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Abstract: This study considers the effect of various doses of electron irradiation on the crystal structure
and properties of composite catalysts based on polyethylene terephthalate track-etched membranes
and copper nanotubes. Copper nanotubes were obtained by electroless template synthesis and
irradiated with electrons with 3.8 MeV energy in the dose range of 100–250 kGy in increments of 50 kGy.
The original and irradiated samples of composites were investigated by X-ray diffraction technique
(XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The improved
catalytic activity of composite membranes with copper nanotubes was demonstrated by the example
of the reduction reaction of p-nitrophenol in the presence of sodium borohydride. Irradiation with
electrons at doses of 100 and 150 kGy led to reaction rate constant increases by 35 and 59%, respectively,
compared to the non-irradiated sample. This enhancing catalytic activity could be attributed to the
changing of the crystallite size of copper, as well as the surface roughness of the composite membrane.

Keywords: copper nanotubes; composite; track-etched membranes; electron beam irradiation;
enchasing catalytic activity

1. Introduction

In recent years, the use of ionizing radiation to enhance the structure and properties of nanoscale
structures has become one of the promising areas of modern materials science [1]. In addition to
the large-scale application in the synthesis of nanoscale structures [2,3], the use of microwave [4],
X-ray [5] and gamma radiation [6,7], as well as the processing by accelerated electron beams [8,9]
and ions [10] allows directed modification of both the crystal structure and the functional properties
of nanomaterials.

One of the promising applications of ionizing radiation is catalysis. Activation of heterogeneous
catalysts by high-energy beams can significantly improve their properties. In a number of works,
modification of catalysts by gamma rays significantly improved the yield of reactions of oxidative
dehydrogenation of propane at the expense of the changes in the concentration of catalytically active
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sites on the catalyst surface [11,12]. After the irradiation with gamma rays (0.8 MGy) of the catalysts
based on CuO/MgO and NiO/MgO, the rate of decomposition of hydrogen peroxide increased several
times [7]. A significant number of studies are devoted to the investigation of the activation process
of heterogeneous catalysts by irradiating them with a stream of accelerated high-energy electrons
up to 15 MeV generated with the help of an electronic accelerator [13,14]. Under the influence of
a beam of accelerated electrons, both on the surface and in the depth of the catalyst, a number of
processes take place; they lead to the activation of chemical bonds and the formation of defects on
the surface and in the volume of the solid-state body. At the same time, slow electrons (with energy
less than 0.15–0.3 MeV) can directly have a chemical impact on the solid-state body and take part in
redox reactions. This combined physical and chemical influence of the accelerated electron flux can
potentially lead to the formation of new types of active centers [15,16].

Jun et al [17] studied the effect of electron beam irradiation on the catalytic properties of Ni/Al2O3

in the reaction of CO2-reforming of methane. The authors showed that the degree of conversion of
CO2 and CH4 with the formation of H2 and CO using various catalysts irradiated with an absorbed
dose of more than 2 MGy was 5–10% higher than when using an untreated catalyst. In addition, it was
found that the concentration of active centers such as Ni2+ and NiO or surface defects increases with
an increase in the dose of absorbed radiation, thereby increasing the conversion rate. Silica-supported
titanium dioxide was irradiated in the range of 100–1000 kGy and the photoactivity of this catalyst in the
decomposition reaction of azo-dyes increased with the increase in the irradiation dose to 250 kGy [14].
Supported (graphitized carbon, aluminum oxide, titanium) Pd catalysts after the irradiation using an
electronic accelerator (1.2–9.0 MGy) were studied in the toluene hydrogenation reaction (in the liquid
and gaseous phase). The degree of conversion of toluene in the gas phase reaction increased from 15%
to 86.9% for the source and irradiated at a dose of 9.0 MGy of Pd/C catalyst, respectively [18].

During the last decades, composites with enhanced catalytic activity are being studied more
and more to meet the practical catalytic performance requirements in the industry of high activity,
high selectivity, and good stability [19]. One of the most critical problems for the development
of non-supported nanosized catalysts is the need for their separation from reaction media and/or
regeneration after every run so a small part of nanoparticles (NPs) can be removed during these
manipulations. After the reaction is completed, the heterogeneous magnetic catalyst can accumulate
using an external magnet and is subjected to the next cycle [20]. Composite and supported catalysts
compared to their colloidal counterparts are being used more and more to meet the practical catalytic
performance requirements in the chemical industry, such as high activity and selectivity, as well as
reusability and good stability [21]. Thus, development of new composite materials with enhanced
catalytic properties has become one of the most relevant tasks for modern material science.

Track-etched membranes (TeMs) with embedded metal nanotubes (NTs) represent a new class of
composites with a wide range of practical applications in nanosensorics [22–24], microelectronics [25],
material science, and medicine [26,27]. The composite materials based on copper nanotubes or
nanowires obtained by electrochemical or electroless deposition into polymer TeMs are the objects of
close study in radiation materials science: the effect of accelerated ions [28,29], electrons, and gamma
rays [9,30] on the structural and conductive properties of composite membranes has been studied.

It is well-known that electroless template plating represents a technologically modest and highly
flexible wet-chemical method for the fabrication of metal films [31]. Metal precipitation selectively
occurs on a TeMs substrate surface and is maintained by polymer pre-treatment (sensitization and
activation). One of the main advantages of the proposed electroless deposition technique is not
only its simplicity, but low cost; this process does not require complicated laboratory equipment and
expensive chemicals [32–34]. It is possible to quickly and easily synthesize big samples of composite
membranes. Such capacity cannot be achieved using the electrochemical deposition technique, where
the dimension of the composite sample depends on the area of the electrodes, the capabilities of the
process design, and so on. Polymeric TeMs also have been extensively employed as a stable and
excellent nanocatalyst support for synthesizing efficient heterogeneous catalysts for a wide range of
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chemical reactions [33,35–38]. TeMs with embedded metallic NTs as highly efficient heterogeneous
catalysts have a lot of advantages: a wide range of desired metals/alloys can be easily deposited within
the channels of a membrane; the membrane geometry can be prepared with the desired parameters
and allowed to uniformly distribute the catalytically-active material over the whole pore’s surface; and
the possibility to carry out reactions without separation of nanosized catalysts from reaction media
after the reaction is complete [39].

Herein, we introduce a facile and reproducible approach to improve the catalytic performance
of copper nanotube membranes using accelerated electrons. The effect of the absorbed dose on the
catalytic properties of composite membranes by the example of the p-nitrophenol (4-NP) reduction
reaction, as well as the effect of crystal planes and sizes, on the catalytic activity was studied. Notably,
the as-prepared Cu NTs can be used as an effective catalyst due to their reusability and stability.

2. Results

The pristine deposited NTs were grown through the whole polyethylene terephthalate (PET)
template and, therefore, had a length of 12 µm. The outer NT diameter approximately corresponds to
the pore diameter of the template (430 ± 10 nm); the inner diameter and wall thickness were determined
to be about 264 ± 11 and 83 ± 5 nm, respectively. The surface morphology of the composite membranes
and released copper NTs was characterized by scanning electron microscopy (SEM) images as shown
in Figure 1.
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Figure 1. Scanning electron microscopy (SEM) images of the composite membrane’s surface and
individual released Cu nanotubes (inset, scale bar: 200 nm).

According to Figure 1, a uniform layer of copper was deposited in the PET template pores prior to
the irradiation treatment. When the composite membranes were irradiated with 100–250 kGy e-beam
radiation doses, both lattice distortions and reduction in grain size of the copper nanoparticles (NPs)
took place. This led to further agglomeration of NPs in different shapes on the membrane surface,
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as well as on NT walls (inset in Figure 1). According to the energy dispersive X-ray spectroscopy (EDS)
spectra, Cu is the major component of the prepared nanotubes (99.9%).

The microstructure of the studied samples was analyzed by X-ray diffraction (XRD) and the
crystallite size, lattice constants, lattice strain, dislocation density, as well as texture coefficients, were
calculated. Figure 2 shows the XRD patterns for different e-beam radiation doses of ion-track composite
membranes with embedded Cu NTs. The main distinct XRD peaks for each sample around 43.4, 50.7,
74.3, and 90.0 degrees originated from (111), (200), (220), and (311) planes, respectively.
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Figure 2. X-ray diffraction (XRD) patterns of composite membranes at various e-beam doses.

Initial concentration in the structure plays an important role in the evolution of defects and
dislocations. In the chemical synthesis of nanostructures, the concentration of dislocation defects and
distortions is quite high, which is due to the way the structure is formed during the nucleation of the
tube walls. In this case, the resulting defects and dislocations result in distortion and deformation of
the crystal lattice with the formation of disordered regions in the structure. One of the ways to reduce
deformations in the structure is the use of ionizing radiation to enhance the properties of nanomaterials.
As can be seen from the presented data, the increase in the radiation dose leads to the change in the
shape and intensity of the diffraction lines, which indicates the change in distortion and deformation
in the crystal structure.

An increase in the radiation dose from 50 to 200 kGy leads to an increase in the intensity of the
diffraction peaks (111) and (200), which is due to a decrease in dislocation defects as a result of electron
beam irradiation. Changes in the dislocation density of defects and reduction of distortion take place
as a result of the formation of electron–positron pairs, followed by the formation of electronic cascades
arising from the irradiation by high-energy electrons. Migrating cascades lead to redistribution
of defects in the crystal structure and their partial annihilation, followed by changes in structural
properties. However, a large concentration of electronic cascades in the structure can result in the
disordering of the structure and the formation of amorphous-like inclusions leading to the degradation
of the structure, which is observed for the samples irradiated with the dose of 200–250 kGy.
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All the peaks observed from XRD patterns can be well indexed to Joint Committee on Powder
Diffraction Standards JCPDS card No. 04-0836. It is seen that the deposited pristine and irradiated Cu
NTs contain only a copper phase. With the reference to Figure 2 it can be seen that the intensity of
the picks increased up to a higher radiation dose. The XRD parameters of the pristine and e-beam
treated PET TeMs with embedded copper NTs are tabulated in Table 1. The crystallite size decreased
by 100 kGy and increased with the increase of the e-beam dose from 10.9 ± 0.9 nm by the irradiation of
100 kGy, to 20.9 ± 7.5 by the irradiation of 250 kGy. These changes are caused by the thermal heating
effect of the sample that took place during irradiation.

Table 1. XRD parameters of the pristine and e-beam treated PET track-etched membranes (TeMs) with
embedded copper nanotubes (NTs).

Dose, kGy Lattice
Strain, %

Cell Parameter,
a, Å

Crystallinity
Degree, %

Texture Coefficient (hkl)

111 200 220 311

0 0.325 3.601 57.9 3.225 0.562 0.213
100 0.293 3.602 64.6 3.655 0.345 1.024
150 0.211 3.611 65.2 2.461 0.985 0.431 0.123
200 0.134 3.613 71.1 2.168 0.431 0.563 0.245
250 0.121 3.610 72.5 2.478 0.965 0.345 0.212

The decrease in the dislocation density (δ) values (Figure 3) and, consequently, the lattice strain,
is caused by an increase in thermal vibrations and the splitting of grains as a result of the interaction of
incident electrons with the crystal lattice of copper NTs [9].
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Figure 3. Dislocation density and crystallite size variation according to irradiation dose.

The degree of preferred orientation of the synthesized NTs was estimated from the XRD peak
intensities using the Harris equation as shown in Equation (1):

TChkl =
Ihkl
I0hkl

1
n

∑ Ihkl
I0hkl

(1)

where Ihkl is the experimentally obtained relative intensity, I0hkl is the relative intensity corresponding
to the given plane according to the JCPDS base, and n is the number of planes.

In our case, n = 4, as the four most intense reflections were selected (i.e., (111), (200), (220), and
(311) peaks). Therefore, for an extremely textured sample, a texture coefficient (TC) would be equal to
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4 while the others would be equal to 0; inversely, a fully random oriented sample would have a TChkl

value equal to 1 for each peak [40]. The obtained values of the TC are listed in Table 1. The copper NTs
in the pristine sample have a preferred single orientation along (111) plane direction. After irradiation
by up to 100 kGy the TC(111) and TC(200) increased sharply. Generally, all irradiated samples display
a similar behavior, with TC(111) in the 2.4–3.6 range, and all other TChkl under 1.

The catalytic properties of the studied composite membranes were evaluated by their efficiency
in degradation of the p-nitrophenol (4-NP)(Figure 4a). This reaction has a pseudo-first-order under
the condition of an excess of reducing agent (NaBH4), which investigates the reaction kinetics by
decreasing the amount of the initial reagent [41,42]. In the absence of catalysts, the formation of the
final product, p-aminophenol (4-AP) was not observed even with an increase in the reaction time by
up to 120 h. The amount of loaded copper NTs was found to be 7.56 mg (0.12 mMol) and was the same
for all experiments.
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Figure 4. Scheme of the studied reaction of the p-nitrophenol reduction (a), typical time-dependent
absorption spectra for the catalytic reduction of p-nitrophenol on the surface of the (b) pristine and (c)
irradiated (150 kGy) Cu NTs composite membrane; the change of the rate constant for the (d) first run
and (e) six consecutive test cycles.
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In Figure 4b–d the typical absorption spectra for 4-NP reduction in the presence of composite
membranes with embedded copper NTs, as well as the average value of constant rate, are presented
(for the first cycle of testing). The analysis of the obtained data on the 4-NP reduction reaction rate
constant during the first cycle of tests showed that during electron irradiation there is a significant
increase in the catalytic properties of composite membranes by 37.1% and 59.6% at the dose of 100 and
150 kGy, respectively.

Stability and reusability are of great importance for the practical application of catalysts. Porous-
supported catalysts bear a number of advantages compared to their counterparts. Non-supported
nanoparticles before re-loading have to be separated from solution via filtration, sedimentation, and
centrifugation, which are both time-consuming and uneconomic [20]. Flexible TeMs with embedded
NTs can be easily removed after reaction and reused again without any additional activation procedure.
To evaluate the long-term stability, the activity of the studied composites during six consecutive cycles
was analyzed (Figure 4e). As mentioned above, all tests were performed without any additional
activation and regeneration procedures. In general, for all the samples there is a slight decrease in the
reaction rate constant after the second cycle of tests, and a decrease in activity by more than 50–60%
after the sixth cycle. The k values become approximately the same for the original and irradiated
composite membranes. A slight decrease in the reaction rate constant under irradiation at more than
200 kGy is most likely due to the increase in the size of the crystallites of copper [43] and the changes
in the surface roughness of the composite membrane [44].

We determined that a pristine sample could establish 95.8–92.1% conversion of 4-NP to 4-AP in
up to three consecutive reactions followed by a slightly reduced conversion for the fourth and fifth
cycle at 84.6 and 81%, respectively (Figure 5). Meanwhile, the e-beam treated nanocatalyst maintained
about 100% conversion for the three consecutive reactions. The most impressive performance was
achieved by a 150 kGy nanocatalyst which could maintain 99.3% conversion up to five consecutive
reactions and 88% for the sixth run of testing. A slight decrease in the degree of the 4-NP conversion,
as well as the catalytic activity decay, seems to result from the loss of nanocatalysts during the intense
stirring with a Teflon bar.
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Figure 5. Changing of conversion of the 4-NP for six reaction runs in the presence of Cu NTs PET TeMs
composite membranes before and after e-beam treatment.

In addition, pre-irradiation by electrons significantly reduced reaction time. For non-irradiated
samples the duration of one test cycle was 25–30 min, while for the composite samples after irradiation
with a dose of 150 kGy, the reaction was completed within 8–12 min.

For a more detailed study of the effect of high-energy electron irradiation on the structure of
composites, the surface topography was investigated by atomic force microscopy (AFM). Generally,
AFM analysis is one of the most appropriate techniques used for investigation of materials’ surface,
especially when surface modification is conducted. AFM analysis was performed at the scan sizes of
3 × 3 µm, and the dynamics of the surface roughness Ra for e-beam treated composites was investigated.
Figure 6 displays the three-dimensional images acquired from the AFM analysis related to the pristine
and e-beam irradiated composite membrane samples. The higher points of the composite membrane
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are displayed as bright areas, while the dark areas correspond to the pores. The samples were scanned
on a scale of 3 × 3 µm2 and the calculation of arithmetic average roughness was performed for one
image of 512 × 512 points (minimum 10 measurements). The images taken by a scanning probe
microscope for each investigated sample are presented in Figure 5 together with information about
surface roughness. The parameters of the surface roughness Ra are also shown in Figure 6.
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It is well known that the reduction of 4-NP in the presence of NaBH4 and nanoscale catalysts
proceeds by the Langmuir–Henshelwood mechanism [45], and at the first stage NPs react with the
borohydride ions to form metal hydride. Concomitantly, 4-NP is adsorbed, and the rate-determining
step consists of the reduction of p-nitrophenol by the metal-hydrogen species. Therefore, the apparent
reaction rate can be related to the total surface of a nanosized catalyst. Thus, a significant increase in
the values of the roughness of the samples ultimately causes an increased catalytic activity in the 4-NP
reduction reaction [46].

Unfortunately, direct comparison with similar results, published in previous reports dedicated
to heterogeneous nanosized catalysts for reduction of 4-NP is difficult due to inconsistent reaction
conditions, such as the concentration of initial chemicals, the type and size of a loaded catalyst (i.e., NPs,
nanowires or NTs), the type of support materials, the range of testing temperature, as well as the mode
of testing (cross-flow or bath mode), etc. [36,43]. Thus, the synthesized Cu-P(NIPAM-co-AAc) hybrid
microgel as a catalyst for reduction of 4-NP in an aqueous medium for 0.06 to 0.2 mg/L catalyst dosage
possesses the k value in the range of 0.104 to 0.274 min−1. The Pd/PdO nanoparticles supported on
oxidized multi-walled carbon nanotubes exhibit remarkable catalytic activity during the reduction of
4-NP to 4-aminophenol with the k value of 1.0 min−1 [47]. Gold and silver NTs deposited in PET TeMs
with a pore density of 1 × 109 cm−2 exhibit strong catalytic activity with the k value of 0.074 ± 0.02 and
0.0447 ± 0.004 min−1, respectively. The copper oxide nanoparticles (10 nm) loaded on grapheme oxide
exhibited promising catalytic activity for the reduction of 4-NP, and the authors successfully reused
it for six consecutive cycles with a good yield of 85% after the sixth run [48]. The rate constant for
unsupported Cu NPs strongly depends on the shape and size of nanostructures, as well as a synthesis
technique and loaded dosage, and is described in more detail in review papers [49–51].
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3. Materials and Methods

3.1. Chemical Reagents

Copper(II) sulfate pentahydrate, potassium sodium tartrate, palladium chloride, p-nitrophenol,
and sodium borohydride made by Sigma, and all other used chemicals had a p.a. or c.p. purity and
were used without further purification.

3.2. Template Synthesis of Copper Nanotubes

The polymer template was made of PET film using the DC-60 accelerator of heavy ions (accelerated
ion - 15Kr84, energy of 1.75 MeV/nucleon, film thickness of 12.0 microns, pore density - 4 × 107 ion/cm2).
After the standard procedure of etching in a 2.2 M NaOНsolution (260 s), the diameter of the pores
of TM according to the method of gas permeability did not exceed 430 ± 10 nm. Sensitization was
carried out by rinsing samples for 6 min in a solution containing 50 g/L SnCl2 and 60 mL/L HCl (37%),
after which they were thoroughly washed with hot water for 2–3 min. Further, the sensitized PET TM
sample was activated by immersing in the solution of 0.1 g/L PdCl2 and 10 mL/L HCl (37%) for 6 min.
The composition of the deposition solution: KNaC4H4O6 × 4H2O - 18 g/L; CuSO4 × 5H2O - 5 g/L;
NaOH- 7 g/L, CH2O - 0.13 M, рН= 12.45 (H2SO4) [52]; deposition time was 40 min. and temperature
was 10 ◦C. After the completion of the deposition procedure, the samples were washed in ethanol and
air dried.

3.3. Electron Irradiation

The as-prepared composite membrane samples were irradiated in the air atmosphere at the electron
accelerator ILU-10 (Kurchatov, Kazakhstan). The electron energy value was 3.8 MeV, the average
electron beam current was 6.84 mA. The radiation dose was varied by varying the number of runs
of the sample holder under the electron beam at a constant speed and was controlled by electronic
dosimeters. The dose measurement error did not exceed 10% in all the carried out experiments.

3.4. The Study of the Structure of the Samples

The structure of the samples before and after electron beam irradiation was studied using JEOL
JFC-7500F scanning electron microscope. The X-ray diffraction analysis of copper NTs in the polymer
matrix was performed in the angular range 2(θ) 20–90◦ with the step 2(θ) = 0.02◦, and the measurement
time was 1 s on the D8 Advance diffractometer (the voltage on the X-ray tube was 40 kV and the
current was 40 mA). The average crystallite size was determined by the Scherer equation.

The dislocation density (δ) contains information on the improvement of the crystal structure and
was calculated according to the Equation (2).

δ =
1
L2 (2)

where L is the crystallite’s size.
The distortions taking place in the crystal structure as a result of irradiation can be determined

using Equation (3):

lattice_strain =
βhkl

4 tanθ
(3)

The gas (compressed air was applied) permeability techniques detailed in [53] were used to
evaluate the PET TeMs pore sizes and the wall thickness of the resulting NTs. According to the
Hagen–Poiseuille Equation (4) the pore size of initial PET TeMs did not exceed 430 ± 10 nm.

Q = 4/3(2π/MRT)1/2(nr3∆p/l) (4)
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where ∆p is the pressure difference across the membrane, M is the molecular weight of the gas, R is the
gas constant, n is the number of nanotubes in the membrane sample (template pores density), l is the
membrane thickness, and T is the temperature.

The surface morphology of the pristine and irradiated composite membranes was investigated by
a scanning probe microscope (SPM) SmartSPM-1000 of AIST-NT company in atmospheric conditions
and in the semi-contact mode using a silicon cantilever NSG10 of NT-MDT company, with the tip
radius not exceeding 10 nm.

To study the catalytic activity of composite membranes, a 2 × 2 cm sample was placed in 20 mL
of the reaction mixture of p-NP (7.82·10−6 M) and NaBH4 (7.82·10−3 M). The study was carried out
at continuous stirring at the temperature of 25 ± 0.2 ◦C; the optical density was measured in the
wavelength range of 200–600 nm using the UV–Vis spectrophotometer Specord 250 BU (Jena Analytik,
Jena, Germany) every 1–2 min. The reaction rate constant of the first-order, as well as the conversion
rate, were determined by changes in the optical density of the initial reagent at 400 nm.

All the experiments were carried out on at least three samples, each sample being tested at least
five times; after each cycle the catalyst was washed in deionized water, dried and used further without
any additional purification or activation procedures.

4. Conclusions

In this study the copper NTs in the pores of the PET track-etched membrane were synthesized by
way of electroless template synthesis. The irradiation of the obtained samples by an electron beam
with 3.8 MeV energy and doses of 100–250 kGy was accompanied by some changes in the structure of
copper NTs, which was confirmed by XRD studies. When irradiated with a dose of 100 kGy, there is a
decrease in the size of crystallites and an increase in the dislocation density of the samples, as well as
some change in the texture of copper nanotubes, which in turn has a beneficial effect on the properties
of composite membranes. At higher doses, there is a significant increase in the size of the crystallites, a
decrease in the lattice strength of copper and an increase in the crystallinity of the samples.

By the example of p-nitrophenol reduction reaction it was shown that high-energy electron
irradiation increases the reaction rate by 35–59%, compared to the non-irradiated sample for the first
test cycle, and reduces the reaction time by 2–3 times. For the non-irradiated samples, the duration
of one test cycle was 25–30 min, while further composite samples after irradiation did not exceed
8–12 min.

The long-term stability properties of the composite catalysts for six consecutive cycles were
investigated. It was shown that after four cycles of tests all the samples exhibited equal catalytic activity.

The high surface roughness determined by AFM and several defective cites on the Cu NTs
membrane surface resulting from e-beam treatment are believed to be the causes of such high catalytic
activity of Cu NTs-based composite membranes irradiated with doses in the range of 100–250 kGy.
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