mechanisms by which active components of Thesium chinense [...] Read more.
Thesium chinense Turcz., a traditional Chinese medicinal herb, is enriched with bioactive constituents such as flavonoids and polysaccharides, demonstrating multifaceted therapeutic properties including anti-inflammatory, antioxidant, and neuroprotective effects. This review systematically elucidates the regulatory mechanisms by which active components of Thesium chinense Turcz. modulate pathological processes in NDDs, such as neuroinflammation and oxidative stress. Furthermore, it synthesizes evidence of its neuroprotective efficacy across experimental models and evaluates its translational potential for clinical applications. By integrating preclinical findings and mechanistic insights, this work provides a robust theoretical foundation for advancing natural product-based therapeutics in the management of NDDs. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

21 pages, 7490 KiB  
Article
Exploring the Biocultural Nexus of Gastrodia elata in Zhaotong: A Pathway to Ecological Conservation and Economic Growth
by Yanxiao Fan, Menghua Tian, Defen Hu and Yong Xiong
Biology 2025, 14(7), 846; https://doi.org/10.3390/biology14070846 - 11 Jul 2025
Viewed by 513
Abstract
Gastrodia elata, known as Tianma in Chinese, is a valuable medicinal and nutritional resource. The favorable climate of Zhaotong City, Yunnan Province, China, facilitates its growth and nurtures rich biocultural diversity associated with Tianma in the region. Local people not only cultivate [...] Read more.
Gastrodia elata, known as Tianma in Chinese, is a valuable medicinal and nutritional resource. The favorable climate of Zhaotong City, Yunnan Province, China, facilitates its growth and nurtures rich biocultural diversity associated with Tianma in the region. Local people not only cultivate Tianma as a traditional crop but have also developed a series of traditional knowledge related to its cultivation, processing, medicinal use, and culinary applications. In this study, field surveys employing ethnobotanical methods were conducted in Yiliang County, Zhaotong City, from August 2020 to May 2024, focusing on Tianma. A total of 114 key informants participated in semi-structured interviews. The survey documented 23 species (and forms) from seven families related to Tianma cultivation. Among them, there were five Gastrodia resource taxa, including one original species, and four forms. These 23 species served as either target cultivated species, symbiotic fungi (promoting early-stage Gastrodia germination), or fungus-cultivating wood. The Fagaceae family, with 10 species, was the most dominant, as its dense, starch-rich wood decomposes slowly, providing Armillaria with a long-term, stable nutrient substrate. The cultural importance (CI) statistics revealed that Castanea mollissima, G. elata, G. elata f. flavida, G. elata f. glauca, G. elata f. viridis, and Xuehong Tianma (unknown form) exhibited relatively high CI values, indicating their crucial cultural significance and substantial value within the local community. In local communities, traditionally processed dried Tianma tubers are mainly used to treat cardiovascular diseases and also serve as a culinary ingredient, with its young shoots and tubers incorporated into dishes such as cold salads and stewed chicken. To protect the essential ecological conditions for Tianma, the local government has implemented forest conservation measures. The sustainable development of the Tianma industry has alleviated poverty, protected biodiversity, and promoted local economic growth. As a distinctive plateau specialty of Zhaotong, Tianma exemplifies how biocultural diversity contributes to ecosystem services and human well-being. This study underscores the importance of biocultural diversity in ecological conservation and the promotion of human welfare. Full article
(This article belongs to the Special Issue Young Researchers in Conservation Biology and Biodiversity)
Show Figures

Figure 1

21 pages, 14585 KiB  
Article
Zingiber officinale Polysaccharide Silver Nanoparticles: A Study of Its Synthesis, Structure Elucidation, Antibacterial and Immunomodulatory Activities
by Xiaoyu Chang, Huina Xiao, Mingsong Li, Yongshuai Jing, Kaiyan Zheng, Beibei Hu, Yuguang Zheng and Lanfang Wu
Nanomaterials 2025, 15(14), 1064; https://doi.org/10.3390/nano15141064 - 9 Jul 2025
Viewed by 339
Abstract
Green-synthesized metal nanoparticles show promise in nanomedicine and material engineering. In this study, the polysaccharide of Zingiber officinale (ZOP) was used as a raw material. Through single-factor experiments and a response surface methodology, the optimum synthesis protocol of Zingiber officinale polysaccharide silver nanoparticles [...] Read more.
Green-synthesized metal nanoparticles show promise in nanomedicine and material engineering. In this study, the polysaccharide of Zingiber officinale (ZOP) was used as a raw material. Through single-factor experiments and a response surface methodology, the optimum synthesis protocol of Zingiber officinale polysaccharide silver nanoparticles (ZOP-NPs-AgNPs) was determined as follows: V(AgNO3):V(ZOP) = 2.98:1, 59.79 °C, 3 h, pH 9, and 20 mL NaCl, achieving a 92.51% silver chelation rate. Structure analysis revealed that ZOP-NPs-AgNPs were spherical or quasi-spherical, with a particle size < 20 nm and a face-centered cubic crystal structure, which has good thermal stability. Subsequent studies explored the antibacterial and immunomodulatory effects of ZOP-NPs-AgNPs. The minimum inhibitory concentration (MIC) of ZOP-NPs-AgNPs against Escherichia coli and Staphylococcus aureus was determined to be 0.5000 mg/mL and 0.0310 mg/mL, respectively, while the minimum bactericidal concentration (MBC) was 0.5000 mg/mL and 0.0310 mg/mL, respectively. Additionally, ZOP-NPs-AgNPs significantly enhance RAW264.7 cell proliferation and phagocytosis and boost IL−1β, IL−6, NO, and TNF-α production. This confirms that ZOP can act as a green reductant and stabilizer, offering a new method for green nano-silver synthesis. This provides a sustainable way to produce antibacterial products and functional foods, and offers useful references for eco-friendly nano-silver applications. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

17 pages, 568 KiB  
Review
Advances in Traditional Chinese Medicine for Modulating DNA Methylation in the Treatment of Inflammatory Diseases
by Cui Zhang, Chonkit Lio, Nana Li, Cong Huang, Xueming Yao and Jinfang Luo
Int. J. Mol. Sci. 2025, 26(13), 6331; https://doi.org/10.3390/ijms26136331 - 30 Jun 2025
Viewed by 567
Abstract
DNA methylation is a crucial epigenetic mechanism that modifies the epigenome without altering the DNA sequence, leading to heritable changes in gene expression and playing a vital role in biological processes. The regulation of DNA methylation has gained significant attention in recent years [...] Read more.
DNA methylation is a crucial epigenetic mechanism that modifies the epigenome without altering the DNA sequence, leading to heritable changes in gene expression and playing a vital role in biological processes. The regulation of DNA methylation has gained significant attention in recent years for its role in inflammatory diseases, with numerous studies indicating a correlation between abnormal gene methylation and disease development. However, current research on mature methylation-regulation drugs remains in its infancy. Traditional Chinese medicine (TCM) has been demonstrated to have a potential therapeutic effect in treating inflammatory diseases by modulating DNA methylation. In this review, we provide an overview of how DNA methylation participates in inflammatory diseases and how TCM assesses its function in regulating DNA methylation modifications. We aim to demonstrate a theoretical foundation for further research on the therapeutic targets and mechanisms of TCM in inflammatory disease treatment. Full article
Show Figures

Figure 1

13 pages, 4302 KiB  
Article
Analysis of Processing Impact on Raspberries Based on Broad-Spectrum Metabolomics
by Xiaoge Wang, Qiyuan Liao, Fan Wang, Xuelin Rui, Yushan Liu and Rui Wang
Metabolites 2025, 15(7), 435; https://doi.org/10.3390/metabo15070435 - 26 Jun 2025
Viewed by 376
Abstract
Objective: Our objective was to explore the regulatory mechanism of salt processing on the metabolome of the raspberry and its potential efficacy against diabetic nephropathy (DN), providing metabolomic and network pharmacological evidence for the scientific connotation of traditional Chinese medicine processing. Methods: Ultra-high-performance [...] Read more.
Objective: Our objective was to explore the regulatory mechanism of salt processing on the metabolome of the raspberry and its potential efficacy against diabetic nephropathy (DN), providing metabolomic and network pharmacological evidence for the scientific connotation of traditional Chinese medicine processing. Methods: Ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS)-based metabolomics was used to compare the metabolic profiles between raw and salt-processed raspberries. Network pharmacology was applied to screen the common targets of the active components in the salt-processed raspberry and DN-related pathways, followed by in vitro cell experiments to validate the regulation of the MAPK signaling pathway. Results: The metabolomic analysis identified 80 differentially expressed metabolites, among which 13 key components (VIP ≥ 1, FC ≥ 2) were significantly altered, including enriched flavonoids (e.g., luteolin-7-O-glucoside), triterpenoid saponins (Raspberryides H/F), and phenolic acids (ellagic acid). The network pharmacology revealed that the salt-processed raspberries regulated the DN-related pathways through 122 common targets, with the core nodes focusing on the signaling molecules (e.g., AKT1, EGFR) involved in the MAPK signaling pathway and apoptosis regulation. The in vitro experiments confirmed that the salt-processed raspberry extract (160–640 μg/mL) significantly inhibited the phosphorylation levels of p38/ERK/JNK in high-glucose-induced renal cells. Conclusions: This study firstly combines metabolomics and network pharmacology to reveal the regulatory mechanism of salt processing on the active components of raspberries. The salt-processing technology enhanced the inhibitory effect of raspberries on the MAPK signaling pathway, thereby ameliorating the progression of DN. These findings provide scientific support for establishing a metabolomics-based quality control system for traditional Chinese medicine processing. The current findings are primarily based on in vitro models, and in vivo validation using DN animal models is essential to confirm the therapeutic efficacy and safety of salt-processed raspberries. Full article
Show Figures

Figure 1

23 pages, 3705 KiB  
Article
Revealing the Multi-Target Mechanisms of Fespixon Cream in Diabetic Foot Ulcer Healing: Integrated Network Pharmacology, Molecular Docking, and Clinical RT-qPCR Validation
by Tianbo Li, Dehua Wei, Jiangning Wang and Lei Gao
Curr. Issues Mol. Biol. 2025, 47(7), 485; https://doi.org/10.3390/cimb47070485 - 25 Jun 2025
Viewed by 770
Abstract
Objective: This study aims to elucidate the potential mechanisms by which Fespixon cream promotes diabetic foot ulcer (DFU) healing using network pharmacology, molecular docking, and RT-qPCR validation in clinical tissue samples. Methods: Active components of Fespixon cream were screened from the Traditional Chinese [...] Read more.
Objective: This study aims to elucidate the potential mechanisms by which Fespixon cream promotes diabetic foot ulcer (DFU) healing using network pharmacology, molecular docking, and RT-qPCR validation in clinical tissue samples. Methods: Active components of Fespixon cream were screened from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and relevant literature, and their corresponding targets were standardized using the Universal Protein Resource (UniProt) database. Diabetic foot ulcer (DFU)-related targets were retrieved and filtered from the GeneCards database and the Online Mendelian Inheritance in Man (OMIM) database. The intersection of drug and disease targets was identified, and a protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The interaction network was visualized using Cytoscape version 3.7.2 software. The potential mechanisms of the shared targets were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis using R software packages, and results were visualized through Bioinformatics online tools. Molecular docking was performed to validate the binding between key active compounds of Fespixon cream and core DFU targets using AutoDock Vina version 1.1.2 and PyMOL software. Furthermore, RT-qPCR analysis was performed on wound edge tissue samples from DFU patients treated with Fespixon cream to experimentally verify the mRNA expression levels of predicted hub genes. Results: Network pharmacology analysis identified eight active compounds in Fespixon cream, along with 153 potential therapeutic targets related to diabetic foot ulcer (DFU). Among these, 21 were determined as core targets, with the top five ranked by degree value being RAC-αserine/threonine-protein kinase (AKT1), Cellular tumor antigen p53 (TP53), Tumor necrosis factor (TNF), Interleukin-6 (IL6), and Mitogen-activated protein kinase 1 (MAPK1). GO enrichment analysis indicated that the targets of Fespixon cream were primarily involved in various biological processes related to cellular stress responses. KEGG pathway enrichment revealed that these targets were significantly enriched in pathways associated with diabetic complications, atherosclerosis, inflammation, and cancer. Molecular docking confirmed stable binding interactions between the five major active compounds—quercetin, apigenin, rosmarinic acid, salvigenin, and cirsimaritin—and the five core targets (AKT1, TP53, TNF, IL6, MAPK1). Among them, quercetin exhibited the strongest binding affinity with AKT1. RT-qPCR validation in clinical DFU tissue samples demonstrated consistent expression trends with computational predictions: AKT1 was significantly upregulated, while TP53, TNF, IL6, and MAPK1 were markedly downregulated in the Fespixon-treated group compared to controls (p < 0.001), supporting the proposed multi-target therapeutic mechanism. Conclusions: Our study reveals the potential mechanisms by which Fespixon cream exerts therapeutic effects on DFUs. The efficacy of Fespixon cream in treating DFUs is attributed to the synergistic actions of its bioactive components through multiple targets and multiple signaling pathways. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

22 pages, 5318 KiB  
Article
Identification of the Glyceraldehyde-3-Phosphate Dehydrogenase (GeGAPDH) Gene Family in Gastrodia elata Revealing Its Response Characteristics to Low-Temperature and Pathogen Stress
by Yaxing Yan, Mei Jiang, Pengjie Han, Xiaohu Lin and Xiao Wang
Plants 2025, 14(12), 1866; https://doi.org/10.3390/plants14121866 - 18 Jun 2025
Viewed by 488
Abstract
The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene plays a pivotal role in the glycolysis/gluconeogenesis process, contributing significantly to glycosyl donor synthesis, plant growth and development, and stress responses. Gastrodia elata Bl., a heterotrophic plant in the Orchidaceae family, has its dried tubers used [...] Read more.
The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene plays a pivotal role in the glycolysis/gluconeogenesis process, contributing significantly to glycosyl donor synthesis, plant growth and development, and stress responses. Gastrodia elata Bl., a heterotrophic plant in the Orchidaceae family, has its dried tubers used as the traditional Chinese medicine. This study identified three GeGAPDH genes in G. elata, all encoding basic, stable, hydrophilic proteins. Phylogenetic analysis and subcellular localization predictions categorized GeGAPDH1 as a plastid subtype, while GeGAPDH2 and GeGAPDH3 were classified as cytoplasmic subtypes. Prokaryotic expression experiments demonstrated successful expression of the GeGAPDH1 protein in Escherichia coli, which exhibited significant GAPDH enzymatic activity. Subcellular localization experiments showed that GeGAPDH1 was localized in the plastid. Expression analysis indicated that the three GeGAPDH genes were predominantly expressed in tubers. Under low-temperature stress, although the total GAPDH enzyme activity in tubers did not change significantly, the expression of GeGAPDH1 was significantly up-regulated, while GeGAPDH2 and GeGAPDH3 were significantly down-regulated. This suggests that different subtypes of GeGAPDH may regulate cold resistance through different pathways. Upon pathogen infection, the GeGAPDH gene family exhibited pathogen-specific regulatory patterns. During infection by Fusarium oxysporum, both the expression levels of all three GeGAPDH genes and the total GAPDH enzyme activity in tubers increased significantly; however, F. solani infection induced a significant increase in total GAPDH enzyme activity without significant changes in gene expression. These results suggest that the GeGAPDH gene family may respond to different pathogen infections through transcriptional or translational regulation mechanisms. This study systematically identified and characterized the GeGAPDH gene family in G. elata, providing a theoretical foundation for understanding the functional differentiation of GAPDH in heterotrophic plants. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

14 pages, 1915 KiB  
Article
Parameter Optimization Considering the Variations Both from Materials and Process: A Case Study of Scutellaria baicalensis Extract
by Xuecan Zhang, Zhilong Tang, Bo Chen and Xingchu Gong
Separations 2025, 12(6), 165; https://doi.org/10.3390/separations12060165 - 17 Jun 2025
Viewed by 576
Abstract
The Quality by Design (QbD) concept has been widely applied to the optimization of traditional Chinese medicine production processes recently. This work focused on optimizing the critical purification process of Scutellaria baicalensis extract used in the preparation of Zhusheyong Shuanghuanglian. Considering the impact [...] Read more.
The Quality by Design (QbD) concept has been widely applied to the optimization of traditional Chinese medicine production processes recently. This work focused on optimizing the critical purification process of Scutellaria baicalensis extract used in the preparation of Zhusheyong Shuanghuanglian. Considering the impact of noise parameters and changes in herbal properties, an experimental design method was employed for optimization. Multiple batches of Scutellaria baicalensis decoction were prepared in this research, and quantitative models of Scutellaria baicalensis herbal properties, critical process parameters (CPPs), and process evaluation indicators were established. The R2 of the quantitative models were all higher than 0.80. According to the model, the yield of baicalin was identified as a critical material property (CMA). The pH of first acid precipitation (X1), first temperature holding time (X2), pH of alkalization (X3), ethanol amount (X4), and end pH of ethanol washing (X5) were CPPs. Considering the difficulty in controlling the end pH of the ethanol washing, it was considered to be a noise parameter. The Monte Carlo probability-based method was used to calculate the design space, determining the range of controllable parameters, which was successfully validated through experiments. Normal operation ranges for controllable parameters are recommended as follows: X1 of 0.8–2.2, X2 of 25–35 min, X3 of 6.5–7.5, and X4 of 0.8–1.2 g/g. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

25 pages, 5953 KiB  
Article
Evaluation of the Functional Properties and Edible Safety of Concocted Xanthii Fructus Protein
by Yuchen Dong, Zihao Wan, Fuguo Han, Xuemei Fan, Yanli Hao, Fang Wei and Qingfei Liu
Foods 2025, 14(11), 1913; https://doi.org/10.3390/foods14111913 - 28 May 2025
Viewed by 544
Abstract
Xanthii Fructus (XF) not only has medicinal function in traditional Chinese medicine (TCM) but also contains rich oil and protein. The aim of this research was to develop the edible value of its protein based on the investigation on the extraction, basic characteristics [...] Read more.
Xanthii Fructus (XF) not only has medicinal function in traditional Chinese medicine (TCM) but also contains rich oil and protein. The aim of this research was to develop the edible value of its protein based on the investigation on the extraction, basic characteristics and functions, safety, gut microbiota, and metabolomics, especially the effect of the concocting process. The proteins from raw and concocted XF were prepared using two methods: alkaline solubilization followed by acid precipitation and ammonium sulfate salting-out, respectively. The secondary structure and physicochemical properties of the proteins were characterized through spectroscopic analysis and property determination. The effects of alkaline and the concocting process on the proteins were systematically compared. The results indicated that the salting-out method could retain the protein activity better. Both alkali treatment and the concocting process altered the folding state of proteins. The toxicological results in mice indicated that a high dose (0.35 g/kg) of raw Xanthii Fructus protein (XFP) might cause damage to the liver and small intestine, and the concocting process could significantly alleviate the damage. The 16S rRNA sequencing technology was used to untangle their impact on gut microbiota in mice and the result showed that raw protein had a certain regulatory effect on Bifidobacterium, Rhodococcus, Lactococcus, and Clostridium, while the concocted protein had a smaller impact, mainly affecting Bacteroides and Bifidobacterium. The untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) showed that the proteins of raw XF affected the metabolic level through cysteine and methionine metabolism, purine metabolism, amino sugar and nucleotide sugar metabolism pathways, and the concocted protein mainly involved histidine metabolism and purine metabolism pathways. Overall, XFP had potential development prospects, but the anti-nutritional factors might have some toxicity. The concocting process could significantly improve its safety, and the concocted proteins were worth developing as a food source. In the future, the processing conditions should be further optimized and more systematic investigation should be performed to ensure the safety of XF as a food source. Full article
Show Figures

Figure 1

20 pages, 1520 KiB  
Review
Research Progress and Management Strategies for the Common Mycotoxin Contamination of Traditional Chinese Medicines
by Zhimin Yang, Huali Xue, Ye Han, Hui Ding and Ying Zhang
J. Fungi 2025, 11(6), 411; https://doi.org/10.3390/jof11060411 - 27 May 2025
Viewed by 789
Abstract
With rapid globalization and the increasing demand for traditional Chinese medicines, quality and safety has become a critical priority for both domestic and international markets. However, traditional Chinese medicines are susceptible to contamination by pathogenic microorganisms during the process of cultivation, growth, processing, [...] Read more.
With rapid globalization and the increasing demand for traditional Chinese medicines, quality and safety has become a critical priority for both domestic and international markets. However, traditional Chinese medicines are susceptible to contamination by pathogenic microorganisms during the process of cultivation, growth, processing, storage, and transportation, which can lead to mycotoxin contamination that adversely affect the quality and safety of traditional Chinese medicines, and may pose potential threats to human health. This review summarizes mycotoxin contamination, the common detection methods, prevention and control measures, and regulatory recommendations, aiming to provide references for improving the quality standards and ensuring safety of these medications. Full article
(This article belongs to the Special Issue Plant Pathogens and Mycotoxins)
Show Figures

Figure 1

14 pages, 4392 KiB  
Article
Evaluation of Indigo Naturalis Prepared Using a Novel Method: Therapeutic Effects on Experimental Ulcerative Colitis in Mice
by Xianxiang Xu, Lin Lin, Wenjie Ning, Xinyi Zhou, Aftab Ullah, Huiyong Yang, Xunxun Wu and Yong Diao
Pharmaceutics 2025, 17(5), 674; https://doi.org/10.3390/pharmaceutics17050674 - 20 May 2025
Cited by 1 | Viewed by 639
Abstract
Background/Objectives: Indigo naturalis (IN) is a traditional Chinese medicine concocted from medicinal plants such as Baphicacanthus cusia (Nees) Bremek. IN has multifaceted pharmacological activities. Recent research highlights the remarkable efficacy of IN in treating ulcerative colitis (UC). This study investigates the efficacy [...] Read more.
Background/Objectives: Indigo naturalis (IN) is a traditional Chinese medicine concocted from medicinal plants such as Baphicacanthus cusia (Nees) Bremek. IN has multifaceted pharmacological activities. Recent research highlights the remarkable efficacy of IN in treating ulcerative colitis (UC). This study investigates the efficacy of Indigo Naturalis prepared using a novel method (NIN) in ameliorating UC. Methods: We have developed a new IN processing technology without the use of lime. Correspondingly, the content of active ingredients has relatively increased in NIN. In this study, dextran sulfate sodium salt (DSS) induced UC models among male KM mice, and the protective effects of NIN on UC were verified. Results: NIN could significantly improve weight loss, diarrhea and prolapse, bloody stools, elevated Disease Activity Index (DAI) and alleviate the colitis symptoms of mice; it could also improve the shortening of colon, disappearance of intestinal crypts, epithelial cell destruction and inflammatory infiltration caused by UC; and it could also significantly reduce the Histological Index (HI). In addition, NIN relieved the inflammatory response by decreasing the content of pro-inflammatory cytokines TNF-α and IL-1β and elevating the content of anti-inflammatory cytokines IL-10 and IL-22. It also restored the intestinal mucosal barrier by increasing the level of MUC2 protein expression at the site of colonic injury. Conclusions: The significant effects of NIN on UC were verified for the first time, suggesting that NIN was worth further developing into a novel therapeutic drug and, necessarily, further safety evaluations and comparisons with traditional IN will help in the application of NIN. Full article
Show Figures

Figure 1

14 pages, 2375 KiB  
Article
Chimonanthus nitens Oliv. Leaf Flavonoids Exert Anti-Inflammatory Effects Through TLR4 Receptor Affecting NF-κB/MAPK Signaling Pathway
by Lirong Shen, Wenya Meng, Hui Chen, Lingli Chen, Suyun Lin, Kehui Ouyang and Wenjun Wang
Appl. Sci. 2025, 15(9), 5177; https://doi.org/10.3390/app15095177 - 7 May 2025
Viewed by 515
Abstract
Chimonanthus nitens Oliv. leaves (COL), a commonly used traditional Chinese medicine, are rich in a variety of bioactive components, with flavonoids being one of the most abundant. In the current study, RAW264.7 macrophages were induced by lipopolysaccharide (LPS) and treated with COL flavonoids [...] Read more.
Chimonanthus nitens Oliv. leaves (COL), a commonly used traditional Chinese medicine, are rich in a variety of bioactive components, with flavonoids being one of the most abundant. In the current study, RAW264.7 macrophages were induced by lipopolysaccharide (LPS) and treated with COL flavonoids (COLFs). The results demonstrated that COLFs could inhibit the release of nitric oxide (NO) and related inflammatory factors in macrophages. RNA sequencing (RNA-seq) analysis revealed 627 differentially expressed genes (DEGs) in the COLF group, which were further analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We found that genes involved in biological processes in the LPS and COLF groups were significantly regulated, as indicated by the GO enrichment analysis. The NF-κB signaling pathway was identified through KEGG enrichment analysis for further exploration of the mechanism by which COLFs affect macrophages. Additionally, Western blotting analysis indicated that COLFs could influence the activity of the NF-κB/MAPK signaling pathway via the TLR4 receptor, thereby modulating its anti-inflammatory function. Overall, our results reveal a novel role for COLFs as natural inflammation regulators and provide a theoretical and molecular basis for their development and utilization. Full article
Show Figures

Figure 1

Back to TopTop