A Novel Cu2O/ZnO@PET Composite Membrane for the Photocatalytic Degradation of Carbendazim
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Composite TeMs Synthesis
2.3. Characterization of the Structure and Composition of Composites
2.4. Photocatalytic Degradation of Czm
3. Results
3.1. Composite Characterization
3.2. Photocatalytic Degradation of Czm
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miguel, N.; Ormad, M.P.; Mosteo, R.; Ovelleiro, J.L. Photocatalytic degradation of pesticides in natural water: Effect of hydrogen peroxide. Int. J. Photoenergy 2012, 2012, 1–11. [Google Scholar] [CrossRef]
- Boudina, A.; Emmelin, C.; Baaliouamer, A.; Grenier-Loustalot, M.F.T.; Chovelon, J.M. Photochemical behaviour of carbendazim in aqueous solution. Chemosphere 2003, 50, 649–655. [Google Scholar] [CrossRef]
- Bojanowska-Czajka, A.; Nichipor, H.; Drzewicz, P.; Szostek, B.; Gałȩzowska, A.; Męczyńska, S.; Kruszewski, M.; Zimek, Z.; Nałęcz-Jawecki, G.; Trojanowicz, M. Radiolytic decomposition of pesticide carbendazim in waters and wastes for environmental protection. J. Radioanal. Nucl. Chem. 2011, 289, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Farag, A.; Ebrahim, H.; ElMazoudy, R.; Kadous, E. Developmental toxicity of fungicide carbendazim in female mice. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2011, 92, 122–130. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, S.; Wang, Y.; An, X.; Cai, L.; Zhao, X.; Wu, C. Carbendazim has the potential to induce oxidative stress, apoptosis, immunotoxicity and endocrine disruption during zebrafish larvae development. Toxicol. Vitr. 2015, 29, 1473–1481. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Kumar, V.; Datta, S.; Wani, A.B.; Singh, D.; Singh, K.; Singh, J. Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ. Chem. Lett. 2016, 14, 317–329. [Google Scholar] [CrossRef]
- Huang, L.; Wu, C.; Xie, L.; Yuan, X.; Wei, X.; Huang, Q.; Chen, Y.; Lu, Y. Silver-nanocellulose composite used as SERS substrate for detecting carbendazim. Nanomaterials 2019, 9, 355. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Jiang, H.; Shen, C.; Hou, C.; Huo, D.; Wu, H.; Yang, M. Detection of Carbendazim Residues with a Colorimetric Sensor Based on Gold Nanoparticles. J. Appl. Spectrosc. 2017, 84, 460–465. [Google Scholar] [CrossRef]
- Singh, A.; Verma, A.; Bansal, P.; Aggarwal, K.; Kaur, T.; Toor, A.P.; Sangal, V.K. Catalyst-coated cement beads for the degradation and mineralization of fungicide carbendazim using laboratory and pilot-scale reactor: Catalyst stability analysis. Environ. Technol. 2018, 39, 424–432. [Google Scholar] [CrossRef]
- Pavlinović, A.; Novaković, M.; Nuić, I. Removal of carbendazim from aqueous solutions by adsorption on different types of zeolite. ST-OPEN 2021, 2, 1–11. [Google Scholar] [CrossRef]
- Jornet, D.; Castillo, M.A.; Sabater, M.C.; Tormos, R.; Miranda, M.A. Photodegradation of carbendazim sensitized by aromatic ketones. J. Photochem. Photobiol. A Chem. 2013, 256, 36–41. [Google Scholar] [CrossRef]
- Saien, J.; Khezrianjoo, S. Degradation of the fungicide carbendazim in aqueous solutions with UV/TiO2 process: Optimization, kinetics and toxicity studies. J. Hazard. Mater. 2008, 157, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Rajeswari, R.; Kanmani, S. Comparative study on photocatalytic oxidation and photolytic ozonation for the degradation of pesticide wastewaters. Desalin. Water Treat. 2010, 19, 301–306. [Google Scholar] [CrossRef]
- Da Costa, E.P.; Bottrel, S.E.C.; Starling, M.C.V.M.; Leão, M.M.D.; Amorim, C.C. Degradation of carbendazim in water via photo-Fenton in Raceway Pond Reactor: Assessment of acute toxicity and transformation products. Environ. Sci. Pollut. Res. 2019, 26, 4324–4336. [Google Scholar] [CrossRef]
- Yeszhanov, A.B.; Korolkov, I.V.; Gorin, Y.G.; Dosmagambetova, S.S.; Zdorovets, M.V. Membrane distillation of pesticide solutions using hydrophobic track-etched membranes. Chem. Pap. 2020, 74, 3445–3453. [Google Scholar] [CrossRef]
- Alvarado-Gutiérrez, M.L.; Ruiz-Ordaz, N.; Galíndez-Mayer, J.; Curiel-Quesada, E.; Santoyo-Tepole, F. Degradation kinetics of carbendazim by Klebsiella oxytoca, Flavobacterium johnsoniae, and Stenotrophomonas maltophilia strains. Environ. Sci. Pollut. Res. 2020, 27, 28518–28526. [Google Scholar] [CrossRef]
- Li, M.; Wang, Z.; Zhang, Q.; Qin, C.; Inoue, A.; Guo, W. Formation and evolution of ultrathin Cu2O nanowires on NPC ribbon by anodizing for photocatalytic degradation. Appl. Surf. Sci. 2020, 506, 144819. [Google Scholar] [CrossRef]
- Humayun, M.; Wang, C.; Luo, W. Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review. Small Methods 2022, 6, 2101395. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Liu, M.-M.; Chen, J.-L.; Fang, S.-M.; Zhou, P.-P. Recent advances in Cu2O-based composites for photocatalysis: A review. Dalton Trans. 2021, 50, 4091–4111. [Google Scholar] [CrossRef]
- Dey, A.; Gogate, P.R. Nanocomposite photocatalysts-based wastewater treatment. In Handbook of Nanomaterials for Wastewater Treatment; Bhanvase, B., Sonawane, S., Pawade, V., Pandit, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 779–809. [Google Scholar]
- Zhang, Y.; Zhao, S.-M.; Su, Q.-W.; Xu, J.-L. Visible light response ZnO–C3N4 thin film photocatalyst. Rare Met. 2021, 40, 96–104. [Google Scholar] [CrossRef]
- Ngamsakpasert, C.; Suriyawong, A.; Supothina, S.; Chuaybamroong, P. Post-harvest treatment of carbendazim in Chinese chives using TiO2 nanofiber photocatalysis with different anatase/rutile ratios. J. Nanoparticle Res. 2020, 22, 174. [Google Scholar] [CrossRef]
- Kruanetr, S.; Wanchanthuek, R. Studies on preparation and characterization of Fe/TiO2 catalyst in photocatalysis applications. Mater. Res. Express 2017, 4, 076507. [Google Scholar] [CrossRef]
- Bhoi, Y.P.; Nayak, A.K.; Gouda, S.K.; Mishra, B.G. Photocatalytic mineralization of carbendazim pesticide by a visible light active novel type-II Bi2S3/BiFeO3 heterojunction photocatalyst. Catal. Commun. 2018, 114, 114–119. [Google Scholar] [CrossRef]
- Noman, M.T.; Amor, N.; Petru, M.; Mahmood, A.; Kejzlar, P. Photocatalytic behaviour of zinc oxide nanostructures on surface activation of polymeric fibres. Polymers 2021, 13, 1227. [Google Scholar] [CrossRef]
- Majumder, S.; Chatterjee, S.; Basnet, P.; Mukherjee, J. ZnO based nanomaterials for photocatalytic degradation of aqueous pharmaceutical waste solutions—A contemporary review. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100386. [Google Scholar] [CrossRef]
- Khan, S.A.; Noreen, F.; Kanwal, S.; Iqbal, A.; Hussain, G. Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater. Sci. Eng. C 2018, 82, 46–59. [Google Scholar] [CrossRef]
- Kale, G.; Arbuj, S.; Kawade, U.; Kadam, S.; Nikam, L.; Kale, B. Paper templated synthesis of nanostructured Cu–ZnO and its enhanced photocatalytic activity under sunlight. J. Mater. Sci. Mater. Electron. 2019, 30, 7031–7042. [Google Scholar] [CrossRef]
- Kuriakose, S.; Satpati, B.; Mohapatra, S. Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Phys. Chem. Chem. Phys. 2015, 17, 25172–25181. [Google Scholar] [CrossRef]
- Razali, N.Z.; Abdullah, A.H.; Haron, M.J. Synthesis of CuO and ZnO Nanoparticles and CuO Doped ZnO Nanophotocatalysts. Adv. Mater. Res. 2011, 364, 402–407. [Google Scholar] [CrossRef]
- Das, S.; Srivastava, V.C. An overview of the synthesis of CuO-ZnO nanocomposite for environmental and other applications. Nanotechnol. Rev. 2018, 7, 267–282. [Google Scholar] [CrossRef]
- Muench, F. Electroless Plating of Metal Nanomaterials. ChemElectroChem 2021, 8, 2993–3012. [Google Scholar] [CrossRef]
- Muench, F. Direct surface functionalization with metal and metal oxide nanostructures. In Reference Module in Materials Science and Materials Engineering; Hashmi, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Mashentseva, A.A.; Barsbay, M.; Zdorovets, M.V.; Zheltov, D.A.; Güven, O. Cu/CuO Composite Track-Etched Membranes for Catalytic Decomposition of Nitrophenols and Removal of As(III). Nanomaterials 2020, 10, 1552. [Google Scholar] [CrossRef] [PubMed]
- Borgekov, D.; Mashentseva, A.; Kislitsin, S.; Kozlovskiy, A.; Russakova, A.; Zdorovets, M. Temperature Dependent Catalytic Activity of Ag/PET Ion-Track Membranes Composites. Acta Phys. Pol. A 2015, 128, 871–875. [Google Scholar] [CrossRef]
- Mashentseva, A.; Borgekov, D.; Zdorovets, M.; Russakova, A. Synthesis, structure, and catalytic activity of Au/Poly (ethylene terephthalate) composites. Acta Phys. Pol. A 2014, 125, 1263–1266. [Google Scholar] [CrossRef]
- Yeszhanov, A.B.; Mashentseva, A.A.; Korolkov, I.V.; Gorin, Y.G.; Kozlovskiy, A.L.; Zdorovets, M.V. Copper nanotube composite membrane as a catalyst in Mannich reaction. Chem. Pap. 2018, 72, 3189–3194. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Barsbay, M.; Aimanova, N.A.; Zdorovets, M.V. Application of Silver-Loaded Composite Track-Etched Membranes for Photocatalytic Decomposition of Methylene Blue under Visible Light. Membranes 2021, 11, 60. [Google Scholar] [CrossRef] [PubMed]
- Russakova, A.V.; Altynbaeva, L.S.; Barsbay, M.; Zheltov, D.A.; Zdorovets, M.V.; Mashentseva, A.A. Kinetic and Isotherm Study of As(III) Removal from Aqueous Solution by PET Track-Etched Membranes Loaded with Copper Microtubes. Membranes 2021, 11, 116. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Shlimas, D.I.; Kozlovskiy, A.L.; Zdorovets, M.V.; Russakova, A.V.; Kassymzhanov, M.; Borisenko, A.N. Electron Beam Induced Enhancement of the Catalytic Properties of Ion-Track Membranes Supported Copper Nanotubes in the Reaction of the P-Nitrophenol Reduction. Catalysts 2019, 9, 737. [Google Scholar] [CrossRef] [Green Version]
- Mashentseva, A.A.; Zdorovets, M.V. Accelerated electron-induced regeneration of the catalytic properties of composite membranes with embedded copper nanotubes. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2020, 472, 53–58. [Google Scholar] [CrossRef]
- Preda, N.; Evanghelidis, A.; Enculescu, M.; Florica, C.; Enculescu, I. Zinc oxide electroless deposition on electrospun PMMA fiber mats. Mater. Lett. 2015, 138, 238–242. [Google Scholar] [CrossRef]
- Fu, Z.; Pan, Z.; Sun, D.; Zhan, G.; Zhang, H.; Zeng, X.; Hu, G.; Xiao, C.; Wei, Z. Multiple morphologies of ZnO films synthesized on flexible poly (ethylene terephthalate) by electroless deposition. Mater. Lett. 2016, 184, 185–188. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, S.; Dryfe, R. Electroless copper plating using dimethylamine borane as reductant. Particuology 2012, 10, 487–491. [Google Scholar] [CrossRef]
- Muniz, F.T.L.; Miranda, M.A.R.; Morilla dos Santos, C.; Sasaki, J.M. The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. Sect. A Found. Adv. 2016, 72, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Yakimov, I.; Zaloga, A.; Dubinin, P.; Bezrukova, O.; Samoilo, A.; Burakov, S.; Semenkin, E.; Semenkina, M.; Andruschenko, E. Application of Evolutionary Rietveld Method Based XRD Phase Analysis and a Self-Configuring Genetic Algorithm to the Inspection of Electrolyte Composition in Aluminum Electrolysis Baths. Crystals 2018, 8, 402. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Lu, L.; Liu, X.; De la Torre, A.; Cheng, X. Error Analysis and Correction for Quantitative Phase Analysis Based on Rietveld-Internal Standard Method: Whether the Minor Phases Can Be Ignored? Crystals 2018, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Zdorovets, M.V.; Kozlovskiy, A.L. Investigation of phase transformations and corrosion resistance in Co/CoCo2O4 nanowires and their potential use as a basis for lithium-ion batteries. Sci. Rep. 2019, 9, 16646. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S. Electroless copper deposition: A critical review. Thin Solid Films 2019, 669, 641–658. [Google Scholar] [CrossRef]
- Sharma, A.; Cheon, C.-S.; Jung, J.P. Recent Progress in Electroless Plating of Copper. J. Microelectron. Packag. Soc. 2016, 23, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Yasunami, T.; Kuruda, K.; Okido, M. Preparation of Cu nanoparticles with ascorbic acid by aqueous solution reduction method. Trans. Nonferrous Met. Soc. China 2012, 22, 2198–2203. [Google Scholar] [CrossRef]
- Valenzuela, K.; Raghavan, S.; Deymier, P.A.; Hoying, J. Formation of Copper Nanowires by Electroless Deposition Using Microtubules as Templates. J. Nanosci. Nanotechnol. 2008, 8, 3416–3421. [Google Scholar] [CrossRef]
- Honma, H. Electroless Copper Deposition Process Using Glyoxylic Acid as a Reducing Agent. J. Electrochem. Soc. 1994, 141, 730. [Google Scholar] [CrossRef]
- Ellsworth, A.A.; Walker, A.V. Role of the Reducing Agent in the Electroless Deposition of Copper on Functionalized SAMs. Langmuir 2017, 33, 8663–8670. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kohl, P.A. The Deposition Characteristics of Accelerated Nonformaldehyde Electroless Copper Plating. J. Electrochem. Soc. 2003, 150, C558. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Ding, D. Electroless Copper Plating on Liquid Crystal Polymer Films Using Dimethylamine Borane as Reducing Agent. J. Chin. Chem. Soc. 2016, 63, 222–228. [Google Scholar] [CrossRef]
- Chikkanna, M.M.; Neelagund, S.E.; Rajashekarappa, K.K. Green synthesis of Zinc oxide nanoparticles (ZnO NPs) and their biological activity. SN Appl. Sci. 2019, 1, 117. [Google Scholar] [CrossRef] [Green Version]
- Talam, S.; Karumuri, S.R.; Gunnam, N. Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. ISRN Nanotechnol. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Okpashi, I.W.; Obi Bonaventure, V.E.; Uchechukwu, C.; Okoro, C. Synthesis and Characterization of Zinc Oxide (ZnO) Nanowire. J. Nanomed. Nanotechnol. 2015, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Chen, Z.; Huang, M.; Yang, Z.; Zeng, C.; Wang, L.; Qiu, M.; Zhang, Y.; Zhang, W. A galvanic replacement reaction to synthesise metal/ZnO heterostructured films on zinc substrates for enhanced photocatalytic performance. RSC Adv. 2016, 6, 103594–103600. [Google Scholar] [CrossRef]
- Gupta, D.; Meher, S.R.; Illyaskutty, N.; Alex, Z.C. Facile synthesis of Cu2O and CuO nanoparticles and study of their structural, optical and electronic properties. J. Alloys Compd. 2018, 743, 737–745. [Google Scholar] [CrossRef]
- Momeni, S.; Sedaghati, F. CuO/Cu2O nanoparticles: A simple and green synthesis, characterization and their electrocatalytic performance toward formaldehyde oxidation. Microchem. J. 2018, 143, 64–71. [Google Scholar] [CrossRef]
- Poulston, S.; Parlett, P.M.; Stone, P.; Bowker, M. Surface Oxidation and Reduction of CuO and Cu2O Studied Using XPS and XAES. Surf. Interface Anal. 1996, 24, 811–820. [Google Scholar] [CrossRef]
- Park, J.-Y.; Jung, Y.-S.; Cho, J.; Choi, W.-K. Chemical reaction of sputtered Cu film with PI modified by low energy reactive atomic beam. Appl. Surf. Sci. 2006, 252, 5877–5891. [Google Scholar] [CrossRef]
- Ischenko, V.; Polarz, S.; Grote, D.; Stavarache, V.; Fink, K.; Driess, M. Zinc Oxide Nanoparticles with Defects. Adv. Funct. Mater. 2005, 15, 1945–1954. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.L. Nanostructures of zinc oxide. Mater. Today 2004, 7, 26–33. [Google Scholar] [CrossRef]
- Wu, H.; Wang, L.; Zhang, J.; Shen, Z.; Zhao, J. Catalytic oxidation of benzene, toluene and p-xylene over colloidal gold supported on zinc oxide catalyst. Catal. Commun. 2011, 12, 859–865. [Google Scholar] [CrossRef]
- Barreca, D.; Gasparotto, A.; Maccato, C.; Maragno, C.; Tondello, E. ZnO Nanoplatelets Obtained by Chemical Vapor Deposition, Studied by XPS. Surf. Sci. Spectra 2007, 14, 19–26. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Radiman, S.; Daud, A.R.; Tabet, N.; Al-Douri, Y. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 2013, 39, 2283–2292. [Google Scholar] [CrossRef]
- Panadés, R. Photodecomposition of carbendazim in aqueous solutions. Water Res. 2000, 34, 2951–2954. [Google Scholar] [CrossRef]
- Malakootian, M.; Nasiri, A.; Amiri Gharaghani, M. Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate. Chem. Eng. Commun. 2020, 207, 56–72. [Google Scholar] [CrossRef]
- Rodríguez, A.; Ovejero, G.; Mestanza, M.; García, J. Removal of Dyes from Wastewaters by Adsorption on Sepiolite and Pansil. Ind. Eng. Chem. Res. 2010, 49, 3207–3216. [Google Scholar] [CrossRef]
- Kaur, T.; Sraw, A.; Toor, A.P.; Wanchoo, R.K. Utilization of solar energy for the degradation of carbendazim and propiconazole by Fe doped TiO2. Sol. Energy 2016, 125, 65–76. [Google Scholar] [CrossRef]
- Rajeswari, R.; Kanmani, S. TiO2-based heterogeneous photocatalytic treatment combined with ozonation for carbendazim degradation. Iran. J. Environ. Health Sci. Eng. 2009, 6, 61–66. [Google Scholar]
- Kaur, T.; Toor, A.P.; Wanchoo, R.K. Parametric study on degradation of fungicide carbendazim in dilute aqueous solutions using nano TiO2. Desalin. Water Treat. 2015, 54, 122–131. [Google Scholar] [CrossRef]
Composite | Template Preparation Conditions | Synthesis Conditions | Composition of the Deposition Solution | Ref. | |
---|---|---|---|---|---|
T, °C | Deposition Time, min | ||||
ZnO@PET | Sensitization—SnCl2 (20 g/L), HCl (60 mL/L, 37%) 15 min, RT. | 70 | 20 | 0.0013 M Zn(NO3)2, 0.05 M DMAB; pH = 6.0 | [42,43] |
Cu2O@PET | Activation—PdCl2 (0,1 g/L), HCl (20 mL/L, 37%), 15 min, RT | 45 | 30 | CuSO4 × 5H2O: 10 g/L; EDTA: 14 g/L; DMAB: 6 g/L; pH = 1.85 | [44] |
Cu2O/ZnO@PET | Cu2O@PET composite was used as a template | 70 | 20 | 0.0013 M Zn(NO3)2, 0.05 M DMAB; pH = 6.0 | - |
Composite | Phase Content | Type of Structure | Group of Symmetry | (hk) a | 2θ° | d, Å b | L, nm c | Cell Parameter, Å d | FWHM e | Crystall. Degree, % |
---|---|---|---|---|---|---|---|---|---|---|
Cu2O@PET | Cu2O/ 100% | Cubic | Fm-3m (225) | 111 | 36.5 | 2.462 | 10.13 | a = 4.224 | 0.917 | 53.4 |
200 | 43.2 | 2.093 | 16.53 | 0.573 | ||||||
ZnO@PET | ZnO/ 100% | Hexagonal | P62mc (186) | 100 | 31.9 | 2.805 | 33.93 | a = 3.240, c = 5.185 | 0.271 | 62.4 |
002 | 34.7 | 2.586 | 53.08 | 0.174 | ||||||
011 | 36.4 | 2.464 | 43.39 | 0.214 | ||||||
012 | 47.7 | 1.905 | 56.90 | 0.170 | ||||||
110 | 56.7 | 1.621 | 48.70 | 0.206 | ||||||
013 | 63.0 | 1.474 | 37.96 | 0.273 | ||||||
112 | 68.2 | 1.374 | 35.32 | 0.302 | ||||||
Cu2O/ZnO@PET | ZnO/ 86.8% | Hexagonal | P62mc (186) | 100 | 31.9 | 2.805 | 28.71 | a = 3.236, c = 5.177 | 0.320 | 77.5 |
002 | 34.7 | 2.585 | 36.14 | 0.256 | ||||||
011 | 36.4 | 2.467 | 28.95 | 0.321 | ||||||
012 | 47.6 | 1.908 | 29.83 | 0.323 | ||||||
110 | 56.6 | 1.624 | 28.82 | 0.348 | ||||||
013 | 62.8 | 1.477 | 35.76 | 0.289 | ||||||
112 | 67.9 | 1.378 | 32.13 | 0.331 | ||||||
Cu2O and CuZn f/ 13.2% | Cubic | Pm-3m (221) | 110 | 43.3 | 2.088 | 11.97 | a = 2.940 | 0.794 |
Composite | EA, kJ/mol | ΔH, kJ/mol | ΔS, J/(mol × K) |
---|---|---|---|
ZnO@PET | 14.22 ± 1.34 | 15.96 ± 1.50 | −182.35 ± 9.76 |
Cu2O@PET | 15.82 ± 1.67 | 18.36 ± 2.03 | −180.88 ± 8.95 |
Cu2O/ZnO@PET | 11.90 ± 1.03 | 16.01 ± 1.97 | −182.53 ± 9.22 |
Catalyst | Amount of Loaded Catalyst, g/L | Details of Catalytic Experiments | Catalysts Efficiency | Ref. | ||
---|---|---|---|---|---|---|
D, % | ka, min−1 | EA, kJ/mol | ||||
Fe/TiO2 (2 wt%) | 1.0 | Sunlight, T = 25 °C, Czm = 8.0 mg/L | 98.5 | 0.08 | - | [73] |
TiO2 | 1.0 | UV, T = 20 °C, Czm = 40.0 mg/L | 42.8 | - | - | [74] |
0.07 | UV, T = 25 °C, Czm = 10.0 mg/L, pH = 6.7 | 91.0 | 0.03 | - | [12] | |
TiO2/UV/ozone | 1.0 | UV, O3—0.48 g/h, T = 20 °C, Czm = 40.0 mg/L | 69.2 | - | - | [74] |
P25 TiO2 | 1.0 | UV, Czm = 10 mg/L, pH = 6.5 | 85.0 | 0.065 | - | [75] |
Bi2S3/BiFeO3 | 0.5 | UV, Czm = 10 mg/L | 95.0 | - | - | [24] |
ZnO@PET | 0.022 | UV, T = 52 °C, pH = 6.0, Czm = 1.0 mg/L, | 90.6 | 0.019 | 14.22 ± 1.34 | This study |
Cu2O@PET | 0.011 | 74.3 | 0.010 | 15.82 ± 1.67 | ||
Cu2O/ZnO@PET | 0.032 | 98.1 | 0.021 | 11.90 ± 1.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altynbaeva, L.S.; Barsbay, M.; Aimanova, N.A.; Jakupova, Z.Y.; Nurpeisova, D.T.; Zdorovets, M.V.; Mashentseva, A.A. A Novel Cu2O/ZnO@PET Composite Membrane for the Photocatalytic Degradation of Carbendazim. Nanomaterials 2022, 12, 1724. https://doi.org/10.3390/nano12101724
Altynbaeva LS, Barsbay M, Aimanova NA, Jakupova ZY, Nurpeisova DT, Zdorovets MV, Mashentseva AA. A Novel Cu2O/ZnO@PET Composite Membrane for the Photocatalytic Degradation of Carbendazim. Nanomaterials. 2022; 12(10):1724. https://doi.org/10.3390/nano12101724
Chicago/Turabian StyleAltynbaeva, Liliya Sh., Murat Barsbay, Nurgulim A. Aimanova, Zhanar Ye. Jakupova, Dinara T. Nurpeisova, Maxim V. Zdorovets, and Anastassiya A. Mashentseva. 2022. "A Novel Cu2O/ZnO@PET Composite Membrane for the Photocatalytic Degradation of Carbendazim" Nanomaterials 12, no. 10: 1724. https://doi.org/10.3390/nano12101724
APA StyleAltynbaeva, L. S., Barsbay, M., Aimanova, N. A., Jakupova, Z. Y., Nurpeisova, D. T., Zdorovets, M. V., & Mashentseva, A. A. (2022). A Novel Cu2O/ZnO@PET Composite Membrane for the Photocatalytic Degradation of Carbendazim. Nanomaterials, 12(10), 1724. https://doi.org/10.3390/nano12101724