Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = track-etched composite membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2715 KiB  
Article
Composite Behavior of Nanopore Array Large Memristors
by Ian Reistroffer, Jaden Tolbert, Jeffrey Osterberg and Pingshan Wang
Micromachines 2025, 16(8), 882; https://doi.org/10.3390/mi16080882 - 29 Jul 2025
Viewed by 176
Abstract
Synthetic nanopores were recently demonstrated with memristive and nonlinear voltage-current behaviors, akin to ion channels in a cell membrane. Such ionic devices are considered a promising candidate for the development of brain-inspired neuromorphic computing techniques. In this work, we show the composite behavior [...] Read more.
Synthetic nanopores were recently demonstrated with memristive and nonlinear voltage-current behaviors, akin to ion channels in a cell membrane. Such ionic devices are considered a promising candidate for the development of brain-inspired neuromorphic computing techniques. In this work, we show the composite behavior of nanopore-array large memristors, formed with different membrane materials, pore sizes, electrolytes, and device arrangements. Anodic aluminum oxide (AAO) membranes with 5 nm and 20 nm diameter pores and track-etched polycarbonate (PCTE) membranes with 10 nm diameter pores are tested and shown to demonstrate memristive and nonlinear behaviors with approximately 107–1010 pores in parallel when electrolyte concentration across the membranes is asymmetric. Ion diffusion through the large number of channels induces time-dependent electrolyte asymmetry that drives the system through different memristive states. The behaviors of series composite memristors with different configurations are also presented. In addition to helping understand fluidic devices and circuits for neuromorphic computing, the results also shed light on the development of field-assisted ion-selection-membrane filtration techniques as well as the investigations of large neurons and giant synapses. Further work is needed to de-embed parasitic components of the measurement setup to obtain intrinsic large memristor properties. Full article
(This article belongs to the Section D4: Glassy Materials and Micro/Nano Devices)
Show Figures

Figure 1

64 pages, 16567 KiB  
Review
Composite Track-Etched Membranes: Synthesis and Multifaced Applications
by Anastassiya A. Mashentseva, Duygu S. Sutekin, Saniya R. Rakisheva and Murat Barsbay
Polymers 2024, 16(18), 2616; https://doi.org/10.3390/polym16182616 - 15 Sep 2024
Cited by 5 | Viewed by 3034
Abstract
Composite track-etched membranes (CTeMs) emerged as a versatile and high-performance class of materials, combining the precise pore structures of traditional track-etched membranes (TeMs) with the enhanced functionalities of integrated nanomaterials. This review provides a comprehensive overview of the synthesis, functionalization, and applications of [...] Read more.
Composite track-etched membranes (CTeMs) emerged as a versatile and high-performance class of materials, combining the precise pore structures of traditional track-etched membranes (TeMs) with the enhanced functionalities of integrated nanomaterials. This review provides a comprehensive overview of the synthesis, functionalization, and applications of CTeMs. By incorporating functional phases such as metal nanoparticles and conductive nanostructures, CTeMs exhibit improved performance in various domains. In environmental remediation, CTeMs effectively capture and decompose pollutants, offering both separation and detoxification. In sensor technology, they have the potential to provide high sensitivity and selectivity, essential for accurate detection in medical and environmental applications. For energy storage, CTeMs may be promising in enhancing ion transport, flexibility, and mechanical stability, addressing key issues in battery and supercapacitor performance. Biomedical applications may benefit from the versality of CTeMs, potentially supporting advanced drug delivery systems and tissue engineering scaffolds. Despite their numerous advantages, challenges remain in the fabrication and scalability of CTeMs, requiring sophisticated techniques and meticulous optimization. Future research directions include the development of cost-effective production methods and the exploration of new materials to further enhance the capabilities of CTeMs. This review underscores the transformative potential of CTeMs across various applications and highlights the need for continued innovation to fully realize their benefits. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

20 pages, 2641 KiB  
Article
Element Composition of Fractionated Water-Extractable Soil Colloidal Particles Separated by Track-Etched Membranes
by Dmitry S. Volkov, Olga B. Rogova, Svetlana T. Ovseenko, Aleksandr Odelskii and Mikhail A. Proskurnin
Agrochemicals 2023, 2(4), 561-580; https://doi.org/10.3390/agrochemicals2040032 - 17 Nov 2023
Cited by 2 | Viewed by 1799
Abstract
Membrane fractionation with track-etched membranes was used to size-profile the microelement composition of water-extractable soil colloids (WESCs). The aim of the study is the element composition of narrow WESC fractions of typical chernozems in the range of 0.01–10 µm. Micro-/ultrafiltration through a cascade [...] Read more.
Membrane fractionation with track-etched membranes was used to size-profile the microelement composition of water-extractable soil colloids (WESCs). The aim of the study is the element composition of narrow WESC fractions of typical chernozems in the range of 0.01–10 µm. Micro-/ultrafiltration through a cascade of track-etched polycarbonate membrane filters with pore sizes of 5, 2, 1, 0.8, 0.4, 0.2, 0.1, 0.05, 0.03, and 0.01 µm at room temperature was used. ICP–AES using direct spraying of obtained fractions without decomposition was used; Al, Ba, Cd, Cr, Cu, Fe, Mn, Si, Sr, Ti, Zn, Ca, K, Mg, Na, P, and S were found. Narrow WESC fractions differ significantly. For macro- and microelements, maximum amounts of Si, Al, Fe, and Ti and their maximum percentages are observed in fractions with sizes above 1 µm, while Ca, Mg, Mn, Cu, Zn, K, and S are accumulated more in fractions with sizes below 1 µm. The developed approach provides preparative isolation of a detailed set of narrow WESC fractions in the micrometer–nanometer range. This provides element soil profiles that reveal distinct differences and the individual character of each fraction as well as trends in changes in the mineral matrix and microelement composition with fraction size. Full article
(This article belongs to the Special Issue Feature Papers on Agrochemicals)
Show Figures

Figure 1

21 pages, 5426 KiB  
Article
e-Beam and γ-rays Induced Synthesis and Catalytic Properties of Copper Nanoclusters-Deposited Composite Track-Etched Membranes
by Nursanat Parmanbek, Nurgulim A. Aimanova, Anastassiya A. Mashentseva, Murat Barsbay, Fatima U. Abuova, Dinara T. Nurpeisova, Zhanar Ye. Jakupova and Maxim V. Zdorovets
Membranes 2023, 13(7), 659; https://doi.org/10.3390/membranes13070659 - 11 Jul 2023
Cited by 4 | Viewed by 1485
Abstract
Effective removal of toxic inorganic and organic pollutants is one of the current leading challenges of wastewater treatment. In this study, the decomposition of methylene blue (MB) under UV light irradiation was investigated in the presence of copper nanoclusters (NCs)-deposited polyethylene terephthalate (PET) [...] Read more.
Effective removal of toxic inorganic and organic pollutants is one of the current leading challenges of wastewater treatment. In this study, the decomposition of methylene blue (MB) under UV light irradiation was investigated in the presence of copper nanoclusters (NCs)-deposited polyethylene terephthalate (PET) track-etched hybrid membranes. PET track-etched membranes (TeMs) with an average pore size of ~400 nm were grafted by functional acrylic acid (AA) monomer under electron beam irradiation after oxidation with H2O2/UV system. The radiation dose varied between 46 and 200 kGy. For the deposition of copper NCs, poly(acrylic acid) (PAA)-grafted membranes saturated with Cu(II) ions were irradiated either by electron beam or γ-rays to obtain copper-based NCs for the catalytic degradation of MB. Irradiation to 100 kGy with accelerated electrons resulted in the formation of small and uniform copper hydroxide (Cu(OH)2) nanoparticles homogeneously distributed over the entire volume of the template. On the other hand, irradiation under γ-rays yielded composites with copper NCs with a high degree of crystallinity. However, the size of the deposited NCs obtained by γ-irradiation was not uniform. Nanoparticles with the highest uniformity were obtained at 150 kGy dose. Detailed analysis by X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirmed the loading of copper nanoparticles with an average size of 100 nm on the inner walls of nanochannels and on the surface of PET TeMs. Under UV light irradiation, composite membranes loaded with NCs exhibited high photocatalytic activity. It was determined that the highest catalytic activity was observed in the presence of Cu(OH)2@PET-g-PAA membrane obtained at 250 kGy. More than 91.9% of the initial dye was degraded when this hybrid membrane was employed for 180 min, while only 83.9% of MB was degraded under UV light using Cu@PET-g-PAA membrane. Cu(OH)2@PET-g-PAA membranes obtained under electron beam irradiation demonstrated a higher photocatalytic activity compared to Cu@PET-g-PAA membranes attained by γ-rays. Full article
Show Figures

Figure 1

47 pages, 20432 KiB  
Article
Investigation of the Tendency of Carbon Fibers to Disintegrate into Respirable Fiber-Shaped Fragments
by Asmus Meyer-Plath, Dominic Kehren, Anna Große, Romy Naumann, Marcel Hofmann, Tanja Schneck, Antje Ota, Frank Hermanutz, Nico Dziurowitz, Carmen Thim, Sabine Plitzko and Daphne Bäger
Fibers 2023, 11(6), 50; https://doi.org/10.3390/fib11060050 - 6 Jun 2023
Cited by 2 | Viewed by 3196
Abstract
Recent reports of the release of large numbers of respirable and critically long fiber-shaped fragments from mesophase pitch-based carbon fiber polymer composites during machining and tensile testing have raised inhalation toxicological concerns. As carbon fibers and their fragments are to be considered as [...] Read more.
Recent reports of the release of large numbers of respirable and critically long fiber-shaped fragments from mesophase pitch-based carbon fiber polymer composites during machining and tensile testing have raised inhalation toxicological concerns. As carbon fibers and their fragments are to be considered as inherently biodurable, the fiber pathogenicity paradigm motivated the development of a laboratory test method to assess the propensity of different types of carbon fibers to form such fragments. It uses spallation testing of carbon fibers by impact grinding in an oscillating ball mill. The resulting fragments were dispersed on track-etched membrane filters and morphologically analyzed by scanning electron microscopy. The method was applied to nine different carbon fiber types synthesized from polyacrylonitrile, mesophase or isotropic pitch, covering a broad range of material properties. Significant differences in the morphology of formed fragments were observed between the materials studied. These were statistically analyzed to relate disintegration characteristics to material properties and to rank the carbon fiber types according to their propensity to form respirable fiber fragments. This tendency was found to be lower for polyacrylonitrile-based and isotropic pitch-based carbon fibers than for mesophase pitch-based carbon fibers, but still significant. Although there are currently only few reports in the literature of increased respirable fiber dust concentrations during the machining of polyacrylonitrile-based carbon fiber composites, we conclude that such materials have the potential to form critical fiber morphologies of WHO dimensions. For safe-and-sustainable carbon fiber-reinforced composites, a better understanding of the material properties that control the carbon fiber fragmentation is imperative. Full article
(This article belongs to the Topic Advanced Carbon Fiber Reinforced Composite Materials)
Show Figures

Graphical abstract

20 pages, 4777 KiB  
Article
Eco-Friendly Electroless Template Synthesis of Cu-Based Composite Track-Etched Membranes for Sorption Removal of Lead(II) Ions
by Liliya Sh. Altynbaeva, Anastassiya A. Mashentseva, Nurgulim A. Aimanova, Dmitriy A. Zheltov, Dmitriy I. Shlimas, Dinara T. Nurpeisova, Murat Barsbay, Fatima U. Abuova and Maxim V. Zdorovets
Membranes 2023, 13(5), 495; https://doi.org/10.3390/membranes13050495 - 7 May 2023
Cited by 15 | Viewed by 2038
Abstract
This paper reports the synthesis of composite track-etched membranes (TeMs) modified with electrolessly deposited copper microtubules using copper deposition baths based on environmentally friendly and non-toxic reducing agents (ascorbic acid (Asc), glyoxylic acid (Gly), and dimethylamine borane (DMAB)), and comparative testing of their [...] Read more.
This paper reports the synthesis of composite track-etched membranes (TeMs) modified with electrolessly deposited copper microtubules using copper deposition baths based on environmentally friendly and non-toxic reducing agents (ascorbic acid (Asc), glyoxylic acid (Gly), and dimethylamine borane (DMAB)), and comparative testing of their lead(II) ion removal capacity via batch adsorption experiments. The structure and composition of the composites were investigated by X-ray diffraction technique and scanning electron and atomic force microscopies. The optimal conditions for copper electroless plating were determined. The adsorption kinetics followed a pseudo-second-order kinetic model, which indicates that adsorption is controlled by the chemisorption process. A comparative study was conducted on the applicability of the Langmuir, Freundlich, and Dubinin–Radushkevich adsorption models to define the equilibrium isotherms and the isotherm constants for the prepared composite TeMs. Based on the regression coefficients R2, it has been shown that the Freundlich model better describes the experimental data of the composite TeMs on the adsorption of lead(II) ions. Full article
Show Figures

Figure 1

19 pages, 7822 KiB  
Article
A Versatile Suspended Lipid Membrane System for Probing Membrane Remodeling and Disruption
by Achinta Sannigrahi, Vishwesh Haricharan Rai, Muhsin Vannan Chalil, Debayani Chakraborty, Subrat Kumar Meher and Rahul Roy
Membranes 2022, 12(12), 1190; https://doi.org/10.3390/membranes12121190 - 25 Nov 2022
Cited by 1 | Viewed by 3168
Abstract
Artificial membrane systems can serve as models to investigate molecular mechanisms of different cellular processes, including transport, pore formation, and viral fusion. However, the current, such as SUVs, GUVs, and the supported lipid bilayers suffer from issues, namely high curvature, heterogeneity, and surface [...] Read more.
Artificial membrane systems can serve as models to investigate molecular mechanisms of different cellular processes, including transport, pore formation, and viral fusion. However, the current, such as SUVs, GUVs, and the supported lipid bilayers suffer from issues, namely high curvature, heterogeneity, and surface artefacts, respectively. Freestanding membranes provide a facile solution to these issues, but current systems developed by various groups use silicon or aluminum oxide wafers for fabrication that involves access to a dedicated nanolithography facility and high cost while conferring poor membrane stability. Here, we report the development, characterization and applications of an easy-to-fabricate suspended lipid bilayer (SULB) membrane platform leveraging commercial track-etched porous filters (PCTE) with defined microwell size. Our SULB system offers a platform to study the lipid composition-dependent structural and functional properties of membranes with exceptional stability. With dye entrapped in PCTE microwells by SULB, we show that sphingomyelin significantly augments the activity of pore-forming toxin, Cytolysin A (ClyA) and the pore formation induces lipid exchange between the bilayer leaflets. Further, we demonstrate high efficiency and rapid kinetics of membrane fusion by dengue virus in our SULB platform. Our suspended bilayer membrane mimetic offers a novel platform to investigate a large class of biomembrane interactions and processes. Full article
(This article belongs to the Special Issue Artificial Models of Biological Membranes)
Show Figures

Figure 1

14 pages, 5687 KiB  
Article
The Influence of Mechanical Stress Micro Fields around Pores on the Strength of Elongated Etched Membrane
by Venera Gumirova, Irina Razumovskaya, Pavel Apel, Sergey Bedin and Andrey Naumov
Membranes 2022, 12(11), 1168; https://doi.org/10.3390/membranes12111168 - 21 Nov 2022
Cited by 5 | Viewed by 2031
Abstract
The investigation of the mechanical properties of polymer track-etched membranes (TMs) has attracted significant attention in connection with the extended region of their possible applications. In the present work, the mechanical stress fields around the pores of an elongated polyethylene terephthalate TM and [...] Read more.
The investigation of the mechanical properties of polymer track-etched membranes (TMs) has attracted significant attention in connection with the extended region of their possible applications. In the present work, the mechanical stress fields around the pores of an elongated polyethylene terephthalate TM and around the 0.3 mm holes in model polymer specimens were studied in polarized light and with the finite element method. A break-up experiment showed the controlling role of stress field interaction in the forming of a microcrack system and the generation of a main crack with rupture of the TM (or model pattern). This interaction depended on the relative distance between the pores (holes) and their orientation. The results of the calculations of the pore distribution function over the surface of the TM via the net method and wavelet analysis are presented. The fractal character of pore distribution was established. The geometric characteristics of the TM pore system as initial defects are inherited by obtaining TM-based composites. Full article
(This article belongs to the Special Issue Modeling and Simulation of Polymeric Membrane)
Show Figures

Figure 1

25 pages, 4602 KiB  
Article
Hybrid PET Track-Etched Membranes Grafted by Well-Defined Poly(2-(dimethylamino)ethyl methacrylate) Brushes and Loaded with Silver Nanoparticles for the Removal of As(III)
by Nursanat Parmanbek, Duygu S. Sütekin, Murat Barsbay, Anastassiya A. Mashentseva, Dmitriy A. Zheltov, Nurgulim A. Aimanova, Zhanar Ye. Jakupova and Maxim V. Zdorovets
Polymers 2022, 14(19), 4026; https://doi.org/10.3390/polym14194026 - 26 Sep 2022
Cited by 28 | Viewed by 2938
Abstract
Nanoporous track-etched membranes (TeM) are promising materials as adsorbents to remove toxic pollutants, but control over the pore diameter and density in addition to precise functionalization of nanochannels is crucial for controlling the surface area and efficiency of TeMs. This study reported the [...] Read more.
Nanoporous track-etched membranes (TeM) are promising materials as adsorbents to remove toxic pollutants, but control over the pore diameter and density in addition to precise functionalization of nanochannels is crucial for controlling the surface area and efficiency of TeMs. This study reported the synthesis of functionalized PET TeMs as high-capacity sorbents for the removal of trivalent arsenic, As(III), which is more mobile and about 60 times more toxic than As(V). Nanochannels of PET-TeMs were functionalized by UV-initiated reversible addition fragmentation chain transfer (RAFT)-mediated grafting of 2-(dimethyamino)ethyl methacrylate (DMAEMA), allowing precise control of the degree of grafting and graft lengths within the nanochannels. Ag NPs were then loaded onto PDMAEMA-g-PET to provide a hybrid sorbent for As(III) removal. The As(III) removal efficiency of Ag@PDMAEMA-g-PET, PDMAEMA-g-PET, and pristine PET TeM was compared by adsorption kinetics studies at various pH and sorption times. The adsorption of As(III) by Ag@DMAEMA-g-PET and DMAEMA-g-PET TeMs was found to follow the Freundlich mechanism and a pseudo-second-order kinetic model. After 10 h, As(III) removal efficiencies were 85.6% and 56% for Ag@PDMAEMA-g-PET and PDMAEMA-g-PET, respectively, while PET template had a very low arsenic sorption capacity of 17.5% at optimal pH of 4.0, indicating that both PDMAEMA grafting and Ag-NPs loading significantly increased the As(III) removal capacity of PET-TeMs. Full article
(This article belongs to the Special Issue Functional Membranes: From Synthesis To Applications)
Show Figures

Graphical abstract

19 pages, 4419 KiB  
Article
A Novel Cu2O/ZnO@PET Composite Membrane for the Photocatalytic Degradation of Carbendazim
by Liliya Sh. Altynbaeva, Murat Barsbay, Nurgulim A. Aimanova, Zhanar Ye. Jakupova, Dinara T. Nurpeisova, Maxim V. Zdorovets and Anastassiya A. Mashentseva
Nanomaterials 2022, 12(10), 1724; https://doi.org/10.3390/nano12101724 - 18 May 2022
Cited by 30 | Viewed by 3081 | Correction
Abstract
The extremely high levels of water pollution caused by various industrial activities represent one of the most important environmental problems. Efficient techniques and advanced materials have been extensively developed for the removal of highly toxic organic pollutants, including pesticides. This study investigated the [...] Read more.
The extremely high levels of water pollution caused by various industrial activities represent one of the most important environmental problems. Efficient techniques and advanced materials have been extensively developed for the removal of highly toxic organic pollutants, including pesticides. This study investigated the photocatalytic degradation of the fungicide carbendazim (Czm) using composite track-etched membranes (TeMs) in an aqueous solution. Copper(I) oxide (Cu2O) and zinc oxide (ZnO) microtubes (MTs) were prepared using an electroless template deposition technique in porous poly(ethylene terephthalate) (PET) TeMs with nanochannels with a density of 4 × 107 pores/cm−2 and diameter of 385 ± 9 nm to yield Cu2O@PET and ZnO@PET composite membranes, respectively. A mixed Cu2O/ZnO@PET composite was prepared via a two-step deposition process, containing ZnO (87%) and CuZ (13%) as crystalline phases. The structure and composition of all composite membranes were elucidated using scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) techniques. Under UV–visible light irradiation, the Cu2O/ZnO@PET composite displayed enhanced photocatalytic activity, reaching 98% Czm degradation, higher than Cu2O@PET and ZnO@PET composites. The maximum Czm degradation efficiency from aqueous solution was obtained at an optimal pH of 6 and contact time of 140 min. The effects of various parameters such as temperature, catalyst dosage and sample exposure time on the photocatalytic degradation process were studied. The degradation reaction of Czm was found to follow the Langmuir–Hinshelwood mechanism and a pseudo-first order kinetic model. The degradation kinetics of Czm accelerated with increasing temperature, and the activation energy (Ea) levels were calculated as 11.9 kJ/mol, 14.22 kJ/mol and 15.82 kJ/mol for Cu2O/ZnO@PET, ZnO@PET and Cu2O@PET composite membranes, respectively. The reusability of the Cu2O/ZnO@PET catalyst was also investigated at different temperatures for 10 consecutive runs, without any activation or regeneration processes. The Cu2O/ZnO@PET composite exhibited degradation efficiency levels of over 50% at 14 °C and over 30% at 52 °C after 5 consecutive uses. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

19 pages, 4918 KiB  
Article
Kinetic and Isotherm Study of As(III) Removal from Aqueous Solution by PET Track-Etched Membranes Loaded with Copper Microtubes
by Alyona V. Russakova, Liliya Sh. Altynbaeva, Murat Barsbay, Dmitriy A. Zheltov, Maxim V. Zdorovets and Anastassiya A. Mashentseva
Membranes 2021, 11(2), 116; https://doi.org/10.3390/membranes11020116 - 6 Feb 2021
Cited by 19 | Viewed by 2533
Abstract
This paper reports on the synthesis and structure elucidation of track-etched membranes (TeMs) with electrolessly deposited copper microtubes (prepared in etched-only and oxidized polyethylene terephthalate (PET) TeMs), as well as on the comparative testing of arsenic (III) ion removal capacities through bath adsorption [...] Read more.
This paper reports on the synthesis and structure elucidation of track-etched membranes (TeMs) with electrolessly deposited copper microtubes (prepared in etched-only and oxidized polyethylene terephthalate (PET) TeMs), as well as on the comparative testing of arsenic (III) ion removal capacities through bath adsorption experiments. The structure and composition of composites were investigated by X-ray diffraction technique and scanning electron and atomic force microscopies. It was determined that adsorption followed pseudo-second-order kinetics, and the adsorption rate constants were calculated. A comparative study of the applicability of the adsorption models of Langmuir, Freundlich, and Dubinin–Radushkevich was carried out in order to describe the experimental isotherms of the prepared composite TeMs. The constants and parameters of all of the above equations were determined. By comparing the regression coefficients R2, it was shown that the Freundlich model describes the experimental data on the adsorption of arsenic through the studied samples better than others. Free energy of As(III) adsorption on the samples was determined using the Dubinin–Radushkevich isotherm model and was found to be 17.2 and 31.6 kJ/mol for Cu/PET and Cu/Ox_PET samples, respectively. The high EDr value observed for the Cu/Ox_PET composite indicates that the interaction between the adsorbate and the composite is based on chemisorption. Full article
(This article belongs to the Special Issue Track-etched Membranes: Formation Features and Applications)
Show Figures

Figure 1

19 pages, 3515 KiB  
Article
Magneto-Transport in Flexible 3D Networks Made of Interconnected Magnetic Nanowires and Nanotubes
by Tristan da Câmara Santa Clara Gomes, Nicolas Marchal, Flavio Abreu Araujo, Yenni Velázquez Galván, Joaquín de la Torre Medina and Luc Piraux
Nanomaterials 2021, 11(1), 221; https://doi.org/10.3390/nano11010221 - 16 Jan 2021
Cited by 18 | Viewed by 3473
Abstract
Electrochemical deposition of interconnected nanowires and nanotubes made of ferromagnetic metals into track-etched polycarbonate templates with crossed nanochannels has been revealed suitable for the fabrication of mechanically stable three-dimensional magnetic nanostructures with large surface area. These 3D networks embedded into flexible polymer membranes [...] Read more.
Electrochemical deposition of interconnected nanowires and nanotubes made of ferromagnetic metals into track-etched polycarbonate templates with crossed nanochannels has been revealed suitable for the fabrication of mechanically stable three-dimensional magnetic nanostructures with large surface area. These 3D networks embedded into flexible polymer membranes are also planar and lightweight. This fabrication technique allows for the control of the geometric characteristics and material composition of interconnected magnetic nanowire or nanotube networks, which can be used to fine-tune their magnetic and magneto-transport properties. The magnetostatic contribution to the magnetic anisotropy of crossed nanowire networks can be easily controlled using the diameter, packing density, or angle distribution characteristics. Furthermore, the fabrication of Co and Co-rich NiCo alloy crossed nanowires with textured hcp phases leads to an additional significant magnetocrystalline contribution to the magnetic anisotropy that can either compete or add to the magnetostatic contribution. The fabrication of an interconnected nanotube network has also been demonstrated, where the hollow core and the control over the tube wall thickness add another degree of freedom to control the magnetic properties and magnetization reversal mechanisms. Finally, three-dimensional networks made of interconnected multilayered nanowire with a succession of ferromagnetic and non-magnetic layers have been successfully fabricated, leading to giant magnetoresistance responses measured in the current-perpendicular-to-plane configuration. These interconnected nanowire networks have high potential as integrated, reliable, and stable magnetic field sensors; magnetic devices for memory and logic operations; or neuromorphic computing. Full article
(This article belongs to the Special Issue Multifunctional Magnetic Nanowires and Nanotubes)
Show Figures

Figure 1

12 pages, 2632 KiB  
Article
Application of Silver-Loaded Composite Track-Etched Membranes for Photocatalytic Decomposition of Methylene Blue under Visible Light
by Anastassiya A. Mashentseva, Murat Barsbay, Nurgulim A. Aimanova and Maxim V. Zdorovets
Membranes 2021, 11(1), 60; https://doi.org/10.3390/membranes11010060 - 15 Jan 2021
Cited by 24 | Viewed by 3185
Abstract
In this study, the use of composite track-etched membranes (TeMs) based on polyethylene terephthalate (PET) and electrolessly deposited silver microtubes (MTs) for the decomposition of toxic phenothiazine cationic dye, methylene blue (MB), under visible light was investigated. The structure and composition of the [...] Read more.
In this study, the use of composite track-etched membranes (TeMs) based on polyethylene terephthalate (PET) and electrolessly deposited silver microtubes (MTs) for the decomposition of toxic phenothiazine cationic dye, methylene blue (MB), under visible light was investigated. The structure and composition of the composite membranes were elucidated by scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction technique. Under visible light irradiation, composite membrane with embedded silver MTs (Ag/PET) displayed high photocatalytic efficiency. The effects of various parameters such as initial dye concentration, temperature, and sample exposure time on the photocatalytic degradation process were studied. The decomposition reaction of MB was found to follow the Langmuir–Hinshelwood mechanism and a pseudo-first-order kinetic model. The degradation kinetics of MB accelerated with increasing temperature and activation energy, Ea, was calculated to be 20.6 kJ/mol. The reusability of the catalyst was also investigated for 11 consecutive runs without any activation and regeneration procedures. The Ag/PET composite performed at high degradation efficiency of over 68% after 11 consecutive uses. Full article
(This article belongs to the Special Issue Track-etched Membranes: Formation Features and Applications)
Show Figures

Figure 1

21 pages, 5909 KiB  
Article
Cu/CuO Composite Track-Etched Membranes for Catalytic Decomposition of Nitrophenols and Removal of As(III)
by Anastassiya A. Mashentseva, Murat Barsbay, Maxim V. Zdorovets, Dmitriy A. Zheltov and Olgun Güven
Nanomaterials 2020, 10(8), 1552; https://doi.org/10.3390/nano10081552 - 7 Aug 2020
Cited by 30 | Viewed by 3417
Abstract
One of the promising applications of nanomaterials is to use them as catalysts and sorbents to remove toxic pollutants such as nitroaromatic compounds and heavy metal ions for environmental protection. This work reports the synthesis of Cu/CuO-deposited composite track-etched membranes through low-temperature annealing [...] Read more.
One of the promising applications of nanomaterials is to use them as catalysts and sorbents to remove toxic pollutants such as nitroaromatic compounds and heavy metal ions for environmental protection. This work reports the synthesis of Cu/CuO-deposited composite track-etched membranes through low-temperature annealing and their application in catalysis and sorption. The synthesized Cu/CuO/poly(ethylene terephthalate) (PET) composites presented efficient catalytic activity with high conversion yield in the reduction of nitro aryl compounds to their corresponding amino derivatives. It has been found that increasing the time of annealing raises the ratio of the copper(II) oxide (CuO) tenorite phase in the structure, which leads to a significant increase in the catalytic activity of the composites. The samples presented maximum catalytic activity after 5 h of annealing, where the ratio of CuO phase and the degree of crystallinity were 64.3% and 62.7%, respectively. The catalytic activity of pristine and annealed composites was tested in the reduction of 4-nitroaniline and was shown to remain practically unchanged for five consecutive test cycles. Composites annealed at 140 °C were also tested for their capacity to absorb arsenic(III) ions in cross-flow mode. It was observed that the sorption capacity of composite membranes increased by 48.7% compared to the pristine sample and reached its maximum after 10 h of annealing, then gradually decreased by 24% with further annealing. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Wastewater Treatment)
Show Figures

Graphical abstract

13 pages, 2703 KiB  
Article
Electron Beam Induced Enhancement of the Catalytic Properties of Ion-Track Membranes Supported Copper Nanotubes in the Reaction of the P-Nitrophenol Reduction
by Anastassiya A. Mashentseva, Dmitriy I. Shlimas, Artem L. Kozlovskiy, Maxim V. Zdorovets, Alyona V. Russakova, Murat Kassymzhanov and Alexander N. Borisenko
Catalysts 2019, 9(9), 737; https://doi.org/10.3390/catal9090737 - 31 Aug 2019
Cited by 18 | Viewed by 3794
Abstract
This study considers the effect of various doses of electron irradiation on the crystal structure and properties of composite catalysts based on polyethylene terephthalate track-etched membranes and copper nanotubes. Copper nanotubes were obtained by electroless template synthesis and irradiated with electrons with 3.8 [...] Read more.
This study considers the effect of various doses of electron irradiation on the crystal structure and properties of composite catalysts based on polyethylene terephthalate track-etched membranes and copper nanotubes. Copper nanotubes were obtained by electroless template synthesis and irradiated with electrons with 3.8 MeV energy in the dose range of 100–250 kGy in increments of 50 kGy. The original and irradiated samples of composites were investigated by X-ray diffraction technique (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The improved catalytic activity of composite membranes with copper nanotubes was demonstrated by the example of the reduction reaction of p-nitrophenol in the presence of sodium borohydride. Irradiation with electrons at doses of 100 and 150 kGy led to reaction rate constant increases by 35 and 59%, respectively, compared to the non-irradiated sample. This enhancing catalytic activity could be attributed to the changing of the crystallite size of copper, as well as the surface roughness of the composite membrane. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Copper-Based Catalysts)
Show Figures

Graphical abstract

Back to TopTop