Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,080)

Search Parameters:
Keywords = trace gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2675 KiB  
Article
Sub-ppb Methane Detection via EMD–Wavelet Adaptive Thresholding in Wavelength Modulation TDLAS: A Hybrid Denoising Approach for Trace Gas Sensing
by Tong Mu, Xing Tian, Peiren Ni, Shichao Chen, Yanan Cao and Gang Cheng
Sensors 2025, 25(16), 5167; https://doi.org/10.3390/s25165167 - 20 Aug 2025
Viewed by 193
Abstract
Wavelength modulation-tunable diode laser absorption spectroscopy (WM-TDLAS) is a critical tool for gas detection. However, noise in second harmonic signals degrades detection performance. This study presents a hybrid denoising algorithm combining Empirical Mode Decomposition (EMD) and wavelet adaptive thresholding to enhance WM-TDLAS performance. [...] Read more.
Wavelength modulation-tunable diode laser absorption spectroscopy (WM-TDLAS) is a critical tool for gas detection. However, noise in second harmonic signals degrades detection performance. This study presents a hybrid denoising algorithm combining Empirical Mode Decomposition (EMD) and wavelet adaptive thresholding to enhance WM-TDLAS performance. The algorithm decomposes raw signals into intrinsic mode functions (IMFs) via EMD, selectively denoises high-frequency IMFs using wavelet thresholding, and reconstructs the signal while preserving spectral features. Simulation and experimental validation using the CH4 absorption spectrum at 1654 nm demonstrate that the system achieves a threefold improvement in detection precision (0.1181 ppm). Allan variance analysis revealed that the detection capability of the system was significantly enhanced, with the minimum detection limit (MDL) drastically reduced from 2.31 ppb to 0.53 ppb at 230 s integration time. This approach enhances WM-TDLAS performance without hardware modification, offering significant potential for environmental monitoring and industrial safety applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

33 pages, 8120 KiB  
Article
Origin of the World-Class Eagle, Eagle East, and Tamarack Ni-Cu-PGE Deposits
by Robert Nowak, Chad Deering and Espree Essig
Minerals 2025, 15(8), 871; https://doi.org/10.3390/min15080871 - 18 Aug 2025
Viewed by 291
Abstract
The 1.1 Ga Mesoproterozoic Midcontinent rift hosts the Eagle, Eagle East, and Tamarack Ni-Cu-PGE deposits and Embayment Prospect. These deposits are hosted by ultramafic igneous rocks and have some of the highest Ni-Cu grades on Earth. We use new bulk-rock data and published [...] Read more.
The 1.1 Ga Mesoproterozoic Midcontinent rift hosts the Eagle, Eagle East, and Tamarack Ni-Cu-PGE deposits and Embayment Prospect. These deposits are hosted by ultramafic igneous rocks and have some of the highest Ni-Cu grades on Earth. We use new bulk-rock data and published datasets (bulk-rock, mineral chemistry, and isotopic analyses) to examine major, minor, and trace element trends of both Midcontinent rift-related alkaline and tholeiitic intrusions. In addition, we compare the geochemical data to local kimberlite-hosted lower-crustal xenoliths and local igneous (Archean) and sedimentary (Paleoproterozoic) country rocks. We found the peridotite magma compositions dominantly consist of primitive mantle compositions with varying abundances of subduction-related components, alkaline-transitional melts, and local country rock contaminates (e.g., Baraga and Animikie Basin sediments). The subduction-related components are interpreted to be derived from previous Archean and Paleoproterozoic subduction events and likely hosted within the sub-continental lithospheric mantle. Importantly, these subduction-related components are also interpreted to have acted as oxidizing agents within the melt, stabilizing sulfate (+2 FMQ (fayalite–magnetite–quartz) to FMQ) while inhibiting sulfide crystallization as the magma ascended through ~50 km of the Superior craton. This study largely corroborates the previous findings with respect to the contribution of local country rock contamination to the Eagle–Tamarack peridotite host rocks, which is estimated to be minimal (<5%). However, the incorporation of <5% reductive pelitic siltstone contamination results in strong shifts in the oxygen fugacity of the peridotite melt, from +2 FMQ to slightly below FMQ, as determined from spinel Fe3+/∑Fe ratios. This shift in oxygen fugacity resulted in the transition from total sulfate (+2 FMQ) to sulfate + sulfide (<+2 FMQ to FMQ) to total sulfide (<FMQ). This shift in oxygen fugacity is a key contributor to the formation of Ni-Cu-PGE-rich massive sulfides within the Eagle peridotite. This study presents an expanded geochemical interpretation for the exploration of Midcontinent rift-related Ni-Cu-PGE deposits to include peridotites with subduction-like signatures and contaminated via <5% reductive sedimentary country rocks. Full article
Show Figures

Graphical abstract

17 pages, 1158 KiB  
Article
Fatty Acids and Fatty Acid Trophic Markers in Two Holothurian Species from the Central Mediterranean Sea
by Nicolò Tonachella, Michela Contò, Marco Martinoli, Arianna Martini, Alessandra Fianchini, Luca Fontanesi, Francescantonio Gallucci, Enrico Paris, Domitilla Pulcini, Arnold Rakaj, Riccardo Napolitano and Fabrizio Capoccioni
Diversity 2025, 17(8), 576; https://doi.org/10.3390/d17080576 - 15 Aug 2025
Viewed by 263
Abstract
Sea cucumbers, important members of the Echinoderm phylum, play a crucial role in sediment mixing and nutrient cycling on the seafloor. They also hold significant economic value, particularly in Asian food and pharmaceutical markets. In the Mediterranean Sea, the harvesting of sea cucumbers [...] Read more.
Sea cucumbers, important members of the Echinoderm phylum, play a crucial role in sediment mixing and nutrient cycling on the seafloor. They also hold significant economic value, particularly in Asian food and pharmaceutical markets. In the Mediterranean Sea, the harvesting of sea cucumbers has recently intensified, often without regulation, threatening both species populations and benthic ecosystem health. This study investigated the potential of using fatty acid (FA) profiles as ecological biomarkers to trace the different origin and feeding ecology of two sea cucumber species, Holothuria polii and H. tubulosa, collected from ten coastal sites in Italy. A total of 285 individuals were analyzed by extracting and characterizing lipids from their body walls using gas chromatography (GC-FID and GC-MS). Key fatty acids identified included arachidonic acid, eicosapentaenoic acid, eicosenoic acid, palmitic acid, palmitoleic acid, stearic acid, and nervonic acid. Principal Component Analysis (PCA) revealed patterns consistent with geographic origin, suggesting that FA profiles can reflect site-specific trophic conditions. The analysis also indicated that sea cucumbers primarily feed on diatoms, bacteria, and blue-green algae, with notable regional variation. This study is the first to successfully apply FA-based trophic markers to differentiate Italian populations of these species, providing insights for ecological monitoring and fishery management. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

19 pages, 7138 KiB  
Article
Classification Algorithms for Fast Retrieval of Atmospheric Vertical Columns of CO in the Interferogram Domain
by Nejla Ećo, Sébastien Payan and Laurence Croizé
Remote Sens. 2025, 17(16), 2804; https://doi.org/10.3390/rs17162804 - 13 Aug 2025
Viewed by 245
Abstract
Onboard the MetOp satellite series, Infrared Atmospheric Sounding Interferometer (IASI) is a Fourier Transform spectrometer based on the Michelson interferometer. IASI acquires interferograms, which are processed to provide high-resolution atmospheric emission spectra. These spectra enable the derivation of temperature and humidity profiles, among [...] Read more.
Onboard the MetOp satellite series, Infrared Atmospheric Sounding Interferometer (IASI) is a Fourier Transform spectrometer based on the Michelson interferometer. IASI acquires interferograms, which are processed to provide high-resolution atmospheric emission spectra. These spectra enable the derivation of temperature and humidity profiles, among other parameters, with exceptional spectral resolution. In this study, we evaluate a novel, rapid retrieval approach in the interferogram domain, aiming for near-real-time (NRT) analysis of large spectral datasets anticipated from next-generation tropospheric sounders, such as MTG-IRS. The Partially Sampled Interferogram (PSI) method, applied to trace gas retrievals from IASI, has been sparsely explored. However, previous studies suggest its potential for high-accuracy retrievals of specific gases, including CO, CO2, CH4, and N2O at the resolution of a single IASI footprint. This article presents the results of a study based on retrieval in the interferogram domain. Furthermore, the optical pathway differences sensitive to the parameters of interest are studied. Interferograms are generated using a fast Fourier transform on synthetic IASI spectra. Finally, the relationship to the total column of carbon monoxide is explored using three different algorithms—from the most intuitive to a complex neural network approach. These algorithms serve as a proof of concept for interferogram classification and rapid predictions of surface temperature, as well as the abundances of H2O and CO. IASI spectra simulations were performed using the LATMOS Atmospheric Retrieval Algorithm (LARA), a robust and validated radiative transfer model based on least squares estimation. The climatological library TIGR was employed to generate IASI interferograms from LARA spectra. TIGR includes 2311 atmospheric scenarios, each characterized by temperature, water vapor, and ozone concentration profiles across a pressure grid from the surface to the top of the atmosphere. Our study focuses on CO, a critical trace gas for understanding air quality and climate forcing, which displays a characteristic absorption pattern in the 2050–2350 cm1 wavenumber range. Additionally, the study explores the potential of correlating interferogram characteristics with surface temperature and H2O content, aiming to enhance the accuracy of CO column retrievals. Starting with intuitive retrieval algorithms, we progressively increased complexity, culminating in a neural network-based algorithm. The results of the NN study demonstrate the feasibility of fast interferogram-domain retrievals, paving the way for operational applications. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

15 pages, 4949 KiB  
Article
The Synergistic Influence of Trace Impurities and Temperature on the Corrosion Behavior of Tubing in Supercritical CO2 Environment
by Mifeng Zhao, Zaipeng Zhao, Junfeng Xie, Xuanpeng Li, Wenwen Song, Jinjie Zhou and Qiyao He
Coatings 2025, 15(8), 944; https://doi.org/10.3390/coatings15080944 - 13 Aug 2025
Viewed by 312
Abstract
Carbon dioxide capture, utilization, and storage for enhanced oil recovery (CCUS-EOR) represents an effective strategy for reducing CO2 emissions while improving oil recovery efficiency. However, harsh environmental conditions during the process can induce a supercritical state in captured CO2, which [...] Read more.
Carbon dioxide capture, utilization, and storage for enhanced oil recovery (CCUS-EOR) represents an effective strategy for reducing CO2 emissions while improving oil recovery efficiency. However, harsh environmental conditions during the process can induce a supercritical state in captured CO2, which may undermine the structural integrity of tubular components through corrosion. This study systematically investigated the corrosion behaviors of two tubing steels (P110 and Super 13Cr) in 20 MPa supercritical CO2 containing trace H2S/O2 impurities at 60–120 °C using weight loss tests and surface analysis. The results demonstrate that in water-unsaturated supercritical CO2 with ≤500 ppmv H2S, both steels exhibited low general corrosion rates (P110: 0.03 mm/y; S13Cr: 0.01 mm/y), with incomplete surface films partially covering grinding traces. However, S13Cr suffered pitting corrosion at >500 ppmv H2S. Oxygen introduction triggered severe general/localized corrosion characterized by cracked, non-protective surface films. Reducing O2 to 500 ppm yielded thin, continuous protective films, eliminating pitting. Temperature critically influenced S13Cr corrosion: decreasing from 120 °C to 60 °C increased the corrosion rates from 0.0031 mm/y to 0.08 mm/y due to enhanced water precipitation and impurity gas dissolution. These findings establish impurity thresholds to ensure acceptable corrosion performance. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

24 pages, 2773 KiB  
Article
Highly Sensitive SOI-TFET Gas Sensor Utilizing Tailored Conducting Polymers for Selective Molecular Detection and Microbial Biosensing Integration
by Mohammad K. Anvarifard and Zeinab Ramezani
Biosensors 2025, 15(8), 525; https://doi.org/10.3390/bios15080525 - 11 Aug 2025
Viewed by 265
Abstract
We present a highly sensitive and selective gas sensor based on an advanced silicon-on-insulator tunnel field-effect transistor (SOI-TFET) architecture, enhanced through the integration of customized conducting polymers. In this design, traditional metal gates are replaced with distinct functional polymers—PPP-TOS/AcCN, PP-TOS/AcCN, PP-FE(CN)63− [...] Read more.
We present a highly sensitive and selective gas sensor based on an advanced silicon-on-insulator tunnel field-effect transistor (SOI-TFET) architecture, enhanced through the integration of customized conducting polymers. In this design, traditional metal gates are replaced with distinct functional polymers—PPP-TOS/AcCN, PP-TOS/AcCN, PP-FE(CN)63−/H2O, PPP-TCNQ-TOS/AcCN, and PPP-ClO4/AcCN—which enable precise molecular recognition and discrimination of various target gases. To further enhance sensitivity, the device employs an oppositely doped source region, significantly improving gate control and promoting stronger band-to-band tunneling. This structural modification amplifies sensing signals and improves noise immunity, allowing reliable detection at trace concentrations. Additionally, optimization of the subthreshold swing contributes to faster switching and response times. Thermal stability is addressed by embedding a P-type buffer layer within the buried oxide, which increases thermal conductivity and reduces lattice temperature, further stabilizing device performance. Experimental results demonstrate that the proposed sensor outperforms conventional SOI-TFET designs, exhibiting superior sensitivity and selectivity toward analytes such as methanol, chloroform, isopropanol, and hexane. Beyond gas sensing, the unique polymer-functionalized gate design enables integration of microbial biosensing capabilities, making the platform highly versatile for biochemical detection. This work offers a promising pathway toward ultra-sensitive, low-power sensing technologies for environmental monitoring, industrial safety, and medical diagnostics. Full article
(This article belongs to the Special Issue Microbial Biosensor: From Design to Applications—2nd Edition)
Show Figures

Figure 1

28 pages, 4848 KiB  
Article
Mineralogical and Geochemical Features of Soil Developed on Rhyolites in the Dry Tropical Area of Cameroon
by Aubin Nzeugang Nzeukou, Désiré Tsozué, Estelle Lionelle Tamto Mamdem, Merlin Gountié Dedzo and Nathalie Fagel
Standards 2025, 5(3), 20; https://doi.org/10.3390/standards5030020 - 6 Aug 2025
Viewed by 229
Abstract
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding [...] Read more.
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding the mineralogical and elemental vertical variation. The studied soil was classified as Cambisols containing mainly quartz, K-feldspar, plagioclase, smectite, kaolinite, illite, calcite, lepidocrocite, goethite, sepiolite, and interstratified clay minerals. pH values ranging between 6.11 and 8.77 indicated that hydrolysis, superimposed on oxidation and carbonation, is the main process responsible for the formation of secondary minerals, leading to the formation of iron oxides and calcite. The bedrock was mainly constituted of SiO2, Al2O3, Na2O, Fe2O3, Ba, Zr, Sr, Y, Ga, and Rb. Ce and Eu anomalies, and chondrite-normalized La/Yb ratios were 0.98, 0.67, and 2.86, respectively. SiO2, Al2O3, Fe2O3, Na2O, and K2O were major elements in soil horizons. Trace elements revealed high levels of Ba (385 to 1320 mg kg−1), Zr (158 to 429 mg kg−1), Zn (61 to 151 mg kg−1), Sr (62 to 243 mg kg−1), Y (55 to 81 mg kg−1), Rb (1102 to 58 mg kg−1), and Ga (17.70 to 35 mg kg−1). LREEs were more abundant than HREEs, with LREE/HREE ratio ranging between 2.60 and 6.24. Ce and Eu anomalies ranged from 1.08 to 1.21 and 0.58 to 1.24 respectively. The rhyolite-normalized La/Yb ratios varied between 0.56 and 0.96. Mass balance revealed the depletion of Si, Ca, Na, Mn, Sr, Ta, W, U, La, Ce, Pr, Nd, Sm, Gd and Lu, and the accumulation of Al, Fe, K, Mg, P, Sc, V, Co, Ni, Cu, Zn, Ga, Ge, Rb, Y, Zr, Nb, Cs, Ba, Hf, Pb, Th, Eu, Tb, Dy, Ho, Er, Tm and Yb during weathering along the soil profile. Full article
Show Figures

Figure 1

19 pages, 6581 KiB  
Article
Simulation Study on Erosion of Gas–Solid Two-Phase Flow in the Wellbore near Downhole Chokes in Tight Gas Wells
by Cheng Du, Ruikang Ke, Xiangwei Bai, Rong Zheng, Yao Huang, Dan Ni, Guangliang Zhou and Dezhi Zeng
Processes 2025, 13(8), 2430; https://doi.org/10.3390/pr13082430 - 31 Jul 2025
Viewed by 294
Abstract
In order to study the problem of obvious wall thinning in the wellbore caused by proppant backflow and sand production under throttling conditions in tight gas wells. Based on the gas-phase control equation, particle motion equation, and erosion model, the wellbore erosion model [...] Read more.
In order to study the problem of obvious wall thinning in the wellbore caused by proppant backflow and sand production under throttling conditions in tight gas wells. Based on the gas-phase control equation, particle motion equation, and erosion model, the wellbore erosion model is established. The distribution law of pressure, temperature, and velocity trace fields under throttling conditions is analyzed, and the influences of different throttling pressures, particle diameters, and particle mass flows on wellbore erosion are analyzed. The flow field at the nozzle changes drastically, and there is an obvious pressure drop, temperature drop, and velocity rise. When the surrounding gas is completely mixed, the physical quantity gradually stabilizes. The erosion shape of the wellbore outlet wall has a point-like distribution. The closer to the throttle valve outlet, the more intense the erosion point distribution is. Increasing the inlet pressure and particle mass flow rate will increase the maximum erosion rate, and increasing the particle diameter will reduce the maximum erosion rate. The particle mass flow rate has the greatest impact on the maximum erosion rate, followed by the particle diameter. The erosion trend was predicted using multiple regression model fitting of the linear interaction term. The research results can provide a reference for the application of downhole throttling technology and wellbore integrity in tight gas exploitation. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Graphical abstract

26 pages, 8845 KiB  
Article
Occurrence State and Genesis of Large Particle Marcasite in a Thick Coal Seam of the Zhundong Coalfield in Xinjiang
by Xue Wu, Ning Lü, Shuo Feng, Wenfeng Wang, Jijun Tian, Xin Li and Hayerhan Xadethan
Minerals 2025, 15(8), 816; https://doi.org/10.3390/min15080816 - 31 Jul 2025
Viewed by 292
Abstract
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with [...] Read more.
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with coal seams in some mining areas. A series of economic and environmental problems caused by the combustion of large-grained Fe-sulphide minerals in coal have seriously affected the economic, clean and efficient utilization of coal. In this paper, the ultra-thick coal seam of the Xishanyao formation in the Yihua open-pit mine of the Zhundong coalfield is taken as the research object. Through the analysis of coal quality, X-ray fluorescence spectrometer test of major elements in coal, inductively coupled plasma mass spectrometry test of trace elements, SEM-Raman identification of Fe-sulphide minerals in coal and LA-MC-ICP-MS test of sulfur isotope of marcasite, the coal quality characteristics, main and trace element characteristics, macro and micro occurrence characteristics of Fe-sulphide minerals and sulfur isotope characteristics of marcasite in the ultra-thick coal seam of the Xishanyao formation are tested. On this basis, the occurrence state and genesis of large particle Fe-sulphide minerals in the ultra-thick coal seam of the Xishanyao formation are clarified. The main results and understandings are as follows: (1) the occurrence state of Fe-sulphide minerals in extremely thick coal seams is clarified. The Fe-sulphide minerals in the extremely thick coal seam are mainly marcasite, and concentrated in the YH-2, YH-3, YH-8, YH-9, YH-14, YH-15 and YH-16 horizons. Macroscopically, Fe-sulphide minerals mainly occur in three forms: thin film Fe-sulphide minerals, nodular Fe-sulphide minerals, and disseminated Fe-sulphide minerals. Microscopically, they mainly occur in four forms: flake, block, spearhead, and crack filling. (2) The difference in sulfur isotope of marcasite was discussed, and the formation period of marcasite was preliminarily divided. The overall variation range of the δ34S value of marcasite is wide, and the extreme values are quite different. The polyflake marcasite was formed in the early stage of diagenesis and the δ34S value was negative, while the fissure filling marcasite was formed in the late stage of diagenesis and the δ34S value was positive. (3) The coal quality characteristics of the thick coal seam were analyzed. The organic components in the thick coal seam are mainly inertinite, and the inorganic components are mainly clay minerals and marcasite. (4) The difference between the element content in the thick coal seam of the Zhundong coalfield and the average element content of Chinese coal was compared. The major element oxides in the thick coal seam are mainly CaO and MgO, followed by SiO2, Al2O3, Fe2O3 and Na2O. Li, Ga, Ba, U and Th are enriched in trace elements. (5) The coal-accumulating environment characteristics of the extremely thick coal seam are revealed. The whole thick coal seam is formed in an acidic oxidation environment, and the horizon with Fe-sulphide minerals is in an acidic reduction environment. The acidic reduction environment is conducive to the formation of marcasite and is not conducive to the formation of pyrite. (6) There are many matrix vitrinite, inertinite content, clay content, and terrigenous debris in the extremely thick coal seam. The good supply of peat swamp, suitable reduction environment and pH value, as well as groundwater leaching and infiltration, together cause the occurrence of large-grained Fe-sulphide minerals in the extremely thick coal seam of the Xishanyao formation in the Zhundong coalfield. Full article
Show Figures

Figure 1

15 pages, 5275 KiB  
Article
Effect of Copper in Gas-Shielded Solid Wire on Microstructural Evolution and Cryogenic Toughness of X80 Pipeline Steel Welds
by Leng Peng, Rui Hong, Qi-Lin Ma, Neng-Sheng Liu, Shu-Biao Yin and Shu-Jun Jia
Materials 2025, 18(15), 3519; https://doi.org/10.3390/ma18153519 - 27 Jul 2025
Viewed by 399
Abstract
This study systematically evaluates the influence of copper (Cu) addition in gas-shielded solid wires on the microstructure and cryogenic toughness of X80 pipeline steel welds. Welds were fabricated using solid wires with varying Cu contents (0.13–0.34 wt.%) under identical gas metal arc welding [...] Read more.
This study systematically evaluates the influence of copper (Cu) addition in gas-shielded solid wires on the microstructure and cryogenic toughness of X80 pipeline steel welds. Welds were fabricated using solid wires with varying Cu contents (0.13–0.34 wt.%) under identical gas metal arc welding (GMAW) parameters. The mechanical capacities were assessed via tensile testing, Charpy V-notch impact tests at −20 °C and Vickers hardness measurements. Microstructural evolution was characterized through optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). Key findings reveal that increasing the Cu content from 0.13 wt.% to 0.34 wt.% reduces the volume percentage of acicular ferrite (AF) in the weld metal by approximately 20%, accompanied by a significant decline in cryogenic toughness, with the average impact energy decreasing from 221.08 J to 151.59 J. Mechanistic analysis demonstrates that the trace increase in the Cu element. The phase transition temperature and inclusions is not significant but can refine the prior austenite grain size of the weld, so that the total surface area of the grain boundary increases, and the surface area of the inclusions within the grain is relatively small, resulting in the nucleation of acicular ferrite within the grain being weak. This microstructural transition lowers the critical crack size and diminishes the density for high-angle grain boundaries (HAGBs > 45°), which weakens crack deflection capability. Consequently, the crack propagation angle decreases from 54.73° to 45°, substantially reducing the energy required for stable crack growth and deteriorating low-temperature toughness. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 4949 KiB  
Article
An Integrated Lightweight Neural Network Design and FPGA-Accelerated Edge Computing for Chili Pepper Variety and Origin Identification via an E-Nose
by Ziyu Guo, Yong Yin, Haolin Gu, Guihua Peng, Xueya Wang, Ju Chen and Jia Yan
Foods 2025, 14(15), 2612; https://doi.org/10.3390/foods14152612 - 25 Jul 2025
Viewed by 324
Abstract
A chili pepper variety and origin detection system that integrates a field-programmable gate array (FPGA) with an electronic nose (e-nose) is proposed in this paper to address the issues of variety confusion and origin ambiguity in the chili pepper market. The system uses [...] Read more.
A chili pepper variety and origin detection system that integrates a field-programmable gate array (FPGA) with an electronic nose (e-nose) is proposed in this paper to address the issues of variety confusion and origin ambiguity in the chili pepper market. The system uses the AIRSENSE PEN3 e-nose from Germany to collect gas data from thirteen different varieties of chili peppers and two specific varieties of chili peppers originating from seven different regions. Model training is conducted via the proposed lightweight convolutional neural network ChiliPCNN. By combining the strengths of a convolutional neural network (CNN) and a multilayer perceptron (MLP), the ChiliPCNN model achieves an efficient and accurate classification process, requiring only 268 parameters for chili pepper variety identification and 244 parameters for origin tracing, with 364 floating-point operations (FLOPs) and 340 FLOPs, respectively. The experimental results demonstrate that, compared with other advanced deep learning methods, the ChiliPCNN has superior classification performance and good stability. Specifically, ChiliPCNN achieves accuracy rates of 94.62% in chili pepper variety identification and 93.41% in origin tracing tasks involving Jiaoyang No. 6, with accuracy rates reaching as high as 99.07% for Xianjiao No. 301. These results fully validate the effectiveness of the model. To further increase the detection speed of the ChiliPCNN, its acceleration circuit is designed on the Xilinx Zynq7020 FPGA from the United States and optimized via fixed-point arithmetic and loop unrolling strategies. The optimized circuit reduces the latency to 5600 ns and consumes only 1.755 W of power, significantly improving the resource utilization rate and processing speed of the model. This system not only achieves rapid and accurate chili pepper variety and origin detection but also provides an efficient and reliable intelligent agricultural management solution, which is highly important for promoting the development of agricultural automation and intelligence. Full article
Show Figures

Figure 1

12 pages, 2650 KiB  
Article
Calibration and Detection of Phosphine Using a Corrosion-Resistant Ion Trap Mass Spectrometer
by Dragan Nikolić and Xu Zhang
Biophysica 2025, 5(3), 28; https://doi.org/10.3390/biophysica5030028 - 17 Jul 2025
Viewed by 267
Abstract
We present a corrosion-resistant quadrupole ion trap mass spectrometer (QIT-MS) designed for trace detection of volatiles in sulfuric acid aerosols, with a specific focus on phosphine (PH3). Here, we detail the gas calibration methodology using permeation tube technology for generating certified [...] Read more.
We present a corrosion-resistant quadrupole ion trap mass spectrometer (QIT-MS) designed for trace detection of volatiles in sulfuric acid aerosols, with a specific focus on phosphine (PH3). Here, we detail the gas calibration methodology using permeation tube technology for generating certified ppb-level PH3/H2S/CO2 mixtures, and report results from mass spectra with sufficient resolution to distinguish isotopic envelopes that validate the detection of PH3 at a concentration of 62 ppb. Fragmentation patterns for PH3 and H2S agree with NIST data, and signal-to-noise performance confirms ppb sensitivity over 2.6 h acquisition periods. We further assess spectral interferences from oxygen isotopes and propose a detection scheme based on isolated phosphorus ions (P+) to enable specific and interference-resistant identification of PH3 and other reduced phosphorus species of astrobiological interest in Venus-like environments. This work extends the capabilities of QIT-MS for trace gas analysis in chemically aggressive atmospheric conditions. Full article
(This article belongs to the Special Issue Mass Spectrometry Applications in Biology Research)
Show Figures

Figure 1

13 pages, 933 KiB  
Article
Accumulation Patterns and Health Risk Assessment of Trace Elements in Intermuscular Bone-Free Crucian Carp
by Shizhan Tang, Na Li, Zhipeng Sun, Ting Yan, Tingting Zhang, Huan Xu, Zhongxiang Chen, Dongli Qin and Youyi Kuang
Toxics 2025, 13(7), 595; https://doi.org/10.3390/toxics13070595 - 16 Jul 2025
Viewed by 402
Abstract
This study investigated the accumulation characteristics and associated health risks of 11 trace elements (Al, Rb, Cr, Ni, Mo, Sr, Pb, Ba, Ag, As, and Ga) in four crucian carp varieties: gene-edited intermuscular bone-free crucian carp (Carassius auratus, WUCI) and its sibling [...] Read more.
This study investigated the accumulation characteristics and associated health risks of 11 trace elements (Al, Rb, Cr, Ni, Mo, Sr, Pb, Ba, Ag, As, and Ga) in four crucian carp varieties: gene-edited intermuscular bone-free crucian carp (Carassius auratus, WUCI) and its sibling wild-type (Carassius auratus, WT), Fangzheng silver crucian carp (Carassius gibelio var Fangzheng, FZYJ), and Songpu silver crucian carp (Carassius gibelio var Songpu, SPYJ). Results showed that Al and Rb were the most abundant elements across all groups. WUCI exhibited distinct accumulation patterns, including significantly higher hepatic Mo concentrations (0.265 ± 0.032 mg/kg) and muscle/liver Rb levels (muscle: 8.74 ± 1.21 mg/kg; liver: 12.56 ± 2.05 mg/kg) compared to other varieties (p < 0.05), which supports the hypothesis of genotype-specific differences in heavy metal accumulation. Correlation analysis revealed that WUCI exhibited similar elemental interactions with WT and SPYJ (e.g., Al-Ni positive correlation, |rs| ≥ 0.8), while SPYJ displayed distinct patterns with fifteen negative correlations compared to three to five in others varieties, suggesting a potential alteration in elemental homeostasis. Pollution index (Pi) assessments indicated mild contamination for Pb in SPYJ liver (Pi = 0.265) and Cr/As in WUCI muscle (Pi = 0.247/0.218). Despite these values, all hazard indices remained below the established safety thresholds (THQ < 0.1, HI < 0.25, TCR < 10−6), reinforcing the overall safety of the tested fish. Notably, muscle As levels (0.86 ± 0.15 mg/kg) exceeded hepatic concentrations (0.52 ± 0.09 mg/kg), potentially due to differential detoxification mechanisms. These findings demonstrate the food safety of all tested varieties, while highlighting genotype-specific metabolic adaptations, providing critical data for evaluating gene edited aquatic products. Full article
(This article belongs to the Special Issue Effects of Toxic Contaminants on Fish Behaviours)
Show Figures

Graphical abstract

16 pages, 3833 KiB  
Article
Seven Thousand Felt Earthquakes in Oklahoma and Kansas Can Be Confidently Traced Back to Oil and Gas Activities
by Iason Grigoratos, Alexandros Savvaidis and Stefan Wiemer
GeoHazards 2025, 6(3), 36; https://doi.org/10.3390/geohazards6030036 - 15 Jul 2025
Viewed by 385
Abstract
The seismicity levels in Oklahoma and southern Kansas have increased dramatically over the last 15 years. Past studies have identified the massive disposal of wastewater co-produced during oil and gas extraction as the driving force behind some earthquake clusters, with a small number [...] Read more.
The seismicity levels in Oklahoma and southern Kansas have increased dramatically over the last 15 years. Past studies have identified the massive disposal of wastewater co-produced during oil and gas extraction as the driving force behind some earthquake clusters, with a small number of events directly linked to hydraulic fracturing (HF) stimulations. The present investigation is the first one to examine the role both of these activities played throughout the two states, under the same framework. Our findings confirm that wastewater disposal is the main causal factor, while also identifying several previously undocumented clusters of seismicity that were triggered by HF. We were able to identify areas where both causal factors spatially coincide, even though they act at distinct depth intervals. Overall, oil and gas operations are probabilistically linked at high confidence levels with more than 7000 felt earthquakes (M ≥ 2.5), including 46 events with M ≥ 4.0 and 4 events with M ≥ 5. Our analysis utilized newly compiled regional earthquake catalogs and established physics-based principles. It first hindcasts the seismicity rates after 2012 on a spatial grid using either real or randomized HF and wastewater data as the input, and then compares them against the null hypothesis of purely tectonic loading. In the end, each block is assigned a p-value, reflecting the statistical confidence in its causal association with either HF stimulations or wastewater disposal. Full article
(This article belongs to the Special Issue Seismological Research and Seismic Hazard & Risk Assessments)
Show Figures

Figure 1

15 pages, 2185 KiB  
Article
High Sensitivity Online Sensor for BTEX in Ambient Air Based on Multiphoton Electron Extraction Spectroscopy
by Uriah H. Sharon, Lea Birkan, Valery Bulatov, Roman Schuetz, Tikhon Filippov and Israel Schechter
Sensors 2025, 25(14), 4268; https://doi.org/10.3390/s25144268 - 9 Jul 2025
Viewed by 511
Abstract
Benzene, toluene, ethylbenzene, and xylene (BTEX) are widespread volatile organic compounds commonly present in fuels and various industrial materials. Their release into the atmosphere significantly contributes to air pollution, prompting strict regulatory concentration limits in ambient air. In this work, we introduce Multiphoton [...] Read more.
Benzene, toluene, ethylbenzene, and xylene (BTEX) are widespread volatile organic compounds commonly present in fuels and various industrial materials. Their release into the atmosphere significantly contributes to air pollution, prompting strict regulatory concentration limits in ambient air. In this work, we introduce Multiphoton Electron Extraction Spectroscopy (MEES) as an innovative technique for the sensitive, selective, and online detection and quantitation of BTEX compounds under ambient conditions. MEES employs tunable UV laser pulses to induce the resonant ionization of target molecules under a high electrical field, with subsequent measurement of the generated photocurrent. We now demonstrate the method’s ability to detect BTEX in ambient air, at part-per-trillion (ppt) concentration range, providing distinct spectral signatures for each compound, including individual xylene isomers. The technique represents a significant advancement in BTEX monitoring, with potential applications in environmental sensing and industrial air quality control. Full article
(This article belongs to the Special Issue Advanced Spectroscopy-Based Sensors and Spectral Analysis Technology)
Show Figures

Figure 1

Back to TopTop