Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,738)

Search Parameters:
Keywords = trade-offs solution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 (registering DOI) - 2 Aug 2025
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

31 pages, 2421 KiB  
Article
Optimization of Cooperative Operation of Multiple Microgrids Considering Green Certificates and Carbon Trading
by Xiaobin Xu, Jing Xia, Chong Hong, Pengfei Sun, Peng Xi and Jinchao Li
Energies 2025, 18(15), 4083; https://doi.org/10.3390/en18154083 (registering DOI) - 1 Aug 2025
Abstract
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an [...] Read more.
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an effective solution to this problem. Uncertainty exists in single microgrids, so multiple microgrids are introduced to improve system stability and robustness. Electric carbon trading and profit redistribution among multiple microgrids have been challenges. To promote energy commensurability among microgrids, expand the types of energy interactions, and improve the utilization rate of renewable energy, this paper proposes a cooperative operation optimization model of multi-microgrids based on the green certificate and carbon trading mechanism to promote local energy consumption and a low carbon economy. First, this paper introduces a carbon capture system (CCS) and power-to-gas (P2G) device in the microgrid and constructs a cogeneration operation model coupled with a power-to-gas carbon capture system. On this basis, a low-carbon operation model for multi-energy microgrids is proposed by combining the local carbon trading market, the stepped carbon trading mechanism, and the green certificate trading mechanism. Secondly, this paper establishes a cooperative game model for multiple microgrid electricity carbon trading based on the Nash negotiation theory after constructing the single microgrid model. Finally, the ADMM method and the asymmetric energy mapping contribution function are used for the solution. The case study uses a typical 24 h period as an example for the calculation. Case study analysis shows that, compared with the independent operation mode of microgrids, the total benefits of the entire system increased by 38,296.1 yuan and carbon emissions were reduced by 30,535 kg through the coordinated operation of electricity–carbon coupling. The arithmetic example verifies that the method proposed in this paper can effectively improve the economic benefits of each microgrid and reduce carbon emissions. Full article
Show Figures

Figure 1

20 pages, 2735 KiB  
Article
Techno-Economic Assessment of Electrification and Hydrogen Pathways for Optimal Solar Integration in the Glass Industry
by Lorenzo Miserocchi and Alessandro Franco
Solar 2025, 5(3), 35; https://doi.org/10.3390/solar5030035 (registering DOI) - 1 Aug 2025
Abstract
Direct electrification and hydrogen utilization represent two key pathways for decarbonizing the glass industry, with their effectiveness subject to adequate furnace design and renewable energy availability. This study presents a techno-economic assessment for optimal solar energy integration in a representative 300 t/d oxyfuel [...] Read more.
Direct electrification and hydrogen utilization represent two key pathways for decarbonizing the glass industry, with their effectiveness subject to adequate furnace design and renewable energy availability. This study presents a techno-economic assessment for optimal solar energy integration in a representative 300 t/d oxyfuel container glass furnace with a specific energy consumption of 4.35 GJ/t. A mixed-integer linear programming formulation is developed to evaluate specific melting costs, carbon emissions, and renewable energy self-consumption and self-production rates across three scenarios: direct solar coupling, battery storage, and a hydrogen-based infrastructure. Battery storage achieves the greatest reductions in specific melting costs and emissions, whereas hydrogen integration minimizes electricity export to the grid. By incorporating capital investment considerations, the study quantifies the cost premiums and capacity requirements under varying decarbonization targets. A combination of 30 MW of solar plant and 9 MW of electric boosting enables the realization of around 30% carbon reduction while increasing total costs by 25%. Deeper decarbonization targets require more advanced systems, with batteries emerging as a cost-effective solution. These findings offer critical insights into the economic and environmental trade-offs, as well as the technical constraints associated with renewable energy adoption in the glass industry, providing a foundation for strategic energy and decarbonization planning. Full article
Show Figures

Figure 1

29 pages, 540 KiB  
Systematic Review
Digital Transformation in International Trade: Opportunities, Challenges, and Policy Implications
by Sina Mirzaye and Muhammad Mohiuddin
J. Risk Financial Manag. 2025, 18(8), 421; https://doi.org/10.3390/jrfm18080421 (registering DOI) - 1 Aug 2025
Abstract
This study synthesizes the rapidly expanding evidence on how digital technologies reshape international trade, with a particular focus on small and medium-sized enterprises (SMEs). Guided by two research questions—(RQ1) How do digital tools influence the volume and composition of cross-border trade? and (RQ2) [...] Read more.
This study synthesizes the rapidly expanding evidence on how digital technologies reshape international trade, with a particular focus on small and medium-sized enterprises (SMEs). Guided by two research questions—(RQ1) How do digital tools influence the volume and composition of cross-border trade? and (RQ2) How do these effects vary by countries’ development level and firm size?—we conducted a PRISMA-compliant systematic literature review covering 2010–2024. Searches across eight major databases yielded 1857 records; after duplicate removal, title/abstract screening, full-text assessment, and Mixed Methods Appraisal Tool (MMAT 2018) quality checks, 86 peer-reviewed English-language studies were retained. Findings reveal three dominant technology clusters: (1) e-commerce platforms and cloud services, (2) IoT-enabled supply chain solutions, and (3) emerging AI analytics. E-commerce and cloud adoption consistently raise export intensity—doubling it for digitally mature SMEs—while AI applications are the fastest-growing research strand, particularly in East Asia and Northern Europe. However, benefits are uneven: firms in low-infrastructure settings face higher fixed digital costs, and cybersecurity and regulatory fragmentation remain pervasive obstacles. By integrating trade economics with development and SME internationalization studies, this review offers the first holistic framework that links national digital infrastructure and policy support to firm-level export performance. It shows that the trade-enhancing effects of digitalization are contingent on robust broadband penetration, affordable cloud access, and harmonized data-governance regimes. Policymakers should, therefore, prioritize inclusive digital-readiness programs, while business leaders should invest in complementary capabilities—data analytics, cyber-risk management, and cross-border e-logistics—to fully capture digital trade gains. This balanced perspective advances theory and practice on building resilient, equitable digital trade ecosystems. Full article
(This article belongs to the Special Issue Modern Enterprises/E-Commerce Logistics and Supply Chain Management)
Show Figures

Figure 1

23 pages, 2546 KiB  
Article
Flexible Job-Shop Scheduling Integrating Carbon Cap-And-Trade Policy and Outsourcing Strategy
by Like Zhang, Wenpu Liu, Hua Wang, Guoqiang Shi, Qianwang Deng and Xinyu Yang
Sustainability 2025, 17(15), 6978; https://doi.org/10.3390/su17156978 (registering DOI) - 31 Jul 2025
Abstract
Carbon cap-and-trade is a practical policy in guiding manufacturers to produce economic and environmental production plans. However, previous studies on carbon cap-and-trade are from a macro level to guide manufacturers to make production plans, rather than from a perspective of specific production scheduling, [...] Read more.
Carbon cap-and-trade is a practical policy in guiding manufacturers to produce economic and environmental production plans. However, previous studies on carbon cap-and-trade are from a macro level to guide manufacturers to make production plans, rather than from a perspective of specific production scheduling, which leads to a lack of theoretical guidance for manufacturers to develop reasonable production scheduling schemes for specific production orders. This article investigates a specific scheduling problem in a flexible job-shop environment that considers the carbon cap-and-trade policy, aiming to provide guidance for specific production scheduling (i.e., resource allocation). In the proposed problem, carbon emissions have an upper limit. A penalty will be generated if the emissions overpass the predetermined cap. To satisfy the carbon emission cap, the manufacturer can trade carbon credits or adopt outsourcing strategy, that is, outsourcing partial orders to partners at the expense of outsourcing costs. To solve the proposed model, a novel and efficient memetic algorithm (NEMA) is proposed. An initialization method and four local search operators are developed to enhance the search ability. Numerous experiments are conducted and the results validate that NEMA is a superior algorithm in both solution quality and efficiency. Full article
Show Figures

Figure 1

35 pages, 3218 KiB  
Article
Integrated GBR–NSGA-II Optimization Framework for Sustainable Utilization of Steel Slag in Road Base Layers
by Merve Akbas
Appl. Sci. 2025, 15(15), 8516; https://doi.org/10.3390/app15158516 (registering DOI) - 31 Jul 2025
Viewed by 11
Abstract
This study proposes an integrated, machine learning-based multi-objective optimization framework to evaluate and optimize the utilization of steel slag in road base layers, simultaneously addressing economic costs and environmental impacts. A comprehensive dataset of 482 scenarios was engineered based on literature-informed parameters, encompassing [...] Read more.
This study proposes an integrated, machine learning-based multi-objective optimization framework to evaluate and optimize the utilization of steel slag in road base layers, simultaneously addressing economic costs and environmental impacts. A comprehensive dataset of 482 scenarios was engineered based on literature-informed parameters, encompassing transport distance, processing energy intensity, initial moisture content, gradation adjustments, and regional electricity emission factors. Four advanced tree-based ensemble regression algorithms—Random Forest Regressor (RFR), Extremely Randomized Trees (ERTs), Gradient Boosted Regressor (GBR), and Extreme Gradient Boosting Regressor (XGBR)—were rigorously evaluated. Among these, GBR demonstrated superior predictive performance (R2 > 0.95, RMSE < 7.5), effectively capturing complex nonlinear interactions inherent in slag processing and logistics operations. Feature importance analysis via SHapley Additive exPlanations (SHAP) provided interpretative insights, highlighting transport distance and energy intensity as dominant factors affecting unit cost, while moisture content and grid emission factor predominantly influenced CO2 emissions. Subsequently, the Gradient Boosted Regressor model was integrated into a Non-Dominated Sorting Genetic Algorithm II (NSGA-II) framework to explore optimal trade-offs between cost and emissions. The resulting Pareto front revealed a diverse solution space, with significant nonlinear trade-offs between economic efficiency and environmental performance, clearly identifying strategic inflection points. To facilitate actionable decision-making, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method was applied, identifying an optimal balanced solution characterized by a transport distance of 47 km, energy intensity of 1.21 kWh/ton, moisture content of 6.2%, moderate gradation adjustment, and a grid CO2 factor of 0.47 kg CO2/kWh. This scenario offered a substantial reduction (45%) in CO2 emissions relative to cost-minimized solutions, with a moderate increase (33%) in total cost, presenting a realistic and balanced pathway for sustainable infrastructure practices. Overall, this study introduces a robust, scalable, and interpretable optimization framework, providing valuable methodological advancements for sustainable decision making in infrastructure planning and circular economy initiatives. Full article
Show Figures

Figure 1

18 pages, 8192 KiB  
Article
Microstructure, Mechanical Properties, and Tribological Behavior of Friction Stir Lap-Welded Joints Between SiCp/Al–Fe–V–Si Composites and an Al–Si Alloy
by Shunfa Xiao, Pinming Feng, Xiangping Li, Yishan Sun, Haiyang Liu, Jie Teng and Fulin Jiang
Materials 2025, 18(15), 3589; https://doi.org/10.3390/ma18153589 (registering DOI) - 30 Jul 2025
Viewed by 134
Abstract
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of [...] Read more.
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of brake disks, this study fabricated a bimetallic structure of SiCp/Al–Fe–V–Si aluminum matrix composite and cast ZL101 alloy using friction stir lap welding (FSLW). Then, the microstructural evolution, mechanical properties, and tribological behavior of the FSLW joints were studied by XRD, SEM, TEM, tensile testing, and tribological tests. The results showed that the FSLW process homogenized the distribution of SiC particle reinforcements in the SiCp/Al–Fe–V–Si composites. The Al12(Fe,V)3Si heat-resistant phase was not decomposed or coarsened, and the mechanical properties were maintained. The FSLW process refined the grains of the ZL101 aluminum alloy through recrystallization and fragmented eutectic silicon, improving elongation to 22%. A metallurgical bond formed at the joint interface. Tensile fracture occurred within the ZL101 matrix, demonstrating that the interfacial bond strength exceeded the alloy’s load-bearing capacity. In addition, the composites exhibited significantly enhanced wear resistance after FSLW, with their wear rate reduced by approximately 40% compared to the as-received materials, which was attributed to the homogenized SiC particle distribution and the activation of an oxidative wear mechanism. Full article
Show Figures

Figure 1

14 pages, 2107 KiB  
Article
Optimal Coherence Length Control in Interferometric Fiber Optic Hydrophones via PRBS Modulation: Theory and Experiment
by Wujie Wang, Qihao Hu, Lina Ma, Fan Shang, Hongze Leng and Junqiang Song
Sensors 2025, 25(15), 4711; https://doi.org/10.3390/s25154711 - 30 Jul 2025
Viewed by 102
Abstract
Interferometric fiber optic hydrophones (IFOHs) are highly sensitive for underwater acoustic detection but face challenges owing to the trade-off between laser monochromaticity and coherence length. In this study, we propose a pseudo-random binary sequence (PRBS) phase modulation method for laser coherence length control, [...] Read more.
Interferometric fiber optic hydrophones (IFOHs) are highly sensitive for underwater acoustic detection but face challenges owing to the trade-off between laser monochromaticity and coherence length. In this study, we propose a pseudo-random binary sequence (PRBS) phase modulation method for laser coherence length control, establishing the first theoretical model that quantitatively links PRBS parameter to coherence length, elucidating the mechanism underlying its suppression of parasitic interference noise. Furthermore, our research findings demonstrate that while reducing the laser coherence length effectively mitigates parasitic interference noise in IFOHs, this reduction also leads to elevated background noise caused by diminished interference visibility. Consequently, the modulation of coherence length requires a balanced optimization approach that not only suppresses parasitic noise but also minimizes visibility-introduced background noise, thereby determining the system-specific optimal coherence length. Through theoretical modeling and experimental validation, we determined that for IFOH systems with a 500 ns delay, the optimal coherence lengths for link fibers of 3.3 km and 10 km are 0.93 m and 0.78 m, respectively. At the optimal coherence length, the background noise level in the 3.3 km system reaches −84.5 dB (re: rad/√Hz @1 kHz), representing an additional noise suppression of 4.5 dB beyond the original suppression. This study provides a comprehensive theoretical and experimental solution to the long-standing contradiction between high laser monochromaticity, stability and appropriate coherence length, establishing a coherence modulation noise suppression framework for hydrophones, gyroscopes, distributed acoustic sensing (DAS), and other fields. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

21 pages, 2965 KiB  
Article
Inspection Method Enabled by Lightweight Self-Attention for Multi-Fault Detection in Photovoltaic Modules
by Shufeng Meng and Tianxu Xu
Electronics 2025, 14(15), 3019; https://doi.org/10.3390/electronics14153019 - 29 Jul 2025
Viewed by 203
Abstract
Bird-dropping fouling and hotspot anomalies remain the most prevalent and detrimental defects in utility-scale photovoltaic (PV) plants; their co-occurrence on a single module markedly curbs energy yield and accelerates irreversible cell degradation. However, markedly disparate visual–thermal signatures of the two phenomena impede high-fidelity [...] Read more.
Bird-dropping fouling and hotspot anomalies remain the most prevalent and detrimental defects in utility-scale photovoltaic (PV) plants; their co-occurrence on a single module markedly curbs energy yield and accelerates irreversible cell degradation. However, markedly disparate visual–thermal signatures of the two phenomena impede high-fidelity concurrent detection in existing robotic inspection systems, while stringent onboard compute budgets also preclude the adoption of bulky detectors. To resolve this accuracy–efficiency trade-off for dual-defect detection, we present YOLOv8-SG, a lightweight yet powerful framework engineered for mobile PV inspectors. First, a rigorously curated multi-modal dataset—RGB for stains and long-wave infrared for hotspots—is assembled to enforce robust cross-domain representation learning. Second, the HSV color space is leveraged to disentangle chromatic and luminance cues, thereby stabilizing appearance variations across sensors. Third, a single-head self-attention (SHSA) block is embedded in the backbone to harvest long-range dependencies at negligible parameter cost, while a global context (GC) module is grafted onto the detection head to amplify fine-grained semantic cues. Finally, an auxiliary bounding box refinement term is appended to the loss to hasten convergence and tighten localization. Extensive field experiments demonstrate that YOLOv8-SG attains 86.8% mAP@0.5, surpassing the vanilla YOLOv8 by 2.7 pp while trimming 12.6% of parameters (18.8 MB). Grad-CAM saliency maps corroborate that the model’s attention consistently coincides with defect regions, underscoring its interpretability. The proposed method, therefore, furnishes PV operators with a practical low-latency solution for concurrent bird-dropping and hotspot surveillance. Full article
Show Figures

Figure 1

19 pages, 8766 KiB  
Article
Fusion of Airborne, SLAM-Based, and iPhone LiDAR for Accurate Forest Road Mapping in Harvesting Areas
by Evangelia Siafali, Vasilis Polychronos and Petros A. Tsioras
Land 2025, 14(8), 1553; https://doi.org/10.3390/land14081553 - 28 Jul 2025
Viewed by 252
Abstract
This study examined the integraftion of airborne Light Detection and Ranging (LiDAR), Simultaneous Localization and Mapping (SLAM)-based handheld LiDAR, and iPhone LiDAR to inspect forest road networks following forest operations. The goal is to overcome the challenges posed by dense canopy cover and [...] Read more.
This study examined the integraftion of airborne Light Detection and Ranging (LiDAR), Simultaneous Localization and Mapping (SLAM)-based handheld LiDAR, and iPhone LiDAR to inspect forest road networks following forest operations. The goal is to overcome the challenges posed by dense canopy cover and ensure accurate and efficient data collection and mapping. Airborne data were collected using the DJI Matrice 300 RTK UAV equipped with a Zenmuse L2 LiDAR sensor, which achieved a high point density of 285 points/m2 at an altitude of 80 m. Ground-level data were collected using the BLK2GO handheld laser scanner (HPLS) with SLAM methods (LiDAR SLAM, Visual SLAM, Inertial Measurement Unit) and the iPhone 13 Pro Max LiDAR. Data processing included generating DEMs, DSMs, and True Digital Orthophotos (TDOMs) via DJI Terra, LiDAR360 V8, and Cyclone REGISTER 360 PLUS, with additional processing and merging using CloudCompare V2 and ArcGIS Pro 3.4.0. The pairwise comparison analysis between ALS data and each alternative method revealed notable differences in elevation, highlighting discrepancies between methods. ALS + iPhone demonstrated the smallest deviation from ALS (MAE = 0.011, RMSE = 0.011, RE = 0.003%) and HPLS the larger deviation from ALS (MAE = 0.507, RMSE = 0.542, RE = 0.123%). The findings highlight the potential of fusing point clouds from diverse platforms to enhance forest road mapping accuracy. However, the selection of technology should consider trade-offs among accuracy, cost, and operational constraints. Mobile LiDAR solutions, particularly the iPhone, offer promising low-cost alternatives for certain applications. Future research should explore real-time fusion workflows and strategies to improve the cost-effectiveness and scalability of multisensor approaches for forest road monitoring. Full article
Show Figures

Figure 1

52 pages, 3733 KiB  
Article
A Hybrid Deep Reinforcement Learning and Metaheuristic Framework for Heritage Tourism Route Optimization in Warin Chamrap’s Old Town
by Rapeepan Pitakaso, Thanatkij Srichok, Surajet Khonjun, Natthapong Nanthasamroeng, Arunrat Sawettham, Paweena Khampukka, Sairoong Dinkoksung, Kanya Jungvimut, Ganokgarn Jirasirilerd, Chawapot Supasarn, Pornpimol Mongkhonngam and Yong Boonarree
Heritage 2025, 8(8), 301; https://doi.org/10.3390/heritage8080301 - 28 Jul 2025
Viewed by 260
Abstract
Designing optimal heritage tourism routes in secondary cities involves complex trade-offs between cultural richness, travel time, carbon emissions, spatial coherence, and group satisfaction. This study addresses the Personalized Group Trip Design Problem (PGTDP) under real-world constraints by proposing DRL–IMVO–GAN—a hybrid multi-objective optimization framework [...] Read more.
Designing optimal heritage tourism routes in secondary cities involves complex trade-offs between cultural richness, travel time, carbon emissions, spatial coherence, and group satisfaction. This study addresses the Personalized Group Trip Design Problem (PGTDP) under real-world constraints by proposing DRL–IMVO–GAN—a hybrid multi-objective optimization framework that integrates Deep Reinforcement Learning (DRL) for policy-guided initialization, an Improved Multiverse Optimizer (IMVO) for global search, and a Generative Adversarial Network (GAN) for local refinement and solution diversity. The model operates within a digital twin of Warin Chamrap’s old town, leveraging 92 POIs, congestion heatmaps, and behaviorally clustered tourist profiles. The proposed method was benchmarked against seven state-of-the-art techniques, including PSO + DRL, Genetic Algorithm with Multi-Neighborhood Search (Genetic + MNS), Dual-ACO, ALNS-ASP, and others. Results demonstrate that DRL–IMVO–GAN consistently dominates across key metrics. Under equal-objective weighting, it attained the highest heritage score (74.2), shortest travel time (21.3 min), and top satisfaction score (17.5 out of 18), along with the highest hypervolume (0.85) and Pareto Coverage Ratio (0.95). Beyond performance, the framework exhibits strong generalization in zero- and few-shot scenarios, adapting to unseen POIs, modified constraints, and new user profiles without retraining. These findings underscore the method’s robustness, behavioral coherence, and interpretability—positioning it as a scalable, intelligent decision-support tool for sustainable and user-centered cultural tourism planning in secondary cities. Full article
(This article belongs to the Special Issue AI and the Future of Cultural Heritage)
Show Figures

Figure 1

38 pages, 5375 KiB  
Article
Thinking Green: A Place Lab Approach to Citizen Engagement and Indicators for Nature-Based Solutions in a Case Study from Katowice
by Katarzyna Samborska-Goik, Anna Starzewska-Sikorska and Patrycja Obłój
Sustainability 2025, 17(15), 6857; https://doi.org/10.3390/su17156857 - 28 Jul 2025
Viewed by 217
Abstract
Urban areas are at the forefront in addressing global challenges such as climate change and biodiversity loss. Among the key responses are nature-based solutions, which are increasingly being integrated into policy frameworks but which require strong community engagement for their effective implementation. This [...] Read more.
Urban areas are at the forefront in addressing global challenges such as climate change and biodiversity loss. Among the key responses are nature-based solutions, which are increasingly being integrated into policy frameworks but which require strong community engagement for their effective implementation. This paper presents the findings of surveys conducted within the Place Lab in Katowice, Poland, an initiative developed as part of an international project and used as a participatory tool for co-creating and implementing green infrastructure. The project applies both place-based and people-centred approaches to support European cities in their transition towards regenerative urbanism. Place Lab activities encourage collaboration between local authorities and residents, enhancing awareness and fostering participation in environmental initiatives. The survey data collected during the project allowed for the evaluation of changes in public attitudes and levels of engagement and for the identification of broader societal phenomena that may influence the implementation of nature-based solutions. The findings revealed, for instance, that more women were interested in supporting the project, that residents tended to be sceptical of governmental actions on climate change, and that views were divided on the trade-off between urban infrastructure such as parking and roads and the presence of green areas. Furthermore, questions of responsibility, awareness, and long-term commitment were frequently raised. Building on the survey results and the existing literature, the study proposes a set of indicators to assess the contribution of citizen participation to the adoption of nature-based solutions. While the effectiveness of nature-based solutions in mitigating climate change impacts can be assessed relatively directly, evaluating civic engagement is more complex. Nevertheless, when conducted transparently and interpreted by experts, indicator-based assessment can offer valuable insights. This study introduces a novel perspective by considering not only drivers of engagement but also the obstacles. The proposed indicators provide a foundation for evaluating community readiness and commitment to nature-based approaches and may be adapted for application in other urban settings and in future research on climate resilience strategies. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

21 pages, 5017 KiB  
Article
Vessel Trajectory Prediction with Deep Learning: Temporal Modeling and Operational Implications
by Nicos Evmides, Michalis P. Michaelides and Herodotos Herodotou
J. Mar. Sci. Eng. 2025, 13(8), 1439; https://doi.org/10.3390/jmse13081439 - 28 Jul 2025
Viewed by 146
Abstract
Vessel trajectory prediction is fundamental to maritime navigation, safety, and operational efficiency, particularly as the industry increasingly relies on digital solutions and real-time data analytics. This study addresses the challenge of forecasting vessel movements using historical Automatic Identification System (AIS) data, with a [...] Read more.
Vessel trajectory prediction is fundamental to maritime navigation, safety, and operational efficiency, particularly as the industry increasingly relies on digital solutions and real-time data analytics. This study addresses the challenge of forecasting vessel movements using historical Automatic Identification System (AIS) data, with a focus on understanding the temporal behavior of deep learning models under different input and prediction horizons. To this end, a robust data pre-processing pipeline was developed to ensure temporal consistency, filter anomalous records, and segment continuous vessel trajectories. Using a curated dataset from the eastern Mediterranean, three deep recurrent neural network architectures, namely LSTM, Bi-LSTM, and Bi-GRU, were evaluated for short- and long-term trajectory prediction. Empirical results demonstrate that Bi-LSTM consistently achieves higher accuracy across both horizons, with performance gradually degrading under extended forecast windows. The analysis also reveals key insights into the trade-offs between model complexity, horizon-specific robustness, and predictive stability. This work contributes to maritime informatics by offering a comparative evaluation of recurrent architectures and providing a structured and empirical foundation for selecting and deploying trajectory forecasting models in operational contexts. Full article
(This article belongs to the Special Issue Maritime Transport and Port Management)
Show Figures

Figure 1

29 pages, 1659 KiB  
Article
A Mixed-Integer Programming Framework for Drone Routing and Scheduling with Flexible Multiple Visits in Highway Traffic Monitoring
by Nasrin Mohabbati-Kalejahi, Sepideh Alavi and Oguz Toragay
Mathematics 2025, 13(15), 2427; https://doi.org/10.3390/math13152427 - 28 Jul 2025
Viewed by 263
Abstract
Traffic crashes and congestion generate high social and economic costs, yet traditional traffic monitoring methods, such as police patrols, fixed cameras, and helicopters, are costly, labor-intensive, and limited in spatial coverage. This paper presents a novel Drone Routing and Scheduling with Flexible Multiple [...] Read more.
Traffic crashes and congestion generate high social and economic costs, yet traditional traffic monitoring methods, such as police patrols, fixed cameras, and helicopters, are costly, labor-intensive, and limited in spatial coverage. This paper presents a novel Drone Routing and Scheduling with Flexible Multiple Visits (DRSFMV) framework, an optimization model for planning drone-based highway monitoring under realistic operational constraints, including battery limits, variable monitoring durations, recharging at a depot, and target-specific inter-visit time limits. A mixed-integer nonlinear programming (MINLP) model and a linearized version (MILP) are presented to solve the problem. Due to the NP-hard nature of the underlying problem structure, a heuristic solver, Hexaly, is also used. A case study using real traffic census data from three Southern California counties tests the models across various network sizes and configurations. The MILP solves small and medium instances efficiently, and Hexaly produces high-quality solutions for large-scale networks. Results show clear trade-offs between drone availability and time-slot flexibility, and demonstrate that stricter revisit constraints raise operational cost. Full article
Show Figures

Figure 1

20 pages, 2772 KiB  
Article
Cable Force Optimization of Circular Ring Pylon Cable-Stayed Bridges Based on Response Surface Methodology and Multi-Objective Particle Swarm Optimization
by Shengdong Liu, Fei Chen, Qingfu Li and Xiyu Ma
Buildings 2025, 15(15), 2647; https://doi.org/10.3390/buildings15152647 - 27 Jul 2025
Viewed by 152
Abstract
Cable force distribution in cable-stayed bridges critically impacts structural safety and efficiency, yet traditional optimization methods struggle with unconventional designs due to nonlinear mechanics and computational inefficiency. This study proposes a hybrid approach combining Response Surface Methodology (RSM) and Multi-Objective Particle Swarm Optimization [...] Read more.
Cable force distribution in cable-stayed bridges critically impacts structural safety and efficiency, yet traditional optimization methods struggle with unconventional designs due to nonlinear mechanics and computational inefficiency. This study proposes a hybrid approach combining Response Surface Methodology (RSM) and Multi-Objective Particle Swarm Optimization (MOPSO) to overcome these challenges. RSM constructs surrogate models for strain energy and mid-span displacement, reducing reliance on finite element analysis, while MOPSO optimizes Pareto solution sets for rapid cable force adjustment. Validated through an engineering case, the method reduces the main girder’s max bending moment by 8.7%, mid-span displacement by 31.2%, and strain energy by 7.1%, improving stiffness and mitigating stress concentrations. The response surface model demonstrates prediction errors of 0.35% for strain energy and 5.1% for maximum vertical mid-span deflection. By synergizing explicit modeling with intelligent algorithms, this methodology effectively resolves the longstanding efficiency–accuracy trade-off in cable force optimization for cable-stayed bridges. It achieves over 80% reduction in computational costs while enhancing critical structural performance metrics. Engineers are thereby equipped with a rapid and reliable optimization framework for geometrically complex cable-stayed bridges, delivering significant improvements in structural safety and construction feasibility. Ultimately, this approach establishes both theoretical substantiation and practical engineering benchmarks for designing non-conventional cable-stayed bridge configurations. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop