Electron Beam Induced Enhancement of the Catalytic Properties of Ion-Track Membranes Supported Copper Nanotubes in the Reaction of the P-Nitrophenol Reduction
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Chemical Reagents
3.2. Template Synthesis of Copper Nanotubes
3.3. Electron Irradiation
3.4. The Study of the Structure of the Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wesch, W.; Wendler, E. (Eds.) Ion Beam Modification of Solids; Springer Series in Surface Sciences; Springer International Publishing: Cham, Switzerland, 2016; Volume 61, ISBN 978-3-319-33559-9. [Google Scholar]
- Gonzalez-Martinez, I.G.; Bachmatiuk, A.; Bezugly, V.; Kunstmann, J.; Gemming, T.; Liu, Z.; Cuniberti, G.; Rümmeli, M.H. Electron-beam induced synthesis of nanostructures: a review. Nanoscale 2016, 8, 11340–11362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerasimov, G.Y. Radiation methods in nanotechnology. J. Eng. Phys. Thermophys. 2011, 84, 947–963. [Google Scholar] [CrossRef]
- Lipińska, T.M.; Borowska, D.; Swędra, N.; Trochim, K. Effect of Microwave Irradiation on the Catalytic Activity of Palladium Supported Catalysts in the One-Step Isomerisation of Cinchona Alkaloids to Δ3,10-Isobases. Catal. Letters 2017, 147, 2835–2843. [Google Scholar] [CrossRef]
- Chenakin, S.P.; Silvy, R.P.; Kruse, N. X-ray induced surface modification of aluminovanadate oxide. Catal. Letters 2005, 102, 39–43. [Google Scholar] [CrossRef]
- Gupta, R.; Kumar, R.; Chauhan, R.P.; Chakarvarti, S.K. Gamma ray induced modifications in copper microwires synthesized using track-etched membrane. Vacuum 2018, 148, 239–247. [Google Scholar] [CrossRef]
- El-Shobaky, G.A.; El-Molla, S.A.; Ismail, S.A. Effects of gamma-irradiation on physicochemical state of surface and catalytic properties of CuO/MgO and NiO/MgO systems. J. Radioanal. Nucl. Chem. 2004, 260, 627–636. [Google Scholar] [CrossRef]
- Poplavskii, V.V.; Mishchenko, T.S.; Matys, V.G. Ion beam formation of the catalytically active surface of titanium electrodes. J. Surf. Investig. 2010, 4, 576–581. [Google Scholar] [CrossRef]
- Zdorovets, M.V.; Borgekov, D.B.; Kenzhina, I.E.; Kozlovskiy, A.L. Effect of ionizing radiation on structural and conductive properties of copper nanotubes. Phys. Lett. A 2018, 382, 175–179. [Google Scholar] [CrossRef]
- Shlimas, D.I.; Kozlovskiy, A.L.; Zdorovets, M.V.; Mashentseva, A.A.; Kadyrzhanov, K.K. Changes in structural and conducting characteristics of zinc nanotubes by bombardment with Xe+22 heavy ions. High Energy Chem. 2017, 51, 11–16. [Google Scholar] [CrossRef]
- Khan, M.I.; Aydemir, K.; Siddiqui, M.R.H.; Alwarthan, A.A.; Kaduk, J.A.; Marshall, C.L. Effect of γ-ray irradiation on the properties of nanostructured oxovanadate based oxidative dehydrogenation catalysts. Radiat. Phys. Chem. 2013, 88, 56–59. [Google Scholar] [CrossRef]
- Ahmad, A.S.; El-Shobaky, G.A.; Al-Noaimi, A.N.; El-Shobaky, H.G. Surface and catalytic properties of gamma-irradiated CuO and NiO catalysts. Mater. Lett. 1996, 26, 107–112. [Google Scholar] [CrossRef]
- Krasheninnikov, A.V.; Nordlund, K. Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 2010, 107. [Google Scholar] [CrossRef]
- Wronski, P.; Surmacki, J.; Abramczyk, H.; Adamus, A.; Nowosielska, M.; Maniukiewicz, W.; Kozanecki, M.; Szadkowska-Nicze, M. Surface, optical and photocatalytic properties of silica-supported TiO2 treated with electron beam. Radiat. Phys. Chem. 2015, 109, 40–47. [Google Scholar] [CrossRef]
- Markov, P.V.; Pribytkov, A.S.; Tolkachev, N.N.; Stakheev, A.Y.; Kustov, L.M.; Golubeva, V.N.; Tel’nov, A.V. Effect of electron beam irradiation on the formation of active sites in the Pt/H pentasil catalyst. Kinet. Catal. 2008, 49, 765–769. [Google Scholar] [CrossRef]
- Pribytkov, A.S.; Tkachenko, O.P.; Stakheev, A.Y.; Klementiev, K.V.; Grunert, W.; Maurits, W.E.V.D.B.; Kustov, L.M.; Golubeva, V.N.; Tel’nov, A.V. Effect of electron beam-irradiation on the structure and catalytic performance of Pd nanoparticles supported on Al2O3 and carbon. Mendeleev Commun. 2006, 16, 254–256. [Google Scholar] [CrossRef] [Green Version]
- Jun, J.; Kim, J.C.; Shin, J.H.; Lee, K.W.; Baek, Y.S. Effect of electron beam irradiation on CO2 reforming of methane over Ni/Al2O3 catalysts. Radiat. Phys. Chem. 2004, 71, 1095–1101. [Google Scholar] [CrossRef]
- Golubeva, V.N.; Pribytkov, A.S.; Tel’nov, A.V.; Baeva, G.N.; Tarasov, A.L.; Telegina, N.S.; Stakheev, A.Y. Effect of electron irradiation on the catalytic properties of supported Pd catalysts. Kinet. Catal. 2006, 47, 765–769. [Google Scholar]
- Xie, Z.; Liu, Z.; Wang, Y.; Yang, Q.; Xu, L.; Ding, W. An overview of recent development in composite catalysts from porous materials for various reactions and processes. Int. J. Mol. Sci. 2010, 11, 2152–2187. [Google Scholar] [CrossRef]
- Shokouhimehr, M. Magnetically separable and sustainable nanostructured catalysts for heterogeneous reduction of nitroaromatics. Catalysts 2015, 5, 534–560. [Google Scholar] [CrossRef]
- Munnik, P.; de Jongh, P.E.; de Jong, K.P. Recent Developments in the Synthesis of Supported Catalysts. Chem. Rev. 2015, 115, 6687–6718. [Google Scholar] [CrossRef]
- Muench, F.; Felix, E.-M.; Rauber, M.; Schaefer, S.; Antoni, M.; Kunz, U.; Kleebe, H.-J.; Trautmann, C.; Ensinger, W. Electrodeposition and electroless plating of hierarchical metal superstructures composed of 1D nano- and microscale building blocks. Electrochim. Acta 2016, 202, 47–54. [Google Scholar] [CrossRef]
- Wirtz, M.; Parker, M.; Kobayashi, Y.; Martin, C.R. Molecular sieving and sensing with gold nanotube membranes. Chem. Rec. 2002, 2, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Hien, V.X.; Minh, N.H.; Son, D.T.; Nghi, N.T.; Phuoc, L.H.; Khoa, C.T.; Vuong, D.D.; Chien, N.D.; Heo, Y.W. Acetone sensing properties of CuO nanowalls synthesized via oxidation of Cu foil in aqueous NH4OH. Vacuum 2018, 150, 129–135. [Google Scholar] [CrossRef]
- Rana, P.; Chauhan, R.P. Size and irradiation effects on the structural and electrical properties of copper nanowires. Phys. B Condens. Matter 2014, 451, 26–33. [Google Scholar] [CrossRef]
- Hillebrenner, H.; Buyukserin, F.; Stewart, J.D.; Martin, C.R. Template synthesized nanotubes for biomedical delivery applications. Nanomedicine 2006, 1, 39–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.; Baker, L.A.; Hillebrenner, H.; Martin, C.R. Biosensing with conically shaped nanopores and nanotubes. Phys. Chem. Chem. Phys. 2006, 8, 4976. [Google Scholar] [CrossRef]
- Kaliekperov, M.; Kozlovskiy, A.; Shlimas, D.; Kenzhina, I.; Ivanov, I.; Kozin, S.; Aleksandrenko, V.; Kurakhmedov, A.; Sambaev, E.; Seitbaev, A.; et al. The study of changes in structural properties of Cu films under ionizing radiation. Mater. Res. Express 2018, 5, 055008. [Google Scholar] [CrossRef]
- Zdorovets, M.V.; Mashentseva, А.А.; Kozlovskiy, A.L.; Ivanov, I.A.; Kadyrzhanov, К.К. Ionizing Radiation Induced Modification of the Copper Nanotubes Structure. J. Nano- Electron. Phys. 2017, 9, 06017. [Google Scholar] [CrossRef]
- Kozlovskiy, A.; Zdorovets, M.; Kaikanov, M.; Kenzhina, I.; Tikhonov, A.V. Systematic Study of Structural and Conductive Properties of Copper Nanotubes Modified By Ionizing Radiation. Nanosci. Technol. An Int. J. 2018, 9, 139–153. [Google Scholar]
- Muench, F.; Rauber, M.; Stegmann, C.; Lauterbach, S.; Kunz, U.; Kleebe, H.-J.; Ensinger, W. Ligand-optimized electroless synthesis of silver nanotubes and their activity in the reduction of 4-nitrophenol. Nanotechnology 2011, 22, 415602. [Google Scholar] [CrossRef]
- Hulteen, J.C.; Martin, C.R. A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 1997, 7, 1075–1087. [Google Scholar] [CrossRef]
- Muench, F.; Popovitz-Biro, R.; Bendikov, T.; Feldman, Y.; Hecker, B.; Oezaslan, M.; Rubinstein, I.; Vaskevich, A. Nucleation-Controlled Solution Deposition of Silver Nanoplate Architectures for Facile Derivatization and Catalytic Applications. Adv. Mater. 2018, 30, 1805179. [Google Scholar] [CrossRef] [PubMed]
- Muench, F.; Vaskevich, A.; Popovitz-Biro, R.; Bendikov, T.; Feldman, Y.; Rubinstein, I. Expanding the boundaries of metal deposition: High aspect ratio silver nanoplatelets created by merging nanobelts. Electrochim. Acta 2018, 264, 233–243. [Google Scholar] [CrossRef]
- Yeszhanov, A.B.; Mashentseva, A.A.; Korolkov, I.V.; Gorin, Y.G.; Kozlovskiy, A.L.; Zdorovets, M.V. Copper nanotube composite membrane as a catalyst in Mannich reaction. Chem. Pap. 2018, 72, 3189–3194. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Zdorovets, M.V. Catalytic Activity of Composite Track-Etched Membranes Based on Copper Nanotubes in Flow and Static Modes. Petroleum Chem. 2019, 59, 552–557. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Zdorovets, M.V. Composites based on polyethylene terephthalate track-etched membranes and silver as hydrogen peroxide decomposition catalysts. Pet. Chem. 2017, 57, 954–960. [Google Scholar] [CrossRef]
- Sanchez-Castillo, M.A.; Couto, C.; Kim, W.B.; Dumesic, J.A. Gold-Nanotube Membranes for the Oxidation of CO at Gas–Water Interfaces. Angew. Chemie Int. Ed. 2004, 43, 1140–1142. [Google Scholar] [CrossRef] [PubMed]
- Mashentseva, A.A.; Zdorovets, M.V.; Borgekov, D.B. Impact of Testing Temperature on the Structure and Catalytic Properties of Au Nanotubes Composites. Bull. Chem. React. Eng. Catal. 2018, 13, 405. [Google Scholar] [CrossRef]
- Znaidi, L.; Touam, T.; Vrel, D.; Souded, N.; Yahia, S.; Brinza, O.; Fischer, A.; Boudrioua, A. AZO Thin Films by Sol-Gel Process for Integrated Optics. Coatings 2013, 3, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Pozun, Z.D.; Rodenbusch, S.E.; Keller, E.; Tran, K.; Tang, W.; Stevenson, K.J.; Henkelman, G. A systematic investigation of p -nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. J. Phys. Chem. C 2013, 117, 7598–7604. [Google Scholar] [CrossRef]
- Zhang, K.; Suh, J.M.; Choi, J.-W.; Jang, H.W.; Shokouhimehr, M.; Varma, R.S. Recent Advances in the Nanocatalyst-Assisted NaBH4 Reduction of Nitroaromatics in Water. ACS Omega 2019, 4, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Mashentseva, A.A.; Kozlovskiy, A.L.; Zdorovets, M.V. Influence of deposition temperature on the structure and catalytic properties of the copper nanotubes composite membranes. Mater. Res. Express 2018, 5, 065041. [Google Scholar] [CrossRef]
- Zhang, W.; Cai, Y.; Qian, R.; Zhao, B.; Zhu, P. Synthesis of Ball-Like Ag Nanorod Aggregates for Surface-Enhanced Raman Scattering and Catalytic Reduction. Nanomaterials 2016, 6, 99. [Google Scholar] [CrossRef] [PubMed]
- Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J. Phys. Chem. C 2010, 114, 8814–8820. [Google Scholar] [CrossRef]
- Swesi, A.T.; Masud, J.; Nath, M. Enhancing electrocatalytic activity of bifunctional Ni3Se2 for overall water splitting through etching-induced surface nanostructuring. J. Mater. Res. 2016, 31, 2888–2896. [Google Scholar] [CrossRef]
- Wang, C.; Yang, F.; Yang, W.; Ren, L.; Zhang, Y.; Jia, X.; Zhang, L.; Li, Y. PdO nanoparticles enhancing the catalytic activity of Pd/carbon nanotubes for 4-nitrophenol reduction. RSC Adv. 2015, 5, 27526–27532. [Google Scholar] [CrossRef]
- Zhang, K.; Suh, J.M.; Lee, T.H.; Cha, J.H.; Choi, J.-W.; Jang, H.W.; Varma, R.S.; Shokouhimehr, M. Copper oxide–graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water. Nano Converg. 2019, 6, 6. [Google Scholar] [CrossRef]
- Gawande, M.B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef] [Green Version]
- Ojha, N.K.; Zyryanov, G.V.; Majee, A.; Charushin, V.N.; Chupakhin, O.N.; Santra, S. Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis. Coord. Chem. Rev. 2017, 353, 1–57. [Google Scholar] [CrossRef]
- Duan, Z.; Ma, G.; Zhang, W. Preparation of Copper Nanoparticles and Catalytic Properties for the Reduction of Aromatic Nitro Compounds. Bull. Korean Chem. Soc. 2012, 33, 4003–4006. [Google Scholar] [CrossRef] [Green Version]
- Mashentseva, A.A.; Kozlovskiy, A.L.; Turapbay, K.O.; Temir, A.M.; Seytbaev, A.S.; Zdorovets, M.V. Determination of Optimal Conditions for Electoless Synthesis of Copper Nanotubes in the Polymer Matrix. Russ. J. Gen. Chem. 2018, 88, 1213–1218. [Google Scholar] [CrossRef]
- Wirtz, M.; Yu, S.; Martin, C.R. Template synthesized gold nanotube membranes for chemical separations and sensing. Analyst 2002, 127, 871–879. [Google Scholar] [CrossRef] [PubMed]
Dose, kGy | Lattice Strain, % | Cell Parameter, a, Å | Crystallinity Degree, % | Texture Coefficient (hkl) | |||
---|---|---|---|---|---|---|---|
111 | 200 | 220 | 311 | ||||
0 | 0.325 | 3.601 | 57.9 | 3.225 | 0.562 | 0.213 | |
100 | 0.293 | 3.602 | 64.6 | 3.655 | 0.345 | 1.024 | |
150 | 0.211 | 3.611 | 65.2 | 2.461 | 0.985 | 0.431 | 0.123 |
200 | 0.134 | 3.613 | 71.1 | 2.168 | 0.431 | 0.563 | 0.245 |
250 | 0.121 | 3.610 | 72.5 | 2.478 | 0.965 | 0.345 | 0.212 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashentseva, A.A.; Shlimas, D.I.; Kozlovskiy, A.L.; Zdorovets, M.V.; Russakova, A.V.; Kassymzhanov, M.; Borisenko, A.N. Electron Beam Induced Enhancement of the Catalytic Properties of Ion-Track Membranes Supported Copper Nanotubes in the Reaction of the P-Nitrophenol Reduction. Catalysts 2019, 9, 737. https://doi.org/10.3390/catal9090737
Mashentseva AA, Shlimas DI, Kozlovskiy AL, Zdorovets MV, Russakova AV, Kassymzhanov M, Borisenko AN. Electron Beam Induced Enhancement of the Catalytic Properties of Ion-Track Membranes Supported Copper Nanotubes in the Reaction of the P-Nitrophenol Reduction. Catalysts. 2019; 9(9):737. https://doi.org/10.3390/catal9090737
Chicago/Turabian StyleMashentseva, Anastassiya A., Dmitriy I. Shlimas, Artem L. Kozlovskiy, Maxim V. Zdorovets, Alyona V. Russakova, Murat Kassymzhanov, and Alexander N. Borisenko. 2019. "Electron Beam Induced Enhancement of the Catalytic Properties of Ion-Track Membranes Supported Copper Nanotubes in the Reaction of the P-Nitrophenol Reduction" Catalysts 9, no. 9: 737. https://doi.org/10.3390/catal9090737
APA StyleMashentseva, A. A., Shlimas, D. I., Kozlovskiy, A. L., Zdorovets, M. V., Russakova, A. V., Kassymzhanov, M., & Borisenko, A. N. (2019). Electron Beam Induced Enhancement of the Catalytic Properties of Ion-Track Membranes Supported Copper Nanotubes in the Reaction of the P-Nitrophenol Reduction. Catalysts, 9(9), 737. https://doi.org/10.3390/catal9090737