Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (241)

Search Parameters:
Keywords = toxic stressors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2338 KiB  
Review
ROS Regulation and Antioxidant Responses in Plants Under Air Pollution: Molecular Signaling, Metabolic Adaptation, and Biotechnological Solutions
by Muhammad Junaid Rao, Mingzheng Duan, Muhammad Ikram and Bingsong Zheng
Antioxidants 2025, 14(8), 907; https://doi.org/10.3390/antiox14080907 - 24 Jul 2025
Cited by 1 | Viewed by 539
Abstract
Air pollution acts as a pervasive oxidative stressor, disrupting global crop production and ecosystem health through the overproduction of reactive oxygen species (ROS). Hazardous pollutants impair critical physiological processes—photosynthesis, respiration, and nutrient uptake—triggering oxidative damage and yield losses. This review synthesizes current knowledge [...] Read more.
Air pollution acts as a pervasive oxidative stressor, disrupting global crop production and ecosystem health through the overproduction of reactive oxygen species (ROS). Hazardous pollutants impair critical physiological processes—photosynthesis, respiration, and nutrient uptake—triggering oxidative damage and yield losses. This review synthesizes current knowledge on plant defense mechanisms, emphasizing the integration of enzymatic (SOD, POD, CAT, APX, GPX, GR) and non-enzymatic (polyphenols, glutathione, ascorbate, phytochelatins) antioxidant systems to scavenge ROS and maintain redox homeostasis. We highlight the pivotal roles of transcription factors (MYB, WRKY, NAC) in orchestrating stress-responsive gene networks, alongside MAPK and phytohormone signaling (salicylic acid, jasmonic acid, ethylene), in mitigating oxidative stress. Secondary metabolites (flavonoids, lignin, terpenoids) are examined as biochemical shields against ROS and pollutant toxicity, with evidence from transcriptomic and metabolomic studies revealing their biosynthetic regulation. Furthermore, we explore biotechnological strategies to enhance antioxidant capacity, including overexpression of ROS-scavenging genes (e.g., TaCAT3) and engineering of phenolic pathways. By addressing gaps in understanding combined stress responses, this review provides a roadmap for developing resilient crops through antioxidant-focused interventions, ensuring sustainability in polluted environments. Full article
Show Figures

Figure 1

25 pages, 5317 KiB  
Article
High Temperature and Ethinylestradiol May Reduce Body Growth, Liver and Hepatocyte Volumes and Lipid Droplets in Adult Male Guppies
by Margarida Vilaça, Sukanlaya Tantiwisawaruji, Maria João Rocha and Eduardo Rocha
Animals 2025, 15(14), 2152; https://doi.org/10.3390/ani15142152 - 21 Jul 2025
Viewed by 236
Abstract
Global warming raises surface water temperatures, impacting fish alongside pollutants, such as ubiquitous xenoestrogens. Combined stressor effects are poorly studied but likely to worsen impacts and hinder biota adaptation, warranting further research. Unadapted fish face heightened risks. The liver is a vital metabolic [...] Read more.
Global warming raises surface water temperatures, impacting fish alongside pollutants, such as ubiquitous xenoestrogens. Combined stressor effects are poorly studied but likely to worsen impacts and hinder biota adaptation, warranting further research. Unadapted fish face heightened risks. The liver is a vital metabolic organ, sensitive to temperature and xenoestrogens, eventually adjusting hepatocyte size and number to ensure survival, growth, and reproduction. This study assessed, for the first time, the impact of exposure (45 days) to thermal stress (29 °C versus 26 °C) and ethinylestradiol (EE2, 5 ng/L) on male guppies, primarily on body and quantitative liver morphology. Higher temperature reduced body mass (14%) and standard length (3.6%) gain. EE2 exposure reduced body mass increase (14%), hepatosomatic index (20%), and the volumes of the liver (32%), hepatocytes (16%), and their nuclei (17%). The nucleus-to-cytoplasm ratio and total hepatocyte number remained stable. No histopathological lesions existed. Guppies appear to have adapted to stressors by reducing hepatocyte size and utilizing lipid reserves, yet they exhibited deficits in body growth and hepatosomatic index. Gonadal maturation was unaffected. Only under EE2 at 29 °C did hepatocytes show minimal lipid droplet content (less vacuolation). This indicated exhausted reserves, reinforcing how heat and toxicants interact to exacerbate impacts. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Graphical abstract

16 pages, 1778 KiB  
Article
Synergistic Effects of Amitraz and Dinotefuran on Honey Bee Health: Impacts on Survival, Gene Expression, and Hypopharyngeal Gland Morphology
by Mojtaba Esmaeily, Tekalign Begna, Hyeonjeong Jang, Sunho Kwon and Chuleui Jung
Int. J. Mol. Sci. 2025, 26(14), 6850; https://doi.org/10.3390/ijms26146850 - 17 Jul 2025
Viewed by 258
Abstract
Honey bees (Apis mellifera) are major pollinators, playing a critical role in global food production, biodiversity, and ecosystem stability. However, their populations are increasingly threatened by multiple interacting stressors, including pesticide exposure. Among these, agricultural insecticides and anti-Varroa acaricides such [...] Read more.
Honey bees (Apis mellifera) are major pollinators, playing a critical role in global food production, biodiversity, and ecosystem stability. However, their populations are increasingly threatened by multiple interacting stressors, including pesticide exposure. Among these, agricultural insecticides and anti-Varroa acaricides such as dinotefuran and amitraz can persist in hive matrices, resulting in chronic and combined exposure. This study investigates the low lethal (LC10 and LC30) effects of these compounds, individually and in combination, on honey bee survival, immune function, oxidative stress responses, detoxification pathways, and hypopharyngeal gland morphology. Both pesticides negatively affected honey bee health at low lethal concentrations, with dinotefuran showing higher toxicity. Exposure led to the reduced survival, suppression of vitellogenin expression, and dysregulation of genes related to antioxidant defense, immunity, and detoxification. Additionally, high concentrations of dinotefuran and its combination with amitraz impaired hypopharyngeal gland morphology. Notably, co-exposure resulted in synergistic toxic effects, exacerbating physiological damage beyond individual treatments. These findings emphasize the potential risks of combined exposure to agricultural and beekeeping pesticides. A more comprehensive risk assessment and stricter regulations are urgently needed. Full article
Show Figures

Figure 1

33 pages, 1864 KiB  
Review
The Emerging Roles of Nanoparticles in Managing the Environmental Stressors in Horticulture Crops—A Review
by Mohamed K. Abou El-Nasr, Karim M. Hassan, Basma T. Abd-Elhalim, Dmitry E. Kucher, Nazih Y. Rebouh, Assiya Ansabayeva, Mostafa Abdelkader, Mahmoud A. A. Ali and Mohamed A. Nasser
Plants 2025, 14(14), 2192; https://doi.org/10.3390/plants14142192 - 15 Jul 2025
Viewed by 470
Abstract
The primary worldwide variables limiting plant development and agricultural output are the ever-present threat that environmental stressors such as salt (may trigger osmotic stress plus ions toxicity, which impact on growth and yield of the plants), drought (provokes water stress, resulting in lowering [...] Read more.
The primary worldwide variables limiting plant development and agricultural output are the ever-present threat that environmental stressors such as salt (may trigger osmotic stress plus ions toxicity, which impact on growth and yield of the plants), drought (provokes water stress, resulting in lowering photosynthesis process and growth rate), heavy metals (induced toxicity, hindering physiological processes also lowering crop quantity and quality), and pathogens (induce diseases that may significantly affect plant health beside productivity). This review explores the integrated effects of these stressors on plant productivity and growth rate, emphasizing how each stressor exceptionally plays a role in physiological responses. Owing to developments in technology that outclass traditional breeding methods and genetic engineering techniques, powerful alleviation strategies are vital. New findings have demonstrated the remarkable role of nanoparticles in regulating responses to these environmental stressors. In this review, we summarize the roles and various applications of nanomaterials in regulating abiotic and biotic stress responses. This review discusses and explores the relationship between various types of nanoparticles (metal, carbon-based, and biogenic) and their impact on plant physiology. Furthermore, we assess how nanoparticle technology may play a role in practices of sustainable agriculture by reducing the amount of compounds used, providing them with a larger surface area, highly efficient mass transfer abilities, and controlled, targeted delivery of lower nutrient or pesticide amounts. A review of data from several published studies leads to the conclusion that nanoparticles may act as a synergistic effect, which can effectively increase plant stress tolerance and their nutritional role. Full article
Show Figures

Figure 1

23 pages, 5108 KiB  
Review
The Invasive Mechanism and Impact of Arundo donax, One of the World’s 100 Worst Invasive Alien Species
by Hisashi Kato-Noguchi and Midori Kato
Plants 2025, 14(14), 2175; https://doi.org/10.3390/plants14142175 - 14 Jul 2025
Viewed by 360
Abstract
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and [...] Read more.
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and grassland areas along roadsides, including in protected areas. This species grows rapidly and produces large amounts of biomass due to its high photosynthetic ability. It spreads asexually through ramets, in addition to stem and rhizome fragments. Wildfires, flooding, and human activity promote its distribution and domination. It can adapt to various habitats and tolerate various adverse environmental conditions, such as cold temperatures, drought, flooding, and high salinity. A. donax exhibits defense mechanisms against biotic stressors, including herbivores and pathogens. It produces indole alkaloids, such as bufotenidine and gramine, as well as other alkaloids that are toxic to herbivorous mammals, insects, parasitic nematodes, and pathogenic fungi and oomycetes. A. donax accumulates high concentrations of phytoliths, which also protect against pathogen infection and herbivory. Only a few herbivores and pathogens have been reported to significantly damage A. donax growth and populations. Additionally, A. donax exhibits allelopathic activity against competing plant species, though the allelochemicals involved have yet to be identified. These characteristics may contribute to its infestation, survival, and population expansion in new habitats as an invasive plant species. Dense monospecific stands of A. donax alter ecosystem structures and functions. These stands impact abiotic processes in ecosystems by reducing water availability, and increasing the risk of erosion, flooding, and intense fires. The stands also negatively affect biotic processes by reducing plant diversity and richness, as well as the fitness of habitats for invertebrates and vertebrates. Eradicating A. donax from a habitat requires an ongoing, long-term integrated management approach based on an understanding of its invasive mechanisms. Human activity has also contributed to the spread of A. donax populations. There is an urgent need to address its invasive traits. This is the first review focusing on the invasive mechanisms of this plant in terms of adaptation to abiotic and biotic stressors, particularly physiological adaptation. Full article
Show Figures

Graphical abstract

19 pages, 3549 KiB  
Article
Oxidative Stress, Phytochemical Screening, and Antioxidant Activity on Microalgae (Arthrospira platensis) After Exposure to Glyphosate and Microplastics
by Dércia Santos, Edna Cabecinha, Jesús Gago, Sandra Mariza Monteiro and Ana Luzio
J. Xenobiot. 2025, 15(4), 106; https://doi.org/10.3390/jox15040106 - 3 Jul 2025
Viewed by 501
Abstract
The knowledge about the potential toxic effects of microplastics (MPs) combined with herbicides at lower trophic levels is still largely unknown. The present study aimed to evaluate the potential toxic effects of polyethylene terephthalate (PET) and polyamide (PA), isolated or combined with the [...] Read more.
The knowledge about the potential toxic effects of microplastics (MPs) combined with herbicides at lower trophic levels is still largely unknown. The present study aimed to evaluate the potential toxic effects of polyethylene terephthalate (PET) and polyamide (PA), isolated or combined with the pesticide glyphosate (GLY), on the microalgae Arthrospira platensis. For this, microalgae were exposed to control, GLY (3 μg/L), PET (0.5 and 1 mg/L), PA (0.5 and 1 mg/L), and the respective mixtures of each MP with GLY, for 12 days. The photosynthetic pigment content, phytochemicals, antioxidants, and enzymatic activity were determined. Cell growth was significantly enhanced on day 4 in the GLY+PA1 group (~80%), compared to the control. At day 12, biomass was significantly higher in the GLY (~25%) and GLY+PET0.5 (~26%) groups relative to the control. Significant effects on the enzymatic and detoxification mechanisms were observed, including increased SOD (PET0.5, p = 0.011) and CarE (GLY, PA and GLY+PA, p < 0.01), and decreased GST in combined exposures, which support stress-induced enzymatic activation and adaptive biochemical responses. Significant effects on phytochemicals and antioxidant activity were also observed, with PET0.5 significantly reducing total carotenoids (~65%), and flavonoids (p < 0.001) and ortho-diphenols (p < 0.05) being decreased in all exposure groups, in comparison to the control group. The decrease in flavonoids and ortho-diphenols, important antioxidant molecules, suggests the depletion of these key compounds under stress. DPPH scavenging activity, a measure of antioxidant potential, was inhibited in the GLY+PA groups, indicating compromised antioxidant defense. Results confirmed that combined stressors elicit distinct and sometimes deleterious responses not predicted by single exposures. Our findings highlight that the combined exposure to glyphosate and MPs significantly disrupts antioxidant defenses and enzymatic activity in A. platensis, indicating potential risks to primary producers in aquatic ecosystems and underscoring the ecological implications of co-contaminant stressors. In fact, the results indicate that MPs can modify herbicide toxicity, posing enhanced risks to microalgal physiology and potentially affecting primary productivity and nutrient cycling in aquatic ecosystems. In turn, negative effects of MPs on microalgae can have serious consequences for food webs, food security, and ecological health. Full article
Show Figures

Figure 1

15 pages, 528 KiB  
Review
Water Monitoring Practices 2.0—Water Fleas as Key Species in Ecotoxicology and Risk Assessment
by Anne Leung, Emma Rowan, Flavia Melati Chiappara and Konstantinos Grintzalis
Limnol. Rev. 2025, 25(3), 30; https://doi.org/10.3390/limnolrev25030030 - 2 Jul 2025
Viewed by 296
Abstract
Humanity faces the great challenges arising from pollution and climate change which evidently lead to the irreversible effects observed on the planet. It is now more important than ever to monitor and safeguard the ecosystem as it has been highlighted by governments and [...] Read more.
Humanity faces the great challenges arising from pollution and climate change which evidently lead to the irreversible effects observed on the planet. It is now more important than ever to monitor and safeguard the ecosystem as it has been highlighted by governments and scientists. Conventional approaches for water pollution rely on the detection of chemicals in the environment. However, these descriptive observations when compared against water quality standards used as metrics for pollution are unable to predict pollution early or capture the extent of its impact. This weakness is reflected in the legislation and the thresholds for emerging pollutants such as pharmaceuticals and nanomaterials. To bridge the gap and to understand the underlying mechanisms for toxicity, research in the field of molecular ecotoxicology shifts more and more towards the integration of model systems, in silico approaches and molecular information as endpoints. Focusing on the freshwater ecosystem, daphnids are key species employed in risk assessment which are characterised as highly responsive to pollutants and physical stressors. The translation of molecular information describing the physiology of these organisms provides novel and sensitive metrics for pollution assessment. Full article
Show Figures

Figure 1

13 pages, 254 KiB  
Article
Risk, Uncertainty, and Resiliency in the Face of Ancient Climate Change: The Case for Legumes
by Jacob C. Damm
Heritage 2025, 8(7), 252; https://doi.org/10.3390/heritage8070252 - 26 Jun 2025
Viewed by 901
Abstract
Continuing improvements in our understanding of ancient climate change renders it necessary to expand our toolkit for exploring human responses to climatic shifts. Currently, archaeological methods for exploring the resilience of ancient human agricultural systems—in addition to strategies for managing risk and/or uncertainty—are [...] Read more.
Continuing improvements in our understanding of ancient climate change renders it necessary to expand our toolkit for exploring human responses to climatic shifts. Currently, archaeological methods for exploring the resilience of ancient human agricultural systems—in addition to strategies for managing risk and/or uncertainty—are frustratingly limited in comparison to the rich ethnographic record of how humans have navigated climatic stressors. This article proposes that legumes might provide a new, albeit woefully understudied, vector for potential analyses, especially given their central role in traditional agricultural systems as a buffer against environmental stress. The peculiar agronomic character of legumes, especially among the widely cultivated varieties that are toxic in their unrefined state, could allow for robust hypotheses about agricultural strategies to be tested against our paleoclimate record. Importantly, these hypotheses could be tested against a wide variety of models of human–plant and human–environment interaction, as they could be based on labor costs rather than assumptions of ancient cultural preference. Legumes, however, present particular difficulties as objects of analyses, and therefore some methodological cautions are in order. Consequently, instead of proposing and testing hypotheses, this article seeks instead to inspire future research in relation to our constantly improving data. Full article
(This article belongs to the Special Issue The Archaeology of Climate Change)
20 pages, 4773 KiB  
Review
Structure-Based Function of Humic Acid in Abiotic Stress Alleviation in Plants: A Review
by Farhan Nabi, Ahmed Sarfaraz, Rakhwe Kama, Razia Kanwal and Huashou Li
Plants 2025, 14(13), 1916; https://doi.org/10.3390/plants14131916 - 22 Jun 2025
Viewed by 898
Abstract
Humic acid (HA), a major component of soil organic matter, is a naturally occurring macromolecule formed through the decomposition of plant and microbial residues. Its molecular structure comprises functional groups such as carboxyl, phenolic, hydroxyl, and carbonyl functional groups, which enable HA to [...] Read more.
Humic acid (HA), a major component of soil organic matter, is a naturally occurring macromolecule formed through the decomposition of plant and microbial residues. Its molecular structure comprises functional groups such as carboxyl, phenolic, hydroxyl, and carbonyl functional groups, which enable HA to interact with soil particles, nutrients, and biological systems. These interactions significantly contribute to soil fertility and overall plant productivity. Functionally, HA enhances soil health by increasing cation exchange capacity, improving water retention, and promoting the formation and stabilization of soil aggregates. In addition to its role in soil conditioning, HA is essential in mitigating plant stress. It achieves this by modulating antioxidant enzyme activity, stabilizing cellular membranes, and alleviating the adverse effects of abiotic stressors such as salinity, drought, and heavy metal toxicity. This review highlights the structural characteristics of HA, its structure-based functions, and the mechanisms involved in plant stress alleviation. Additionally, we explore how HA can be modified through physical, chemical, and biological approaches to enhance its agronomic performance. These modifications are designed to improve HA agronomic efficiency by increasing nutrient bioavailability, reducing environmental losses through minimized leaching and volatilization, and supporting sustainable agricultural practices. Overall, this review underscores the multifaceted roles of HA in promoting plant resilience to environmental stress, highlighting its potential as a key agent in the development of sustainable and eco-friendly crop production systems. Full article
Show Figures

Figure 1

31 pages, 1989 KiB  
Review
Plant Microbiomes Alleviate Abiotic Stress-Associated Damage in Crops and Enhance Climate-Resilient Agriculture
by Fazal Ullah, Sajid Ali, Muhammad Siraj, Muhammad Saeed Akhtar and Wajid Zaman
Plants 2025, 14(12), 1890; https://doi.org/10.3390/plants14121890 - 19 Jun 2025
Viewed by 890
Abstract
Plant microbiomes, composed of a diverse array of microorganisms such as bacteria, fungi, archaea, and microalgae, are critical to plant health and resilience, playing key roles in nutrient cycling, stress mitigation, and disease resistance. Climate change is expected to intensify various abiotic stressors, [...] Read more.
Plant microbiomes, composed of a diverse array of microorganisms such as bacteria, fungi, archaea, and microalgae, are critical to plant health and resilience, playing key roles in nutrient cycling, stress mitigation, and disease resistance. Climate change is expected to intensify various abiotic stressors, such as drought, salinity, temperature extremes, nutrient deficiencies, and heavy metal toxicity. Plant-associated microbiomes have emerged as a promising natural solution to help mitigate these stresses and enhance agricultural resilience. However, translating laboratory findings into real-world agricultural benefits remains a significant challenge due to the complexity of plant–microbe interactions under field conditions. We explore the roles of plant microbiomes in combating abiotic stress and discuss advances in microbiome engineering strategies, including synthetic biology, microbial consortia design, metagenomics, and CRISPR-Cas, with a focus on enhancing their practical application in agriculture. Integrating microbiome-based solutions into climate-smart agricultural practices may contribute to long-term sustainability. Finally, we underscore the importance of interdisciplinary collaboration in overcoming existing challenges. Microbiome-based solutions hold promise for improving global food security and promoting sustainable agricultural practices in the face of climate change. Full article
Show Figures

Figure 1

21 pages, 11870 KiB  
Review
Evolution of the Defense Compounds Against Biotic Stressors in the Invasive Plant Species Leucaena leucocephala
by Hisashi Kato-Noguchi and Midori Kato
Molecules 2025, 30(11), 2453; https://doi.org/10.3390/molecules30112453 - 3 Jun 2025
Cited by 1 | Viewed by 950
Abstract
Leucaena leucocephala (Lam.) de Wit is listed in the world’s 100 worst alien invasive species because of the risks it poses to native plant communities. Life history traits, such as high growth and reproductive rates, and a high capacity to adapt to different [...] Read more.
Leucaena leucocephala (Lam.) de Wit is listed in the world’s 100 worst alien invasive species because of the risks it poses to native plant communities. Life history traits, such as high growth and reproductive rates, and a high capacity to adapt to different environmental conditions may contribute to its invasive properties. Biotic stressors, such as herbivores, pathogens, and competing plant species are known to exert significant selective pressure on the plant’s survival, distribution, and abundance. L. leucocephala has been reported to contain several compounds involved in the defense functions against these biotic stressors. A large amount of L-mimosine, a non-protein amino acid, was found in all plant parts of L. leucocephala, including its flowers. L-Mimosine is toxic to herbivorous mammals and insects, parasitic nematodes, pathogenic fungi, and neighboring competing plant species by inactivating various essential enzymes and blocking DNA replication, and/or inducing oxidative stress conditions. Several flavonoids, polyphenolic compounds, and/or derivatives of benzoic and cinnamic acids are toxic to parasitic nematodes, pathogenic fungi and bacteria, and competing plant species by disrupting plasma membrane structures and functions, and various metabolic processes. These compounds may represent the invasive traits of L. leucocephala that have undergone natural selection during the evolution of the species. They may contribute to the defense functions against the biotic stressors, and increase its survival, distribution, and abundance in the introduced ranges. This is the first review to focus on the compounds involved in the defense functions against biotic stressors. Full article
Show Figures

Figure 1

16 pages, 2171 KiB  
Article
Functional Roles of the Seagrass (Zostera marina) Holobiont Change with Plant Development
by Sam Gorvel, Bettina Walter, Joe D. Taylor and Richard K. F. Unsworth
Plants 2025, 14(11), 1584; https://doi.org/10.3390/plants14111584 - 23 May 2025
Viewed by 680
Abstract
Seagrass meadows play a critical role in biogeochemical cycling, especially in nitrogen and sulphur processes, driven by their associated microbiome. This study provides a novel functional analysis of microbial communities in seagrass (Zostera marina) rhizosphere and endosphere, comparing seedlings and mature [...] Read more.
Seagrass meadows play a critical role in biogeochemical cycling, especially in nitrogen and sulphur processes, driven by their associated microbiome. This study provides a novel functional analysis of microbial communities in seagrass (Zostera marina) rhizosphere and endosphere, comparing seedlings and mature plants. While nitrogen-fixing bacteria are more abundant in seedlings, mature plants exhibit greater microbial diversity and stability. Sediment samples show higher microbial diversity than roots, suggesting distinct niche environments in seagrass roots. Key microbial taxa (sulphur-oxidizing and nitrogen-cycling bacteria) were observed across developmental stages, with rapid establishment in seedlings aiding survival in sulphide-rich, anoxic sediments. Chromatiales, which oxidize sulphur, are hypothesized to support juvenile plant growth by mitigating sulphide toxicity, a key stressor in early development. Additionally, sulfate-reducing bacteria (SRB), though potentially harmful due to H2S production, may also aid in nitrogen fixation by producing ammonium. The study underscores the dynamic relationship between seagrass and its microbiome, especially the differences in microbial community structure and function between juvenile and mature plants. The study emphasizes the need for a deeper understanding of microbial roles within the seagrass holobiont to aid with Blue Carbon stores and to improve restoration success, particularly for juvenile plants struggling to establish effective microbiomes. Full article
(This article belongs to the Special Issue Marine Macrophytes Responses to Global Change)
Show Figures

Figure 1

23 pages, 4509 KiB  
Article
Biodiversity and Phytochemical Characterization of Adonis volgensis Populations from Central and Northern Kazakhstan: Insights into Bioactivity and Toxicity
by Moldir Zhumagul, Milena Rašeta, Zhanar Iskakova, Serik Kubentayev, Anar Myrzagaliyeva, Gulnara Tleubergenova, Saule Mukhtubayeva, Jovana Mišković and Yusufjon Gafforov
Diversity 2025, 17(5), 352; https://doi.org/10.3390/d17050352 - 16 May 2025
Viewed by 555
Abstract
This study examines the phytocenotic, phenotypic, phytochemical, antioxidant, and toxic effects of four geographically distinct populations of the traditionally used plant species Adonis volgensis Steven ex DC. from Central and Northern Kazakhstan. These populations, found in diverse habitats such as steppe-like forest edges [...] Read more.
This study examines the phytocenotic, phenotypic, phytochemical, antioxidant, and toxic effects of four geographically distinct populations of the traditionally used plant species Adonis volgensis Steven ex DC. from Central and Northern Kazakhstan. These populations, found in diverse habitats such as steppe-like forest edges and moist plains, coexist with species like Achillea nobilis L. and Artemisia absinthium L. Significant variations were observed in plant community composition and environmental stressors, including grazing and habitat degradation. Morphological analysis revealed that Population 2 exhibited greater vigor, while Population 3 was more constrained by local conditions, highlighting adaptive strategies influenced by both genetic and environmental factors. FTIR analysis of A. volgensis extracts revealed distinct solvent-specific profiles of bioactive compounds. Ethanol (EtOH) and ethyl acetate extracts were rich in phenolic and flavonoid compounds, whereas the chloroform (CHCl3) extract was less effective in extracting phenolics, displaying weaker O–H bands. Phytochemical analysis showed notable variations in total phenolic content (TPC) and total flavonoid content (TFC). The highest TPC (89.351 ± 4.45 mg GAE/g d.w.) was found in the ethyl acetate extract from the Akmola region, while the highest TFC (33.811 ± 0.170 mg QE/g d.w.) was observed in the CHCl3 extract from Kostanay region. Toxicity assessment using the Artemia salina lethality assay revealed significant mortality rates (88–96%) in CHCl3 extracts of aerial parts, demonstrating a dose-dependent effect. These findings highlight the antioxidant and potential toxic properties of A. volgensis, emphasizing the importance of solvent selection in bioactive compound extraction for nutraceutical and pharmaceutical applications. Full article
Show Figures

Figure 1

38 pages, 3716 KiB  
Review
Pesticides: Environmental Stressors Implicated in the Development of Central Nervous System Disorders and Neurodegeneration
by Alexis Rodríguez, María Luisa Castrejón-Godínez and Nayeli Monterrosas-Brisson
Stresses 2025, 5(2), 31; https://doi.org/10.3390/stresses5020031 - 7 May 2025
Viewed by 1767
Abstract
The relationship between various central nervous system (CNS) disorders linked to pesticide exposure highlights a growing concern worldwide, as the extensive use of these compounds causes toxic effects on the CNS of non-target organisms. Reports indicate that exposure to pesticides, including carbamates, organophosphates, [...] Read more.
The relationship between various central nervous system (CNS) disorders linked to pesticide exposure highlights a growing concern worldwide, as the extensive use of these compounds causes toxic effects on the CNS of non-target organisms. Reports indicate that exposure to pesticides, including carbamates, organophosphates, and pyrethroids, produces various adverse impacts on neurological function in humans, ranging from acute symptoms such as headaches and dizziness to long-term conditions leading to developmental delays in children, cognitive impairment, and neurodegenerative diseases, such as Parkinson’s and Alzheimer’s being among the most important. The scientific evidence suggests that pesticide exposure induces oxidative stress and disruptions in neurotransmission, resulting in neuronal damage and alterations in brain development. The review discusses scientific evidence of neurodegenerative disease development related to pesticide exposure, as well as alternatives to chemical pesticides used in agriculture, emphasizing Agroecological Crop Protection (ACP), which combines biological control, crop rotation, and natural predators and is presented as a practical approach to reducing reliance on pesticides. Organic farming methods, which employ natural substances and minimal input of chemicals, also offer safer alternatives. In addition, advances in biopesticides, which target specific pests without harming non-target organisms, provide promising solutions that protect the environment and human health. Pesticides are well-known environmental stressors that menace biodiversity and pose important threats to human health. Reducing pesticide use and remediating pesticide-polluted sites are urgent tasks to avoid adverse effects of pesticide exposure in non-target organisms. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

21 pages, 2646 KiB  
Article
Early Seedling Screening Reveals Unidentified Al Resistance Mechanisms in Lithuanian Barley Cultivars
by Vilius Jurgis Mensonas, Violeta Kleizaitė, Algė Leistrumaitė and Raimondas Šiukšta
Int. J. Mol. Sci. 2025, 26(8), 3803; https://doi.org/10.3390/ijms26083803 - 17 Apr 2025
Viewed by 463
Abstract
Aluminum toxicity in acidic soils represents a significant environmental stressor that affects yields worldwide and is only expected to worsen. Breeding resistant varieties remains the most viable solution; however, fast and robust procedures to determine cultivar viability must be developed and applied to [...] Read more.
Aluminum toxicity in acidic soils represents a significant environmental stressor that affects yields worldwide and is only expected to worsen. Breeding resistant varieties remains the most viable solution; however, fast and robust procedures to determine cultivar viability must be developed and applied to promising genotypes. This study explored historical and modern Lithuanian-bred barley cultivars using morphometrical and biochemical markers for Al resistance and sequence and expression analyses of potential candidate genes. Morphometric seedling measurements (relative root length reduction −13.65 ± 0.33% (p < 0.001) and root tolerance index 0.86 ± 0.44 after 72 h at 8 mM Al stress) revealed the modern cv. ‘Ema DS’ to be the most Al resistant, while biochemical assays offered a poor distinction between the Al-resistant and sensitive cultivars. Thus, we determined that morphometric parameters were more effective in the early screening for barley Al resistance. The genetic screening of well-established Al resistance markers in the barley citrate transporter HvAACT1 revealed a mismatch between the observed barley phenotypes and genotypes. Further testing was conducted through expression analyses of HvAACT1 and seven aquaporin family genes, which revealed a correlation between the best empirical performance in cv. ‘Ema DS’ and a high HvAACT1 (2.02 fold change, p < 0.05) expression, despite the lack of established genetic markers, as well as a stress-induced significant upregulation of aquaporin TIP4;1 (2.45 fold change, p < 0.05), suggesting previously undiscovered regulatory mechanisms of external and internal detoxification influencing Al resistance in Lithuanian barley cultivars, as well as potential future candidates for Al-resistant barley breeding programs. Full article
(This article belongs to the Special Issue Metal Stress in Plants, 2nd Edition)
Show Figures

Figure 1

Back to TopTop