Flexible Job-Shop Scheduling Integrating Carbon Cap-And-Trade Policy and Outsourcing Strategy
Abstract
1. Introduction
2. Literature Review
3. Mathematical Model of the Proposed FPCO
3.1. Problem Description
3.2. Mathematical Formulation
4. Proposed Algorithm
4.1. Encoding and Decoding
4.2. Initialization
Algorithm 1 I_GLR |
|
4.3. Crossover
4.4. Mutation
4.5. Local Search
Algorithm 2 Main local search |
|
Algorithm 3 Local search A |
|
Algorithm 4 Local search B |
|
5. Experimental Results and Analysis
5.1. Benchmark Instances Construction
5.2. Parameters Setting
5.3. Effect of the Initialization and Local Search
5.4. Comparison of the NEMA with Four Other Algorithms
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Experimental Results
Instance | n × f × m | NEMA | MA1 | MA2 | Instance | n × f × m | NEMA | MA1 | MA2 |
---|---|---|---|---|---|---|---|---|---|
C 01 | 10 × 2 × 4 | 0.014 | 0.070 | 0.023 | C 31 | 10 × 4 × 8 | 0.001 | 0.170 | 0.090 |
C 02 | 10 × 2 × 4 | 0.014 | 0.028 | 0.033 | C 32 | 10 × 4 × 8 | 0.000 | 0.161 | 0.090 |
C 03 | 10 × 2 × 4 | 0.022 | 0.100 | 0.027 | C 33 | 10 × 4 × 8 | 0.000 | 0.149 | 0.093 |
C 04 | 10 × 2 × 4 | 0.011 | 0.056 | 0.044 | C 34 | 10 × 4 × 8 | 0.000 | 0.354 | 0.106 |
C 05 | 10 × 2 × 4 | 0.016 | 0.010 | 0.034 | C 35 | 10 × 4 × 8 | 0.001 | 0.149 | 0.086 |
C 06 | 15 × 2 × 4 | 0.014 | 0.023 | 0.037 | C 36 | 15 × 4 × 8 | 0.002 | 0.381 | 0.102 |
C 07 | 15 × 2 × 4 | 0.007 | 0.063 | 0.037 | C 37 | 15 × 4 × 8 | 0.015 | 0.139 | 0.109 |
C 08 | 15 × 2 × 4 | 0.004 | 0.016 | 0.011 | C 38 | 15 × 4 × 8 | 0.000 | 0.168 | 0.100 |
C 09 | 15 × 2 × 4 | 0.019 | 0.116 | 0.055 | C 39 | 15 × 4 × 8 | 0.000 | 0.196 | 0.104 |
C 10 | 15 × 2 × 4 | 0.009 | 0.112 | 0.040 | C 40 | 15 × 4 × 8 | 0.000 | 0.242 | 0.145 |
C 11 | 20 × 2 × 4 | 0.000 | 0.061 | 0.030 | C 41 | 20 × 4 × 8 | 0.000 | 0.217 | 0.110 |
C 12 | 20 × 2 × 4 | 0.004 | 0.059 | 0.030 | C 42 | 20 × 4 × 8 | 0.070 | 0.155 | 0.072 |
C 13 | 20 × 2 × 4 | 0.003 | 0.065 | 0.022 | C 43 | 20 × 4 × 8 | 0.000 | 0.293 | 0.198 |
C 14 | 20 × 2 × 4 | 0.003 | 0.055 | 0.029 | C 44 | 20 × 4 × 8 | 0.003 | 0.171 | 0.058 |
C 15 | 20 × 2 × 4 | 0.002 | 0.111 | 0.034 | C 45 | 20 × 4 × 8 | 0.023 | 0.248 | 0.130 |
C 16 | 10 × 3 × 6 | 0.018 | 0.077 | 0.056 | C 46 | 15 × 5 × 10 | 0.000 | 0.167 | 0.124 |
C 17 | 10 × 3 × 6 | 0.016 | 0.096 | 0.085 | C 47 | 15 × 5 × 10 | 0.042 | 0.309 | 0.126 |
C 18 | 10 × 3 × 6 | 0.008 | 0.078 | 0.083 | C 48 | 15 × 5 × 10 | 0.131 | 0.360 | 0.136 |
C 19 | 10 × 3 × 6 | 0.014 | 0.136 | 0.078 | C 49 | 15 × 5 × 10 | 0.000 | 0.289 | 0.081 |
C 20 | 10 × 3 × 6 | 0.009 | 0.054 | 0.077 | C 50 | 15 × 5 × 10 | 0.066 | 0.499 | 0.087 |
C 21 | 15 × 3 × 6 | 0.000 | 0.177 | 0.082 | C 51 | 20 × 5 × 10 | 0.000 | 0.258 | 0.090 |
C 22 | 15 × 3 × 6 | 0.000 | 0.055 | 0.043 | C 52 | 20 × 5 × 10 | 0.006 | 0.372 | 0.079 |
C 23 | 15 × 3 × 6 | 0.001 | 0.055 | 0.075 | C 53 | 20 × 5 × 10 | 0.000 | 0.193 | 0.103 |
C 24 | 15 × 3 × 6 | 0.000 | 0.123 | 0.072 | C 54 | 20 × 5 × 10 | 0.031 | 0.411 | 0.056 |
C 25 | 15 × 3 × 6 | 0.000 | 0.149 | 0.097 | C 55 | 20 × 5 × 10 | 0.000 | 0.286 | 0.086 |
C 26 | 20 × 3 × 6 | 0.000 | 0.154 | 0.073 | C 56 | 30 × 5 × 10 | 0.000 | 0.510 | 0.102 |
C 27 | 20 × 3 × 6 | 0.000 | 0.164 | 0.094 | C 57 | 30 × 5 × 10 | 0.261 | 0.333 | 0.062 |
C 28 | 20 × 3 × 6 | 0.017 | 0.159 | 0.091 | C 58 | 30 × 5 × 10 | 0.000 | 0.463 | 0.160 |
C 29 | 20 × 3 × 6 | 0.034 | 0.124 | 0.059 | C 59 | 30 × 5 × 10 | 0.000 | 0.433 | 0.176 |
C 30 | 20 × 3 × 6 | 0.031 | 0.152 | 0.062 | C 60 | 30 × 5 × 10 | 0.014 | 0.070 | 0.023 |
Instance | n × f × m | C(NEMA, MA1) | C(MA1, NEMA) | C(NEMA, MA2) | C(MA2, NEMA) | Instance | n × f × m | C(NEMA, MA1) | C(MA1, NEMA) | C(NEMA, MA2) | C(MA2, NEMA) |
---|---|---|---|---|---|---|---|---|---|---|---|
C 01 | 10 × 2 × 4 | 0.944 | 0.046 | 0.577 | 0.455 | C 31 | 10 × 4 × 8 | 1.000 | 0.000 | 0.952 | 0.000 |
C 02 | 10 × 2 × 4 | 0.656 | 0.261 | 0.731 | 0.217 | C 32 | 10 × 4 × 8 | 1.000 | 0.000 | 0.970 | 0.046 |
C 03 | 10 × 2 × 4 | 0.643 | 0.100 | 0.385 | 0.400 | C 33 | 10 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 |
C 04 | 10 × 2 × 4 | 0.765 | 0.250 | 0.750 | 0.208 | C 34 | 10 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 |
C 05 | 10 × 2 × 4 | 0.385 | 0.143 | 0.467 | 0.000 | C 35 | 10 × 4 × 8 | 1.000 | 0.000 | 0.938 | 0.048 |
C 06 | 15 × 2 × 4 | 0.533 | 0.324 | 0.786 | 0.147 | C 36 | 15 × 4 × 8 | 0.800 | 0.029 | 1.000 | 0.000 |
C 07 | 15 × 2 × 4 | 0.933 | 0.189 | 0.838 | 0.243 | C 37 | 15 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 |
C 08 | 15 × 2 × 4 | 0.744 | 0.044 | 0.544 | 0.089 | C 38 | 15 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 |
C 09 | 15 × 2 × 4 | 0.885 | 0.000 | 0.722 | 0.000 | C 39 | 15 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 |
C 10 | 15 × 2 × 4 | 0.889 | 0.030 | 0.727 | 0.182 | C 40 | 15 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 |
C 11 | 20 × 2 × 4 | 0.967 | 0.000 | 0.978 | 0.000 | C 41 | 20 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 |
C 12 | 20 × 2 × 4 | 0.880 | 0.071 | 0.821 | 0.095 | C 42 | 20 × 4 × 8 | 1.000 | 0.000 | 0.861 | 0.000 |
C 13 | 20 × 2 × 4 | 0.968 | 0.000 | 0.857 | 0.085 | C 43 | 20 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 |
C 14 | 20 × 2 × 4 | 0.978 | 0.042 | 0.872 | 0.042 | C 44 | 20 × 4 × 8 | 1.000 | 0.000 | 0.750 | 0.000 |
C 15 | 20 × 2 × 4 | 1.000 | 0.000 | 0.879 | 0.147 | C 45 | 20 × 4 × 8 | 1.000 | 0.000 | 0.909 | 0.000 |
C 16 | 10 × 3 × 6 | 0.885 | 0.100 | 0.963 | 0.000 | C 46 | 15 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 |
C 17 | 10 × 3 × 6 | 0.571 | 0.167 | 0.941 | 0.000 | C 47 | 15 × 5 × 10 | 1.000 | 0.000 | 0.889 | 0.000 |
C 18 | 10 × 3 × 6 | 0.818 | 0.222 | 0.947 | 0.000 | C 48 | 15 × 5 × 10 | 1.000 | 0.000 | 0.750 | 0.000 |
C 19 | 10 × 3 × 6 | 0.818 | 0.056 | 0.762 | 0.167 | C 49 | 15 × 5 × 10 | 1.000 | 0.000 | 0.952 | 0.000 |
C 20 | 10 × 3 × 6 | 0.650 | 0.036 | 1.000 | 0.000 | C 50 | 15 × 5 × 10 | 0.833 | 0.000 | 0.790 | 0.000 |
C 21 | 15 × 3 × 6 | 1.000 | 0.000 | 1.000 | 0.000 | C 51 | 20 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 |
C 22 | 15 × 3 × 6 | 1.000 | 0.000 | 1.000 | 0.000 | C 52 | 20 × 5 × 10 | 1.000 | 0.000 | 0.929 | 0.267 |
C 23 | 15 × 3 × 6 | 0.920 | 0.000 | 1.000 | 0.000 | C 53 | 20 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 |
C 24 | 15 × 3 × 6 | 1.000 | 0.000 | 0.964 | 0.000 | C 54 | 20 × 5 × 10 | 1.000 | 0.000 | 0.722 | 0.111 |
C 25 | 15 × 3 × 6 | 1.000 | 0.000 | 1.000 | 0.000 | C 55 | 20 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 |
C 26 | 20 × 3 × 6 | 1.000 | 0.000 | 0.977 | 0.036 | C 56 | 30 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 |
C 27 | 20 × 3 × 6 | 1.000 | 0.000 | 1.000 | 0.000 | C 57 | 30 × 5 × 10 | 1.000 | 0.000 | 0.696 | 0.000 |
C 28 | 20 × 3 × 6 | 0.913 | 0.000 | 0.970 | 0.000 | C 58 | 30 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 |
C 29 | 20 × 3 × 6 | 1.000 | 0.000 | 0.947 | 0.000 | C 59 | 30 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 |
C 30 | 20 × 3 × 6 | 1.000 | 0.000 | 0.935 | 0.000 | C 60 | 30 × 5 × 10 | 1.000 | 0.000 | 0.900 | 0.067 |
Instance | n × f × m | NEMA | MOEAD | MOPSO | NSGA-III | SFLA | Instance | n × f × m | NEMA | MOEAD | MOPSO | NSGA-III | SFLA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C 01 | 10 × 2 × 4 | 0.027 | 0.210 | 0.076 | 0.027 | 0.055 | C 31 | 10 × 4 × 8 | 0.004 | 0.296 | 0.098 | 0.073 | 0.130 |
C 02 | 10 × 2 × 4 | 0.022 | 0.215 | 0.046 | 0.019 | 0.050 | C 32 | 10 × 4 × 8 | 0.009 | 0.217 | 0.140 | 0.047 | 0.123 |
C 03 | 10 × 2 × 4 | 0.015 | 0.266 | 0.119 | 0.048 | 0.163 | C 33 | 10 × 4 × 8 | 0.005 | 0.190 | 0.139 | 0.054 | 0.163 |
C 04 | 10 × 2 × 4 | 0.030 | 0.210 | 0.062 | 0.044 | 0.018 | C 34 | 10 × 4 × 8 | 0.014 | 0.273 | 0.102 | 0.114 | 0.200 |
C 05 | 10 × 2 × 4 | 0.025 | 0.149 | 0.043 | 0.039 | 0.011 | C 35 | 10 × 4 × 8 | 0.004 | 0.248 | 0.138 | 0.119 | 0.173 |
C 06 | 15 × 2 × 4 | 0.008 | 0.257 | 0.050 | 0.014 | 0.047 | C 36 | 15 × 4 × 8 | 0.043 | 0.254 | 0.143 | 0.073 | 0.123 |
C 07 | 15 × 2 × 4 | 0.014 | 0.200 | 0.056 | 0.029 | 0.097 | C 37 | 15 × 4 × 8 | 0.026 | 0.278 | 0.147 | 0.075 | 0.117 |
C 08 | 15 × 2 × 4 | 0.003 | 0.109 | 0.016 | 0.010 | 0.033 | C 38 | 15 × 4 × 8 | 0.018 | 0.335 | 0.174 | 0.062 | 0.087 |
C 09 | 15 × 2 × 4 | 0.034 | 0.199 | 0.085 | 0.039 | 0.066 | C 39 | 15 × 4 × 8 | 0.022 | 0.350 | 0.150 | 0.076 | 0.087 |
C 10 | 15 × 2 × 4 | 0.017 | 0.342 | 0.128 | 0.045 | 0.204 | C 40 | 15 × 4 × 8 | 0.048 | 0.211 | 0.169 | 0.063 | 0.137 |
C 11 | 20 × 2 × 4 | 0.003 | 0.174 | 0.036 | 0.012 | 0.056 | C 41 | 20 × 4 × 8 | 0.036 | 0.411 | 0.174 | 0.088 | 0.159 |
C 12 | 20 × 2 × 4 | 0.007 | 0.318 | 0.074 | 0.012 | 0.098 | C 42 | 20 × 4 × 8 | 0.015 | 0.196 | 0.114 | 0.041 | 0.127 |
C 13 | 20 × 2 × 4 | 0.002 | 0.195 | 0.048 | 0.024 | 0.133 | C 43 | 20 × 4 × 8 | 0.016 | 0.302 | 0.121 | 0.065 | 0.101 |
C 14 | 20 × 2 × 4 | 0.005 | 0.210 | 0.056 | 0.018 | 0.080 | C 44 | 20 × 4 × 8 | 0.019 | 0.222 | 0.133 | 0.053 | 0.130 |
C 15 | 20 × 2 × 4 | 0.007 | 0.250 | 0.077 | 0.024 | 0.108 | C 45 | 20 × 4 × 8 | 0.017 | 0.253 | 0.129 | 0.072 | 0.121 |
C 16 | 10 × 3 × 6 | 0.023 | 0.195 | 0.091 | 0.015 | 0.084 | C 46 | 15 × 5 × 10 | 0.039 | 0.256 | 0.163 | 0.126 | 0.194 |
C 17 | 10 × 3 × 6 | 0.028 | 0.294 | 0.115 | 0.075 | 0.072 | C 47 | 15 × 5 × 10 | 0.082 | 0.368 | 0.167 | 0.097 | 0.042 |
C 18 | 10 × 3 × 6 | 0.031 | 0.242 | 0.102 | 0.047 | 0.114 | C 48 | 15 × 5 × 10 | 0.001 | 0.300 | 0.137 | 0.088 | 0.095 |
C 19 | 10 × 3 × 6 | 0.023 | 0.270 | 0.094 | 0.039 | 0.054 | C 49 | 15 × 5 × 10 | 0.058 | 0.194 | 0.133 | 0.054 | 0.169 |
C 20 | 10 × 3 × 6 | 0.006 | 0.258 | 0.088 | 0.041 | 0.098 | C 50 | 15 × 5 × 10 | 0.030 | 0.444 | 0.237 | 0.074 | 0.241 |
C 21 | 15 × 3 × 6 | 0.018 | 0.194 | 0.116 | 0.062 | 0.074 | C 51 | 20 × 5 × 10 | 0.024 | 0.237 | 0.151 | 0.096 | 0.186 |
C 22 | 15 × 3 × 6 | 0.006 | 0.141 | 0.078 | 0.026 | 0.114 | C 52 | 20 × 5 × 10 | 0.017 | 0.230 | 0.161 | 0.194 | 0.218 |
C 23 | 15 × 3 × 6 | 0.008 | 0.203 | 0.100 | 0.022 | 0.149 | C 53 | 20 × 5 × 10 | 0.003 | 0.261 | 0.147 | 0.059 | 0.138 |
C 24 | 15 × 3 × 6 | 0.013 | 0.275 | 0.089 | 0.044 | 0.127 | C 54 | 20 × 5 × 10 | 0.015 | 0.265 | 0.144 | 0.154 | 0.243 |
C 25 | 15 × 3 × 6 | 0.007 | 0.218 | 0.082 | 0.037 | 0.092 | C 55 | 20 × 5 × 10 | 0.007 | 0.334 | 0.202 | 0.142 | 0.131 |
C 26 | 20 × 3 × 6 | 0.014 | 0.231 | 0.111 | 0.068 | 0.149 | C 56 | 30 × 5 × 10 | 0.062 | 0.299 | 0.202 | 0.087 | 0.176 |
C 27 | 20 × 3 × 6 | 0.011 | 0.293 | 0.178 | 0.090 | 0.227 | C 57 | 30 × 5 × 10 | 0.018 | 0.353 | 0.129 | 0.076 | 0.074 |
C 28 | 20 × 3 × 6 | 0.025 | 0.204 | 0.106 | 0.032 | 0.147 | C 58 | 30 × 5 × 10 | 0.031 | 0.420 | 0.141 | 0.108 | 0.069 |
C 29 | 20 × 3 × 6 | 0.009 | 0.209 | 0.091 | 0.032 | 0.076 | C 59 | 30 × 5 × 10 | 0.063 | 0.370 | 0.238 | 0.102 | 0.168 |
C 30 | 20 × 3 × 6 | 0.015 | 0.215 | 0.065 | 0.034 | 0.104 | C 60 | 30 × 5 × 10 | 0.026 | 0.269 | 0.197 | 0.138 | 0.090 |
Instance | n × f × m | C(NEMA, MOEAD) | C(MOEAD, NEMA) | C(NEMA, MOPSO) | C(MOPSO, NEMA) | C(NEMA, NSGA-III) | C(NSGA-III, NEMA) | C(NEMA, SFLA) | C(SFLA, NEMA) |
---|---|---|---|---|---|---|---|---|---|
C 01 | 10 × 2 × 4 | 1.000 | 0.000 | 0.909 | 0.046 | 0.619 | 0.273 | 0.773 | 0.046 |
C 02 | 10 × 2 × 4 | 1.000 | 0.000 | 0.773 | 0.130 | 0.433 | 0.348 | 0.650 | 0.261 |
C 03 | 10 × 2 × 4 | 1.000 | 0.000 | 0.727 | 0.100 | 0.895 | 0.100 | 0.571 | 0.200 |
C 04 | 10 × 2 × 4 | 1.000 | 0.000 | 0.950 | 0.000 | 0.808 | 0.250 | 0.250 | 0.458 |
C 05 | 10 × 2 × 4 | 1.000 | 0.000 | 0.692 | 0.000 | 0.417 | 0.071 | 0.550 | 0.357 |
C 06 | 15 × 2 × 4 | 1.000 | 0.000 | 0.967 | 0.000 | 0.543 | 0.294 | 0.800 | 0.118 |
C 07 | 15 × 2 × 4 | 1.000 | 0.000 | 0.739 | 0.270 | 0.522 | 0.216 | 0.720 | 0.162 |
C 08 | 15 × 2 × 4 | 1.000 | 0.000 | 0.863 | 0.022 | 0.500 | 0.133 | 0.957 | 0.000 |
C 09 | 15 × 2 × 4 | 1.000 | 0.000 | 1.000 | 0.000 | 0.714 | 0.000 | 0.438 | 0.120 |
C 10 | 15 × 2 × 4 | 1.000 | 0.000 | 1.000 | 0.000 | 0.739 | 0.121 | 0.733 | 0.061 |
C 11 | 20 × 2 × 4 | 1.000 | 0.000 | 0.929 | 0.000 | 0.474 | 0.281 | 0.969 | 0.000 |
C 12 | 20 × 2 × 4 | 1.000 | 0.000 | 1.000 | 0.000 | 0.539 | 0.381 | 0.909 | 0.071 |
C 13 | 20 × 2 × 4 | 1.000 | 0.000 | 0.970 | 0.021 | 0.868 | 0.021 | 0.926 | 0.021 |
C 14 | 20 × 2 × 4 | 1.000 | 0.000 | 0.967 | 0.042 | 0.825 | 0.250 | 1.000 | 0.000 |
C 15 | 20 × 2 × 4 | 1.000 | 0.000 | 1.000 | 0.000 | 0.679 | 0.235 | 0.903 | 0.177 |
C 16 | 10 × 3 × 6 | 1.000 | 0.000 | 1.000 | 0.000 | 0.546 | 0.350 | 0.714 | 0.050 |
C 17 | 10 × 3 × 6 | 1.000 | 0.000 | 1.000 | 0.000 | 0.966 | 0.000 | 0.611 | 0.444 |
C 18 | 10 × 3 × 6 | 1.000 | 0.000 | 1.000 | 0.000 | 0.765 | 0.056 | 0.286 | 0.333 |
C 19 | 10 × 3 × 6 | 1.000 | 0.000 | 0.923 | 0.056 | 0.500 | 0.278 | 0.577 | 0.278 |
C 20 | 10 × 3 × 6 | 1.000 | 0.000 | 0.900 | 0.036 | 0.739 | 0.179 | 0.546 | 0.143 |
C 21 | 15 × 3 × 6 | 1.000 | 0.000 | 1.000 | 0.000 | 0.833 | 0.121 | 0.233 | 0.333 |
C 22 | 15 × 3 × 6 | 1.000 | 0.000 | 1.000 | 0.000 | 0.918 | 0.000 | 0.964 | 0.000 |
C 23 | 15 × 3 × 6 | 1.000 | 0.000 | 1.000 | 0.000 | 0.577 | 0.350 | 1.000 | 0.000 |
C 24 | 15 × 3 × 6 | 1.000 | 0.000 | 0.947 | 0.046 | 0.900 | 0.091 | 0.810 | 0.046 |
C 25 | 15 × 3 × 6 | 1.000 | 0.000 | 1.000 | 0.000 | 0.885 | 0.000 | 0.920 | 0.000 |
C 26 | 20 × 3 × 6 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 0.849 | 0.000 |
C 27 | 20 × 3 × 6 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 0.932 | 0.000 |
C 28 | 20 × 3 × 6 | 1.000 | 0.000 | 1.000 | 0.000 | 0.542 | 0.414 | 0.667 | 0.103 |
C 29 | 20 × 3 × 6 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 0.867 | 0.000 |
C 30 | 20 × 3 × 6 | 1.000 | 0.000 | 1.000 | 0.000 | 0.939 | 0.032 | 0.857 | 0.032 |
C 31 | 10 × 4 × 8 | 1.000 | 0.000 | 0.909 | 0.046 | 0.964 | 0.046 | 0.733 | 0.182 |
C 32 | 10 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 | 0.900 | 0.000 | 0.769 | 0.000 |
C 33 | 10 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 | 0.810 | 0.182 | 1.000 | 0.000 |
C 34 | 10 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 | 0.857 | 0.000 | 0.286 | 0.235 |
C 35 | 10 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 | 0.933 | 0.000 | 0.750 | 0.143 |
C 36 | 15 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 | 0.800 | 0.171 | 0.458 | 0.029 |
C 37 | 15 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 0.731 | 0.053 |
C 38 | 15 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 | 0.750 | 0.063 | 0.313 | 0.313 |
C 39 | 15 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 | 0.769 | 0.053 | 0.412 | 0.263 |
C 40 | 15 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 | 0.667 | 0.400 | 0.696 | 0.100 |
C 41 | 20 × 4 × 8 | 1.000 | 0.000 | 0.909 | 0.000 | 0.875 | 0.191 | 0.143 | 0.333 |
C 42 | 20 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 | 0.611 | 0.148 | 0.539 | 0.148 |
C 43 | 20 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 | 0.375 | 0.143 | 0.706 | 0.071 |
C 44 | 20 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 | 0.750 | 0.000 | 0.696 | 0.000 |
C 45 | 20 × 4 × 8 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 0.722 | 0.044 |
C 46 | 15 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 0.500 | 0.071 |
C 47 | 15 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 | 0.750 | 0.000 | 0.474 | 0.250 |
C 48 | 15 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 0.714 | 0.083 |
C 49 | 15 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 | 0.895 | 0.080 | 0.550 | 0.120 |
C 50 | 15 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 | 0.429 | 0.231 | 0.667 | 0.077 |
C 51 | 20 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 0.563 | 0.100 |
C 52 | 20 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 | 0.778 | 0.000 | 0.571 | 0.067 |
C 53 | 20 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 | 0.900 | 0.107 | 0.750 | 0.036 |
C 54 | 20 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 | 0.833 | 0.000 | 0.571 | 0.111 |
C 55 | 20 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 | 0.769 | 0.200 | 0.778 | 0.050 |
C 56 | 30 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 0.778 | 0.000 |
C 57 | 30 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 0.368 | 0.167 |
C 58 | 30 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 | 0.500 | 0.333 | 0.739 | 0.083 |
C 59 | 30 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 0.722 | 0.000 |
C 60 | 30 × 5 × 10 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 0.500 | 0.133 |
References
- Zhou, J.; Deng, Q.; Li, T. Optimal acquisition and remanufacturing policies considering the effect of quality uncertainty on carbon emissions. J. Clean. Prod. 2018, 186, 180–190. [Google Scholar] [CrossRef]
- Wang, R.; Cheng, S.; Zuo, X.; Liu, Y. Optimal management of multi stakeholder integrated energy system considering dual incentive demand response and carbon trading mechanism. Int. J. Energ. Res. 2021, 46, 6246–6263. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, Q.; Wu, Z.; Wang, F. Mathematical modeling and evolutionary generation of rule sets for energy-efficient flexible job shops. Energy 2017, 138, 210–227. [Google Scholar] [CrossRef]
- Gong, G.; Chiong, R.; Deng, Q.; Han, W.; Zhang, L.; Huang, D. Energy-efficient production scheduling through machine on/off control during preventive maintenance. Eng. Appl. Artif. Intell. 2021, 104, 104359. [Google Scholar] [CrossRef]
- Li, Y.; Huang, W.; Wu, R.; Guo, K. An improved artificial bee colony algorithm for solving multi-objective low-carbon flexible job shop scheduling problem. Appl. Soft Comput. 2020, 95, 106544. [Google Scholar] [CrossRef]
- Salido, M.A.; Escamilla, J.; Giret, A.; Barber, F. A genetic algorithm for energy-efficiency in job-shop scheduling. Int. J. Adv. Manuf. Technol. 2016, 85, 1303–1314. [Google Scholar] [CrossRef]
- Cheng, J.H.; Chu, F.; Zhou, M.C. An Improved Model for Parallel Machine Scheduling Under Time-of-Use Electricity Price. IEEE Trans. Autom. Sci. Eng. 2018, 15, 896–899. [Google Scholar] [CrossRef]
- Far, M.H.; Haleh, H.; Saghaei, A. A fuzzy bi-objective flexible cell scheduling optimization model under green and energy-efficient strategy using Pareto-based algorithms: SATPSPGA, SANRGA, and NSGA-II. Int. J. Adv. Manuf. Technol. 2019, 105, 3853–3879. [Google Scholar] [CrossRef]
- Marufuzzaman, M.; Eksioglu, S.D.; Huang, Y. Two-stage stochastic programming supply chain model for biodiesel production via wastewater treatment. Comput. Oper. Res. 2014, 49, 1–17. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Z.; Zeng, X.; Wang, Y.; Li, K.; Deng, S. Water-energy-carbon nexus: A life cycle assessment of post-combustion carbon capture technology from power plant level. J. Clean. Prod. 2021, 312, 127727. [Google Scholar] [CrossRef]
- Jiang, T.; Zhu, H.; Liu, L.; Gong, Q. Energy-conscious flexible job shop scheduling problem considering transportation time and deterioration effect simultaneously. Sustain. Comput. Inform. Syst. 2022, 35, 100680. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, H.; Hong, F.; Yang, J.; Chen, Z.; Cui, H.; Feng, J. Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system. Energy 2021, 236, 121392. [Google Scholar] [CrossRef]
- Wang, R.; Wen, X.; Wang, X.; Fu, Y.; Zhang, Y. Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading. Appl. Energy 2022, 311, 118664. [Google Scholar] [CrossRef]
- Tan, M.; Chen, Y.; Su, Y.X.; Li, S.H.; Li, H. Integrated optimization model for industrial self-generation and load scheduling with tradable carbon emission permits. J. Clean. Prod. 2019, 210, 1289–1300. [Google Scholar] [CrossRef]
- Zheng, F.; Wang, Z.; Xu, Y.; Liu, M. Single machine scheduling with uncertain processing times and carbon emission constraint in the shared manufacturing environment. Ann. Oper. Res. 2023. [Google Scholar] [CrossRef]
- Xu, W.; Wang, L.; Liu, D.; Tang, H.; Li, Y. Solving distributed low carbon scheduling problem for large complex equipment manufacturing using an improved hybrid artificial bee colony algorithm. J. Intell. Fuzzy Syst. 2023, 45, 147–175. [Google Scholar] [CrossRef]
- Hu, C.; Bai, H.; Li, W.; Xie, K.; Liu, Y.; Liu, T.; Shao, C. Optimal Scheduling of Networked Microgrids Considering the Temporal Equilibrium Allocation of Annual Carbon Emission Allowance. Sustainability 2024, 16, 10986. [Google Scholar] [CrossRef]
- Jin, S.; Wang, B.; Zhang, G.; Fan, X.; Jiang, S.; Cao, M.; Wang, Y. Research on Low-Carbon-Emission Scheduling of Workshop under Uncertainty. Appl. Sci. 2024, 14, 4976. [Google Scholar] [CrossRef]
- Lin, C.-C.; Zhang, S.-Y.; Chou, Y.-L.; Liu, W.-Y. Energy management scheduling of a smart factory with carbon capture and storage, carbon emission quota cap-and-trade, and green energy trading. Energy 2025, 333, 137231. [Google Scholar] [CrossRef]
- Zhao, J.; Song, Y.; Fan, H. Optimization Scheduling of Hydrogen-Integrated Energy Systems Considering Multi-Timescale Carbon Trading Mechanisms. Energies 2025, 18, 1612. [Google Scholar] [CrossRef]
- Li, J.; Su, Q.; Ma, L. Production and transportation outsourcing decisions in the supply chain under single and multiple carbon policies. J. Clean. Prod. 2017, 141, 1109–1122. [Google Scholar] [CrossRef]
- Xia, X.; Li, M.; Li, B.; Wang, H. The Impact of Carbon Trade on Outsourcing Remanufacturing. Int. J. Environ. Res. Public Health 2021, 18, 10804. [Google Scholar] [CrossRef]
- Papież, M.; Śmiech, S.; Frodyma, K. The role of energy policy on the decoupling processes in the European Union countries. J. Clean. Prod. 2021, 318, 128484. [Google Scholar] [CrossRef]
- Zhang, L.; Deng, Q.; Gong, G.; Han, W. A new unrelated parallel machine scheduling problem with tool changes to minimise the total energy consumption. Int. J. Prod. Res. 2020, 58, 6826–6845. [Google Scholar] [CrossRef]
- Wu, X.; Che, A. A memetic differential evolution algorithm for energy-efficient parallel machine scheduling. Omega 2019, 82, 155–165. [Google Scholar] [CrossRef]
- Xu, X.Y.; Xu, X.P.; He, P. Joint production and pricing decisions for multiple products with cap-and-trade and carbon tax regulations. J. Clean. Prod. 2016, 112, 4093–4106. [Google Scholar] [CrossRef]
- Ma, C.; Yuan, T.; Yao, Y.; Wang, L.; Gao, H.; Zhang, M.; Liang, Z.; Li, J.; Guan, L. A Decision-Making System for Low Carbon Manufacturing. Comput. Intell. Neurosci. 2022, 2022, 5791880. [Google Scholar] [CrossRef]
- Hong, Z.; Chu, C.; Yu, Y. Dual-mode production planning for manufacturing with emission constraints. Eur. J. Oper. Res. 2016, 251, 96–106. [Google Scholar] [CrossRef]
- Chai, Q.F.; Xiao, Z.D.; Lai, K.H.; Zhou, G.H. Can carbon cap and trade mechanism be beneficial for remanufacturing? Int. J. Prod. Econ. 2018, 203, 311–321. [Google Scholar] [CrossRef]
- Wang, Y.J.; Chen, W.D. Effects of emissions constraint on manufacturing/remanufacturing decisions considering capital constraint and financing. Atmos. Pollut. Res. 2017, 8, 455–464. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, X.; Wang, Y.; Ma, D. Integrated Inventory-Transportation Scheduling with Sustainability-Dependent Demand under Carbon Emission Policies. Discret. Dyn. Nat. Soc. 2020, 2020, 2510413. [Google Scholar] [CrossRef]
- Hasan, M.R.; Roy, T.C.; Daryanto, Y.; Wee, H.-M. Optimizing inventory level and technology investment under a carbon tax, cap-and-trade and strict carbon limit regulations. Sustain. Prod. Consum. 2021, 25, 604–621. [Google Scholar] [CrossRef]
- Yu, C.H.; Qu, Z.B.; Archibald, T.W.; Luan, Z.N. An inventory model of a deteriorating product considering carbon emissions. Comput. Ind. Eng. 2020, 148, 106694. [Google Scholar] [CrossRef]
- Foumani, M.; Smith-Miles, K. The impact of various carbon reduction policies on green flowshop scheduling. Appl. Energy 2019, 249, 300–315. [Google Scholar] [CrossRef]
- Bok, Y.; Lee, N.K.; Jo, S.; Lee, S.; Kweon, S.J.; Na, H.S. The production scheduling problem employing non-identical parallel machines with due dates considering carbon emissions and multiple types of energy sources. Expert Syst. Appl. 2024, 238, 121990. [Google Scholar] [CrossRef]
- Takan, M.A. A novel MIP model and a hybrid genetic algorithm for operation outsourcing in production scheduling with carbon tax policy. Expert Syst. Appl. 2024, 251, 123983. [Google Scholar] [CrossRef]
- Zhang, X.H.; Zhao, X.X.; Zhong, J.Q.; Ma, N. Low carbon multi-objective scheduling of integrated energy system based on ladder light robust optimization. Int. Trans. Electr. Energy Syst. 2020, 30, e12498. [Google Scholar] [CrossRef]
- Ma, X.; Liang, Y.; Wang, K.; Jia, R.; Wang, X.; Du, H.; Liu, H. Dispatch for energy efficiency improvement of an integrated energy system considering multiple types of low carbon factors and demand response. Front. Energy Res. 2022, 10, 953573. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, P.; Yu, H. Lyapunov-Guided Resource Allocation and Task Scheduling for Edge Computing Cognitive Radio Networks via Deep Reinforcement Learning. IEEE Sens. J. 2025, 25, 12253–12264. [Google Scholar] [CrossRef]
- Xu, W.; Hu, Y.; Luo, W.; Wang, L.; Wu, R. A multi-objective scheduling method for distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission. Comput. Ind. Eng. 2021, 157, 107318. [Google Scholar] [CrossRef]
- Zhang, G.; Gao, L.; Shi, Y. An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Syst. Appl. 2011, 38, 3563–3573. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Gong, X.; Deng, Q.; Gong, G.; Liu, W.; Ren, Q. A memetic algorithm for multi-objective flexible job-shop problem with worker flexibility. Int. J. Prod. Res. 2017, 56, 2506–2522. [Google Scholar] [CrossRef]
- Wang, G.C.; Gao, L.; Li, X.Y.; Li, P.; Tasgetiren, M.F. Energy-efficient distributed permutation flow shop scheduling problem using a multi-objective whale swarm algorithm. Swarm Evol. Comput. 2020, 57, 100716. [Google Scholar] [CrossRef]
- Hurink, J.; Jurisch, B.; Thole, M. Tabu search for the job-shop scheduling problem with multi-purpose machines. Oper.-Res.-Spektrum 1994, 15, 205–215. [Google Scholar] [CrossRef]
- Brandimarte, P. Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. Res. 1993, 41, 157–183. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Qingfu, Z.; Hui, L. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Lei, D.; Zheng, Y.; Guo, X. A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy consumption. Int. J. Prod. Res. 2016, 55, 3126–3140. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 256–279. [Google Scholar] [CrossRef]
Literature Author (Year) | Carbon Policy Considered | Contributions | Limitations |
---|---|---|---|
Xu et al. (2016) [26] | Cap-and-trade and carbon tax | Integrated pricing and production under dual carbon policies | Integrated pricing and production under dual carbon policies |
Ma et al. (2022) [27] | General low-carbon strategy | Proposes a framework for low-carbon decisions | Proposes a framework for low-carbon decisions |
Hong et al. (2016) [28] | Emission constraints | Flexible production system with emission limits | Flexible production system with emission limits |
Chai et al. (2018) [29] | Cap-and-trade | Economic evaluation of cap-and-trade | Economic evaluation of cap-and-trade |
Wang et al. (2017) [30] | Cap-and-trade and capital constraint | Joint financing and production analysis | Joint financing and production analysis |
Tang et al. (2020) [31] | Carbon tax/Cap-and-trade | Integrates inventory and transportation under carbon policy | Integrates inventory and transportation under carbon policy |
Hasan et al. (2021) [32] | Carbon tax, cap-and-trade, strict limit | Joint investment and policy evaluation | Joint investment and policy evaluation |
Yu et al. (2020) [33] | Carbon cost | Adds emission penalty to EOQ model | Adds emission penalty to EOQ model |
Foumani et al. (2019) [34] | Carbon tax and cap-and-trade | Scheduling optimization under multi-policy | Scheduling optimization under multi-policy |
Bok et al. (2024) [35] | Emission cost + energy mix | Green scheduling under energy source constraints | Green scheduling under energy source constraints |
Takan (2024) [36] | Carbon tax | MIP model with outsourcing + GA optimization | MIP model with outsourcing + GA optimization |
Zhang et al. (2020) [37] | General low-carbon constraints | Ladder light robust optimization applied to energy systems | Ladder light robust optimization applied to energy systems |
Ma et al. (2022) [38] | Multi-factors + demand response | Considers various green elements | Considers various green elements |
Indexes | |
---|---|
i, p | Indices of jobs |
j, q | Indices of operations |
k | Index of machines |
c | Index of factories |
s | Position index on the machine, where s = 0, 1, …, n and 0 denotes a virtual position |
Parameters: | |
n | Total number of jobs |
f | Total number of cooperative factories |
oi | Total number of operations of Ji |
mc | Total number of machines in factory Fc |
Mck | The kth machine in Fc |
Oij (Opq) | The jth (qth) operation of job Ji (Jp) |
Cemission | The carbon emissions of F1 |
Ccap | The carbon cap for processing these jobs |
α1, α2, α3 | Conversion coefficients of carbon emissions corresponding to the energy consumption of processing, transferring between factories and transferring between machines, respectively |
Eck | Processing energy consumption per unit time of Mck |
NEck | Unit time no-load energy consumption of Mck |
Tijck | Processing time of Oij on Mck |
EM | Unit energy consumption from the transfer between machines in F1 |
TM | Transfer time between machines |
TFc | Transfer time from factory Fc to factory F1. Obviously, TF1 = 0 here |
EF | Unit energy consumption of transfer from Fc to F1 |
Cc | Total carbon trading cost |
Ct | Total transfer cost |
Cp | Total processing cost |
p | The carbon trading price |
ptc | Unit transfer cost from factory Fc to factory F1 |
pijck | Unit processing (outsourcing) cost on Mck to process Oij |
M | A infinite positive number |
Variables | |
Xijcks | A binary variable. Xijcks = 1 if Oij is processed at the sth position on Mck; otherwise, Xijcks = 0 |
Yij | A binary variable. Yij = 1 if Oij is transferred between machines; otherwise, Yij = 0 |
CTpq (CTij) | The completion time of Opq (Oij) |
Nijck | No-load time between two adjacent operations Oij and Oi(j−1) on Mck. |
Jobs | Operations | Processing Time | Processing Time | |||
---|---|---|---|---|---|---|
F1 | F2 | |||||
M1 | M2 | M1 | M2 | M3 | ||
J1 | O11 | - | 7.2 | 5.3 | 6.3 | - |
O12 | 7.4 | 8.4 | 4.2 | - | - | |
O13 | 4.1 | - | 6.4 | - | - | |
J2 | O21 | - | 14.4 | - | 10.5 | 10.6 |
O22 | 9.3 | 7.2 | 5.3 | 7.4 | - | |
J3 | O31 | - | 10.3 | 8.5 | - | - |
O32 | 13.4 | - | - | 16.10 | 6.5 | |
J4 | O41 | - | 8.2 | 5.3 | 5.3 | - |
O42 | - | 8.2 | - | 6.3 | 6.4 | |
O43 | 4.1 | 6.2 | 5.3 | 6.3 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Liu, W.; Wang, H.; Shi, G.; Deng, Q.; Yang, X. Flexible Job-Shop Scheduling Integrating Carbon Cap-And-Trade Policy and Outsourcing Strategy. Sustainability 2025, 17, 6978. https://doi.org/10.3390/su17156978
Zhang L, Liu W, Wang H, Shi G, Deng Q, Yang X. Flexible Job-Shop Scheduling Integrating Carbon Cap-And-Trade Policy and Outsourcing Strategy. Sustainability. 2025; 17(15):6978. https://doi.org/10.3390/su17156978
Chicago/Turabian StyleZhang, Like, Wenpu Liu, Hua Wang, Guoqiang Shi, Qianwang Deng, and Xinyu Yang. 2025. "Flexible Job-Shop Scheduling Integrating Carbon Cap-And-Trade Policy and Outsourcing Strategy" Sustainability 17, no. 15: 6978. https://doi.org/10.3390/su17156978
APA StyleZhang, L., Liu, W., Wang, H., Shi, G., Deng, Q., & Yang, X. (2025). Flexible Job-Shop Scheduling Integrating Carbon Cap-And-Trade Policy and Outsourcing Strategy. Sustainability, 17(15), 6978. https://doi.org/10.3390/su17156978