Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (837)

Search Parameters:
Keywords = total oxidized nitrogen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3193 KiB  
Article
Effects of Nitrogen and Phosphorus Additions on the Stability of Soil Carbon Fractions in Subtropical Castanopsis sclerophylla Forests
by Yunze Dai, Xiaoniu Xu and LeVan Cuong
Forests 2025, 16(8), 1264; https://doi.org/10.3390/f16081264 - 2 Aug 2025
Viewed by 95
Abstract
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To [...] Read more.
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To investigate the effects of N and P deposition on soil C sequestration and C-N coupling relationship in broad-leaved evergreen forests, a 6-year field nutrient regulation experiment was implemented in subtropical Castanopsis sclerophylla forests with four different N and P additions: N addition (100 kg N·hm−2·year−1), N + P (100 kg N·hm−2·year−1 + 50 kg P·hm−2·year−1), P addition (50 kg P·hm−2·year−1), and CK (0 kg N·hm−2·year−1). The changes in the C and N contents and stable isotope distributions (δ13C and δ15N) of different soil organic fractions were examined. The results showed that the SOC and total nitrogen (STN) (p > 0.05) increased with N addition, while SOC significantly decreased with P addition (p < 0.05), and N + P treatment has low effect on SOC, STN (p > 0.05). By density grouping, it was found that N addition significantly increased light fraction C and N (LFOC, LFN), significantly decreased the light fraction C to N ratio (LFOC/N) (p < 0.05), and increased heavy fraction C and N (HFOC, HFN) accumulation and light fraction to total organic C ratio (LFOC/SOC, p > 0.05). Contrary to N addition, P addition was detrimental to the accumulation of LFOC, LFN and reduced LFOC/SOC. It was found that different reactive oxidized carbon (ROC) increased under N addition but ROC/SOC did not change, while N + P and P treatments increased ROC/SOC, resulting in a decrease in SOC chemical stability. Stable isotope analysis showed that N addition promoted the accumulation of new soil organic matter, whereas P addition enhanced the transformation and utilization of C and N from pre-existing organic matter. Additionally, N addition indirectly increased LFOC by significantly decreasing pH; significantly contributed to LFOC and ROC by increasing STN accumulation promoted by NO3-N and NH4+-N; and decreased light fraction δ13C by significantly increasing dissolved organic C (p < 0.05). P addition had directly significant negative effect on LFOC and SOC (p < 0.05). In conclusion, six-year N deposition enhances soil C and N sequestration while the P enrichment reduces the content of soil C, N fractions and stability in Castanopsis sclerophylla forests. The results provide a scientific basis for predicting the soil C sink function of evergreen broad-leaved forest ecosystem under the background of future climate change. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

16 pages, 1706 KiB  
Article
Biochar-Immobilized Pseudomonas aeruginosa Enhances Copper Remediation and Growth of Chinese Milk Vetch (Astragalus sinicus)
by Yunkai Hu, Chuan Wang and Youbao Wang
Microorganisms 2025, 13(8), 1793; https://doi.org/10.3390/microorganisms13081793 - 31 Jul 2025
Viewed by 138
Abstract
Heavy metal-contaminated soil poses a severe threat to environmental quality and human health, calling for eco-friendly and efficient remediation strategies. This study explored the use of biochar-immobilized copper-resistant Pseudomonas aeruginosa to remediate copper-contaminated soil and promote growth of Chinese milk vetch (Astragalus [...] Read more.
Heavy metal-contaminated soil poses a severe threat to environmental quality and human health, calling for eco-friendly and efficient remediation strategies. This study explored the use of biochar-immobilized copper-resistant Pseudomonas aeruginosa to remediate copper-contaminated soil and promote growth of Chinese milk vetch (Astragalus sinicus L.). Indoor pot experiments compared four groups: copper-contaminated soil (control), soil with biochar, soil with free bacteria, and soil with biochar-immobilized bacteria (IM). Results showed IM had the most significant effects on soil properties: it raised pH to 7.04, reduced bioavailable copper by 34.37%, and increased catalase (3.48%) and urease (78.95%) activities. IM also altered soil bacterial communities, decreasing their richness and evenness (alpha diversity) while shifting community composition. For Chinese milk vetch, IM reduced leaf malondialdehyde (a marker of oxidative stress) by 15%, increased total dry weight by 90%, and lowered copper accumulation in roots (18.62%) and shoots (60.33%). As a nitrogen-fixing plant, the vetch’s nitrogen fixation in roots and shoots rose by 82.70% and 57.08%, respectively, under IM. These findings demonstrate that biochar-immobilized Pseudomonas aeruginosa is a promising in situ amendment for remediating copper-contaminated soil and boosting plant growth. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

14 pages, 5364 KiB  
Article
Study on the Microbial Inactivation and Quality Assurance of Ultrasonic-Assisted Slightly Acidic Electrolyzed Water for Mirror Carp (Cyprinus carpio L.) Fillets During Refrigerated Storage
by Qiang Zhong, Xiufang Xia and Fangfei Li
Foods 2025, 14(15), 2652; https://doi.org/10.3390/foods14152652 - 29 Jul 2025
Viewed by 214
Abstract
The advancement of non-thermal disinfection technologies represents a critical pathway for ensuring food safety, meeting environmental sustainability requirements, and meeting consumer preferences for clean-label products. This study systematically evaluated the combined preservation effect of ultrasonic-assisted slightly acidic electrolyzed water (US+SAEW) on mirror carp [...] Read more.
The advancement of non-thermal disinfection technologies represents a critical pathway for ensuring food safety, meeting environmental sustainability requirements, and meeting consumer preferences for clean-label products. This study systematically evaluated the combined preservation effect of ultrasonic-assisted slightly acidic electrolyzed water (US+SAEW) on mirror carp fillets during refrigeration. Results demonstrated that US+SAEW exhibited superior antimicrobial efficacy compared to individual US or SAEW, achieving reductions of 0.73, 0.74, and 0.79 log CFU/g in total viable counts (TVC), Aeromonas bacteria, and lactic acid bacteria counts compared to the control, respectively. Furthermore, the combined intervention significantly suppressed microbial proliferation throughout the refrigeration period while simultaneously delaying protein and lipid degradation/oxidation induced by spoilage bacteria, thereby inhibiting the formation of alkaline nitrogenous compounds. Consequently, lower levels of pH, total volatile basic nitrogen (TVB-N), protein carbonyl, and thiobarbituric acid reactive substances (TBARS) were observed in US+SAEW compared to the other treatments. Multimodal characterization through low-field nuclear magnetic resonance (LF-NMR), texture, and color analysis confirmed that US+SAEW effectively preserved quality characteristics, extending the shelf life of mirror carp fillets by four days. This study provides a novel non-thermal preservation strategy that combines microbial safety maintenance with quality retention, offering particular advantages for thermolabile food. Full article
(This article belongs to the Special Issue Innovative Muscle Foods Preservation and Packaging Technologies)
Show Figures

Figure 1

22 pages, 2108 KiB  
Article
Effects of Conservation Tillage and Nitrogen Inhibitors on Yield and N2O Emissions for Spring Maize in Northeast China
by Fanchao Meng, Guozhong Feng, Lingchun Zhang, Yin Wang, Qiang Gao, Kelin Hu and Shaojie Wang
Agronomy 2025, 15(8), 1818; https://doi.org/10.3390/agronomy15081818 - 27 Jul 2025
Viewed by 372
Abstract
Conservation tillage can improve soil health and carbon sequestration and is helpful for sustainable agricultural development. However, its effect on crop yields and nitrous oxide (N2O) emissions is still controversial. In this study, a two-year field experiment of spring maize was [...] Read more.
Conservation tillage can improve soil health and carbon sequestration and is helpful for sustainable agricultural development. However, its effect on crop yields and nitrous oxide (N2O) emissions is still controversial. In this study, a two-year field experiment of spring maize was conducted from 2019 to 2020 in the Phaeozems region of Northeast China, involving two tillage practices (strip tillage and conventional tillage) and two nitrogen inhibitors (N-butylthiophosphorotriamine, NBPT and 3,4-Dimethylpyrazole phosphate, DMPP). The WHCNS (Soil Water Heat Carbon Nitrogen Simulator) model was calibrated and validated with field observations, and the effects of different tillage practices and nitrification inhibitors on spring maize yield, N2O emissions, water use efficiency (WUE), and nitrogen use efficiency (NUE) were simulated using the WHCNS model. Precipitation scenarios were set up to simulate and analyze the changes in patterns of crop yield and N2O emissions under long-term conservation tillage for 30 years (1991–2020). The results showed that concerning maize yield, under conservation tillage, the type of straw and nitrogen fertilizer inhibitor could explain 72.1% and 7.1%, respectively, of the total variance in maize yield, while precipitation explained only 14.1% of the total variance, with a 28.5% increase in crop yield in a humid year compared to a dry year. N2O emissions were principally influenced by precipitation, which could explain 46.4% of the total variance in N2O emissions. Furthermore, N2O emissions were 385% higher in humid years than in dry years. Straw under conservation tillage and inhibitor type explained 8.1% and 19.4% of the total variance in N2O emissions, respectively. Conservation tillage with nitrification inhibitors is recommended to increase crop yields, improve soil quality and reduce greenhouse gas emissions in the Phaeozems region of Northeast China, thus ensuring sustainable agricultural development in the region. Full article
Show Figures

Figure 1

15 pages, 1398 KiB  
Article
Hydrochar as a Potential Soil Conditioner for Mitigating H+ Production in the Nitrogen Cycle: A Comparative Study
by Weijia Yu, Qingyue Zhang, Shengchang Huai, Yuwen Jin and Changai Lu
Agronomy 2025, 15(8), 1777; https://doi.org/10.3390/agronomy15081777 - 24 Jul 2025
Viewed by 276
Abstract
Pyrochar has been identified as a favorable soil conditioner that can effectively ameliorate soil acidification. Hydrochar is considered a more affordable carbon material than pyrochar, but its effect on the process of soil acidification has yet to be investigated. An indoor incubation and [...] Read more.
Pyrochar has been identified as a favorable soil conditioner that can effectively ameliorate soil acidification. Hydrochar is considered a more affordable carbon material than pyrochar, but its effect on the process of soil acidification has yet to be investigated. An indoor incubation and a soil column experiment were conducted to study the effect of rice straw hydrochar application on nitrification and NO3-N leaching in acidic red soil. Compared to the control and pyrochar treatments, respectively, hydrochar addition mitigated the net nitrification rate by 3.75–48.75% and 57.92–78.19%, in the early stage of urea fertilization. This occurred mainly because a greater amount of dissolved organic carbon (DOC) was released from hydrochar than the other treatments, which stimulated microbial nitrogen immobilization. The abundances of ammonia-oxidizing archaea and ammonia-oxidizing bacteria were dramatically elevated by 25.62–153.19% and 12.38–22.39%, respectively, in the hydrochar treatments because of DOC-driven stimulation. The cumulative leaching loss of NO3-N in soils amended with hydrochar was markedly reduced by 43.78–59.91% and 61.70–72.82% compared with that in the control and pyrochar treatments, respectively, because hydrochar promoted the soil water holding capacity by 2.70–9.04% and reduced the residual NO3-N content. Hydrochar application can dramatically diminish total H+ production from soil nitrification and NO3-N leaching. Thus, it could be considered an economical soil amendment for ameliorating soil acidification. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 2388 KiB  
Article
Impact of Grassland Management System Intensity on Composition of Functional Groups and Soil Chemical Properties in Semi-Natural Grasslands
by Urška Lisec, Maja Prevolnik Povše, Miran Podvršnik and Branko Kramberger
Plants 2025, 14(15), 2274; https://doi.org/10.3390/plants14152274 - 24 Jul 2025
Viewed by 274
Abstract
Semi-natural grasslands are some of the most species-rich habitats in Europe and provide important ecosystem services such as biodiversity conservation, carbon sequestration and soil fertility maintenance. This study investigates how different intensities of grassland management affect the composition of functional groups and soil [...] Read more.
Semi-natural grasslands are some of the most species-rich habitats in Europe and provide important ecosystem services such as biodiversity conservation, carbon sequestration and soil fertility maintenance. This study investigates how different intensities of grassland management affect the composition of functional groups and soil chemical properties. Five grassland management systems were analyzed: Cut3—three cuts per year; LGI—low grazing intensity; CG—combined cutting and grazing; Cut4—four cuts per year; and HGI—high grazing intensity. The functional groups assessed were grasses, legumes and forbs, while soil samples from three depths (0–10, 10–20 and 20–30 cm) were analyzed for their chemical properties (soil organic carbon—SOC; soil total nitrogen—STN; inorganic soil carbon—SIC; soil organic matter—SOM; potassium oxide—K2O; phosphorus pentoxide—P2O5; C/N ratio; and pH) and physical properties (volumetric soil water content—VWC; bulk density—BD; and porosity—POR). The results showed that less intensive systems had a higher proportion of legumes, while species diversity, as measured via the Shannon index, was the highest in the Cut4 system. The CG system tended to have the highest SOC and STN at a 0–10 cm depth, with a similar trend observed for SOCstock at a 0–30 cm depth. The Cut4, HGI and CG systems also had an increased STNstock. Both grazing systems had the highest P2O5 content. A tendency towards a higher BD was observed in the top 10 cm of soil in the more intensive systems. Choosing a management strategy that is tailored to local climate and site conditions is crucial for maintaining grassland stability, enhancing carbon sequestration and promoting long-term sustainability in the context of climate change. Full article
Show Figures

Figure 1

12 pages, 1540 KiB  
Article
Consumables Usage and Carbon Dioxide Emissions in Logging Operations
by Dariusz Pszenny and Tadeusz Moskalik
Forests 2025, 16(7), 1197; https://doi.org/10.3390/f16071197 - 20 Jul 2025
Viewed by 252
Abstract
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John [...] Read more.
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John Deere-Deere & Co., Moline, USA, and Komatsu Forest AB, Umeå, Sweden) were analyzed to compare their operational efficiency and constructional influences on overall operating costs. Due to differences in engine emission standards, approximate greenhouse gas emissions were estimated. The results indicate that harvesters equipped with Stage V engines have lower fuel consumption, while large forwarders use more consumables than small ones per hour and cubic meter of harvested and extracted timber. A strong positive correlation was observed between total machine time and fuel consumption (r = 0.81), as well as between machine time and total volume of timber harvested (r = 0.72). Older and larger machines showed about 40% higher combustion per unit of wood processed. Newer machines meeting higher emission standards (Stage V) generally achieved lower CO2 and other GHG emissions compared to older models. Machines with Stage V engines emitted about 2.07 kg CO2 per processing of 1 m3 of wood, while machines with older engine types emitted as much as 4.35 kg CO2 per 1 m3—roughly half as much. These differences are even more pronounced in the context of nitrogen oxide (NOx) emissions: the estimated NOx emissions for the older engine types were as high as ~85 g per m3, while those for Stage V engines were only about 5 g per m3 of harvested wood. Continuing the study would need to expand the number of machines analyzed, as well as acquire more detailed performance data on individual operators. A tool that could make this possible would be fleet monitoring services offered by the manufacturers of the surveyed harvesters and forwards, such as Smart Forestry or Timber Manager. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

16 pages, 2619 KiB  
Article
Synthesizing a Tolerant Nitrogen Reduction Microbial Community Using Response Surface Methodology
by Lei Chen, Danhua Wang, Lieyu Zhang, Ao Li, Xu Wang, Shishun Sun and Huijuan Feng
Water 2025, 17(14), 2101; https://doi.org/10.3390/w17142101 - 15 Jul 2025
Viewed by 223
Abstract
Nitrogen-metabolizing microbes are the keystone drivers of reducing nitrogen pollutants in wastewater and natural waters, but the one-way experiment with fixed screening factors fails to discover the optimal scope of nitrogen-metabolizing microbes performing nitrogen reduction. This study novelly combines the one-way experiment and [...] Read more.
Nitrogen-metabolizing microbes are the keystone drivers of reducing nitrogen pollutants in wastewater and natural waters, but the one-way experiment with fixed screening factors fails to discover the optimal scope of nitrogen-metabolizing microbes performing nitrogen reduction. This study novelly combines the one-way experiment and response surface methodology (RSM) modeling to synthesize an effective nitrogen reduction microbial community, with the RSM model showing high goodness-of-fit (R2 = 0.83, p = 0.01) for optimizing the strain combination. Eight bacterial strains were isolated from contaminated sediment and activated sludge. Three efficient strains, arranged to Ignatzschieria indica, Staphylococcus epidermidis, and Acinetobacter baumannii by 16S rDNA sequencing, were screened using the above combination method to synthesize a nitrogen reduction microbial community. Within the synthetic microbial community, Ignatzschieria indica and Staphylococcus epidermidis possessed denitrification abilities, and Acinetobacter baumannii contributed to nitrification with 99% of ammonium oxidation. This synthesis microbial community displayed synchronous nitrification and denitrification under interval aeration and possessed wide pH tolerance from 6 to 10, with a steady >80% total inorganic nitrogen reduction. This research managed to synthesize a tolerant nitrogen reduction microbial community and provides novel insight for constructing synthetic microbial consortia. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

21 pages, 3307 KiB  
Article
Genome-Wide Insights into Streptomyces Novel Species Qhu-G9 and Its Potential for Enhancing Salt Tolerance and Growth in Avena sativa L. and Onobrychis viciifolia Scop
by Xin Xiang, Xiaolan Ma, Hengxia Yin, Liang Chen, Jiao Li, Wenjing Li, Shuhan Zhang, Chenghang Sun and Benyin Zhang
Plants 2025, 14(14), 2135; https://doi.org/10.3390/plants14142135 - 10 Jul 2025
Viewed by 282
Abstract
With the increasing severity of global climate change and soil salinization, the development of microorganisms that enhance crop salt tolerance has become a critical focus of agricultural research. In this study, we explored the potential of a novel Streptomyces species Qhu-G9 as a [...] Read more.
With the increasing severity of global climate change and soil salinization, the development of microorganisms that enhance crop salt tolerance has become a critical focus of agricultural research. In this study, we explored the potential of a novel Streptomyces species Qhu-G9 as a plant growth-promoting rhizobacterium (PGPR) under salt stress conditions, employing whole-genome sequencing and functional annotation. The genomic analysis revealed that Qhu-G9 harbors various genes related to plant growth promotion, including those involved in phosphate solubilization, indole-3-acetic acid (IAA) biosynthesis, antioxidant activity, and nitrogen fixation. A total of 8528 coding genes were annotated in Qhu-G9, with a significant proportion related to cell metabolism, catalytic activity, and membrane transport, suggesting its broad growth-promoting potential. In vitro experiments demonstrated that Qhu-G9 exhibited strong iron siderophore production, IAA synthesis, phosphate solubilization, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, all of which correlate with its plant growth-promoting capacity. Further plant growth trials revealed that Qhu-G9 significantly enhances the growth of Avena sativa and Onobrychis viciifolia seedlings under salt stress conditions, improving key physiological parameters, such as chlorophyll content, relative water content, and photosynthetic efficiency. Under salt stress conditions, inoculation with Qhu-G9 resulted in notable increases in total biomass, root length, and plant height. Biochemical analyses further confirmed that Qhu-G9 alleviates the oxidative damage induced by salt stress by boosting antioxidant enzyme activities, reducing peroxide levels, and promoting the accumulation of osmotic regulators. These findings suggest that Qhu-G9 holds great promise as a PGPR that not only promotes plant growth, but also enhances plant tolerance to salt stress; thus, it has significant agricultural potential. Full article
(This article belongs to the Special Issue Biochemical Responses of Horticultural Crops to Abiotic Stresses)
Show Figures

Figure 1

20 pages, 8044 KiB  
Article
Harnessing a Microbial Consortium and Compost to Control Grapevine Pathogens: A Sustainable Viticulture Strategy for Disease Suppression and Quality Enhancement
by Lobna Hajji-Hedfi, Takwa Wannassi and Ahmed M. Abdel-Azeem
Horticulturae 2025, 11(7), 769; https://doi.org/10.3390/horticulturae11070769 - 2 Jul 2025
Viewed by 419
Abstract
Beneficial microorganisms are emerging as promising alternatives to conventional pesticides for the biological control of plant diseases. This study evaluated the efficacy of a consortium composed of Pseudomonas yamanorum and Trichoderma longibrachiatum and compost against three grapevine pathogens, Botrytis cinerea, Erysiphe necator [...] Read more.
Beneficial microorganisms are emerging as promising alternatives to conventional pesticides for the biological control of plant diseases. This study evaluated the efficacy of a consortium composed of Pseudomonas yamanorum and Trichoderma longibrachiatum and compost against three grapevine pathogens, Botrytis cinerea, Erysiphe necator, and Plasmopara viticola, in three cultivars: Victoria, Superior Seedless, and Early Sweet. The microbial consortium (P. yamanorum + T. longibrachiatum) combined with compost (treatment T4) significantly outperformed the individual treatments, reducing disease severity indices (DSIs) to 7.72, 5.35, and 3.37% in Victoria; 5.70, 6.95, and 3.32% in Superior Seedless; and 4.98, 2.35, and 2.84% in Early Sweet. The treatment also enhanced physiological traits, such as the chlorophyll content, and defense responses, including ascorbate peroxidase (APX), peroxidase (POX), and catalase (CAT) enzyme activities. Biochemical markers, including the total protein content, phenolic content, and reduced malondialdehyde (MDA) levels, indicated an improved oxidative stress tolerance. The soil analysis confirmed an increased pH, organic matter, nitrogen content, and microbial biomass. T4 further reduced the fruit disease incidence and improved quality attributes, including the sugar content and size, while lowering nitrate accumulation. These findings highlight the synergistic benefits of combining a microbial consortium with compost as a sustainable strategy to promote grapevine health, productivity, and soil resilience. Full article
(This article belongs to the Special Issue Grapevine Responses to Abiotic and Biotic Stresses)
Show Figures

Figure 1

18 pages, 8048 KiB  
Article
Silicon Nanoparticles Alter Soybean Physiology and Improve Nitrogen Fixation Potential Under Atmospheric Carbon Dioxide (CO2)
by Jingbo Tong
Plants 2025, 14(13), 2009; https://doi.org/10.3390/plants14132009 - 30 Jun 2025
Viewed by 406
Abstract
The interactive effects between nano-silicon dioxide (n-SiO2) and elevated CO2 (eCO2; 645 ppm) on soybean physiology, nitrogen fixation, and nutrient dynamics under climate stress remain underexplored. This study elucidates their combined effects under ambient (aCO2 [...] Read more.
The interactive effects between nano-silicon dioxide (n-SiO2) and elevated CO2 (eCO2; 645 ppm) on soybean physiology, nitrogen fixation, and nutrient dynamics under climate stress remain underexplored. This study elucidates their combined effects under ambient (aCO2; 410 ppm) and eCO2 conditions. eCO2 + n-SiO2 synergistically enhanced shoot length (30%), total chlorophyll (112.15%), and photosynthetic rate (103.23%), alongside improved stomatal conductance and intercellular CO2 (17.19%), optimizing carbon assimilation. Nodulation efficiency increased, with nodule number and biomass rising by 48.3% and 53.6%, respectively, under eCO2 + n-SiO2 versus aCO2. N-assimilation enzymes (nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase) surged by 38.5–52.1%, enhancing nitrogen metabolism. Concurrently, phytohormones (16–21%) and antioxidant activities (15–22%) increased, reducing oxidative markers (18–22%), and bolstering stress resilience. Nutrient homeostasis improved, with P, K, Mg, Cu, Fe, Zn, and Mn elevating in roots (13–41%) and shoots (13–17%), except shoot Fe and Zn. These findings demonstrate that n-SiO2 potentiates eCO2-driven benefits, amplifying photosynthetic efficiency, nitrogen fixation, and stress adaptation through enhanced biochemical and nutrient regulation. This synergy underscores n-SiO2 role in optimizing crop performance under future CO2-rich climates, advocating nano-fertilizers as sustainable tools for climate-resilient agriculture. Full article
(This article belongs to the Special Issue Silicon and Its Physiological Role in Plant Growth and Development)
Show Figures

Graphical abstract

20 pages, 6761 KiB  
Article
The Homology of Atmospheric Pollutants and Carbon Emissions in Industrial Parks: A Case Study in North China
by Zhitao Li, Tianxiang Chen, Fei Fang, Tianzhi Wang, Mingzhe Zhang and Fiallos Manuel
Processes 2025, 13(7), 2070; https://doi.org/10.3390/pr13072070 - 30 Jun 2025
Viewed by 311
Abstract
Industrial parks are well-known as a critical intervention point for global carbon emission reductions due to the high carbon emissions emitted. Conducting carbon accounting research in these parks can provide more precise foundational data for carbon reduction initiatives, promoting low-carbon industrial park development. [...] Read more.
Industrial parks are well-known as a critical intervention point for global carbon emission reductions due to the high carbon emissions emitted. Conducting carbon accounting research in these parks can provide more precise foundational data for carbon reduction initiatives, promoting low-carbon industrial park development. However, industrial parks, positioned as non-independent accounting units between provincial and industry levels, face severe challenges due to ambiguous boundaries, complex accounting entities, and data selection difficulties that significantly impact the carbon accounting accuracy. This study employed the IPCC emission factor method for industrial parks, taking its management structure as the accounting boundary. Additionally, we constructed a carbon accounting method and representation system by considering the carbon emission flow path and integrating the correlation between pollutant and carbon emissions. By categorizing carbon emissions into five groups, this study obtained emissions from fuel combustion (E1), industrial processes (E2), purchased/sold electricity (E3), purchased/sold heat (E4), and carbon-sequestering products (E5). Between 2016 and 2021, the industrial park’s carbon emissions fell from 15.0783 to 6.7152 million tons, while the intensity dropped from 4.86 to 1.91 tons of carbon dioxide (CO2) per CNY 10,000. The park achieved dual control targets for the total carbon emissions and intensity, with E2 being the main reduction source (70% of total). Meanwhile, total atmospheric pollutants decreased from 9466.19 to 1736.70 tons, with C25 and C26 industries contributing over 99%. In particular, C26 achieved significant reductions in nitrogen oxides (NOx) and sulfur dioxide (SO2), aiding pollution mitigation. A strong positive correlation was found between pollutants and carbon emissions, especially in C26, SO2 (0.77), and NOx (0.89), suggesting NOx as a more suitable carbon emission indicator during chemical production. These findings offer a theoretical framework for using pollutant monitoring to characterize carbon emissions and support decision-making for sustainable industrial development. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

19 pages, 2415 KiB  
Article
Coupled Effects of Polyethylene Microplastics and Cadmium on Soil–Plant Systems: Impact on Soil Properties and Cadmium Uptake in Lettuce
by Zhiqin Zhang and Boyuan Bi
Toxics 2025, 13(7), 555; https://doi.org/10.3390/toxics13070555 - 30 Jun 2025
Viewed by 698
Abstract
Microplastics (MPs) and cadmium (Cd) in the soil environment are expected to pose a serious threat to agricultural production. However, the effect of the interaction between them on the soil–plant system and the mechanism of MPs on plant Cd uptake are still unclear. [...] Read more.
Microplastics (MPs) and cadmium (Cd) in the soil environment are expected to pose a serious threat to agricultural production. However, the effect of the interaction between them on the soil–plant system and the mechanism of MPs on plant Cd uptake are still unclear. Therefore, the effects of different concentrations of polyethylene (PE-MPs, 0, 1.0% and 2.0%), alone or combined with Cd, on soil properties, plant growth and Cd uptake were investigated through pot experiments. The results showed that the single contamination of MPs and Cd and their interaction (MPs + Cd) significantly decreased soil moisture and pH; however, it increased soil organic matter (SOM) and total nitrogen (TN). Soil urease and catalase activities were significantly decreased and sucrase and alkaline phosphatase activities were increased with or without Cd addition. The exposure of PE and Cd, alone or combined, significantly and negatively affected plant biomass, photosynthetic parameters, and caused oxidative damage to plants, and the overall toxicity to plants increases with the increase in PE concentration. Moreover, co-pollution causes greater plant toxicity than the individual pollution of PE or Cd. Plants can resist oxidative stress by increasing superoxide dismutase (SOD) and peroxidase (POD) activities. The heat map showed that soil environmental factors were significantly correlated with plant growth; and the results of redundancy analysis (RDA) indicated that for plant physiological characteristics, soil properties under PE, alone or co-contaminated with Cd, explained a total of 85.77% and 97.45%, respectively. This indicated that the alteration of the soil microenvironment is the key factor influencing plant growth. The results of the partial least squares path model (PLS-PM) indicated that plant oxidative damage and biomass had significant positive and negative direct effects on plant Cd uptake, respectively. The linear model of relative importance (%) further revealed in depth that soil moisture (relative importance: 33.60%) and plant biomass (relative importance: 20.23%) were, respectively, regarded as the most important soil environmental factors and plant indicators affecting their Cd uptake. This study provided theoretical support for assessing the risks of MPs and Cd co-pollution to agricultural ecosystems. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

19 pages, 2374 KiB  
Article
Analysis of Opportunities to Reduce CO2 and NOX Emissions Through the Improvement of Internal Inter-Operational Transport
by Szymon Pawlak, Tomasz Małysa, Angieszka Fornalczyk, Angieszka Sobianowska-Turek and Marzena Kuczyńska-Chałada
Sustainability 2025, 17(13), 5974; https://doi.org/10.3390/su17135974 - 29 Jun 2025
Viewed by 397
Abstract
The reduction of environmental pollutant emissions—including greenhouse gases, particulate matter, and other harmful substances—represents one of the foremost challenges in climate policy, economics, and industrial management today. Excessive emissions of CO2, NOX, and suspended particulates exert significant impacts on [...] Read more.
The reduction of environmental pollutant emissions—including greenhouse gases, particulate matter, and other harmful substances—represents one of the foremost challenges in climate policy, economics, and industrial management today. Excessive emissions of CO2, NOX, and suspended particulates exert significant impacts on climate change as well as human health and welfare. Consequently, numerous studies and regulatory and technological initiatives are underway to mitigate these emissions. One critical area is intra-plant transport within manufacturing facilities, which, despite its localized scope, can substantially contribute to a company’s total emissions. This paper aims to assess the potential of computer simulation using FlexSim software as a decision-support tool for planning inter-operational transport, with a particular focus on environmental aspects. The study analyzes real operational data from a selected production plant (case study), concentrating on the optimization of the number of transport units, their routing, and the layout of workstations. It is hypothesized that reducing the number of trips, shortening transport routes, and efficiently utilizing transport resources can lead to lower emissions of carbon dioxide (CO2) and nitrogen oxides (NOX). The findings provide a basis for a broader adoption of digital tools in sustainable production planning, emphasizing the integration of environmental criteria into decision-making processes. Furthermore, the results offer a foundation for future analyses that consider the development of green transport technologies—such as electric and hydrogen-powered vehicles—in the context of their implementation in the internal logistics of manufacturing enterprises. Full article
Show Figures

Figure 1

16 pages, 591 KiB  
Article
Variability in Fishmeal Nutritional Value in Weaned Pigs and Development of Predictive Equations
by Pei Yang, Xiaoyan Su, Bin Li, Junqi Jin, Bing Yu, Jun He, Jie Yu, Quyuan Wang, Huifen Wang, Daiwen Chen and Hui Yan
Animals 2025, 15(13), 1872; https://doi.org/10.3390/ani15131872 - 24 Jun 2025
Viewed by 296
Abstract
The apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of amino acids, digestible energy (DE), metabolizable energy (ME), and the apparent total tract digestibility (ATTD) of nutrients in 10 fishmeal (FM) samples were evaluated in weaned barrows (Duroc × Landrace × Yorkshire) [...] Read more.
The apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of amino acids, digestible energy (DE), metabolizable energy (ME), and the apparent total tract digestibility (ATTD) of nutrients in 10 fishmeal (FM) samples were evaluated in weaned barrows (Duroc × Landrace × Yorkshire) using two experiments. In Experiment 1, 11 piglets (18.87 ± 0.10 kg) fitted with T-cannulas were randomly allocated to an 11 × 6 Latin-square design with 11 diets (1 nitrogen-free diet and 10 assay diets) and six periods. The AID and SID of all amino acids (AAs) except proline showed significant differences among all FM (p < 0.05). Importantly, the SID of amino acids was positively correlated with key antioxidant markers and immune parameters, and it was negatively correlated with oxidative stress markers (MDA) and pro-inflammatory cytokines (IL-2 and IL-6). In Experiment 2, 11 piglets (18.05 ± 1.15 kg) were assigned to an 11 × 5 Latin-square design with 11 diets (a 96.35% corn diet and 10 assay diets) and five consecutive periods. Significant variations were observed in the DE, ME, and ATTD of dry matter among different FM samples (p < 0.05). Moreover, predictive equations for estimating the SID of lysine, methionine, threonine, and tryptophan, as well as DE and ME, were established using stepwise regression analysis based on the chemical composition of the FM. These findings demonstrate that the nutritional value of FM in nursery pig diets has been underestimated, and this study provides precise data and predictive methods for evaluating the nutritional quality of FM in precision nutrition. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

Back to TopTop