Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,588)

Search Parameters:
Keywords = total lipids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1899 KiB  
Article
Lipidomic Profile of Individuals Infected by Schistosoma mansoni
by Thainá Rodrigues de Souza Fialho, Ronald Alves dos Santos, Yuri Tabajara, Ane Caroline Casaes, Michael Nascimento Macedo, Bruna Oliveira Lopes Souza, Kelvin Edson Marques de Jesus, Leonardo Paiva Farias, Camilla Almeida Menezes, Isadora Cristina de Siqueira, Carlos Arterio Sorgi, Adriano Queiroz and Ricardo Riccio Oliveira
Int. J. Mol. Sci. 2025, 26(15), 7491; https://doi.org/10.3390/ijms26157491 (registering DOI) - 2 Aug 2025
Abstract
Schistosoma mansoni infection is associated with hepatic inflammation and fibrosis, but its systemic metabolic effects remain poorly understood. This study aimed to investigate changes in the serum lipidomic profile associated with S. mansoni infection and parasite load in individuals from an endemic area. [...] Read more.
Schistosoma mansoni infection is associated with hepatic inflammation and fibrosis, but its systemic metabolic effects remain poorly understood. This study aimed to investigate changes in the serum lipidomic profile associated with S. mansoni infection and parasite load in individuals from an endemic area. This cross-sectional analysis was nested within a longitudinal cohort study conducted in northeastern Brazil. Parasitological diagnosis and quantification were performed using the Kato–Katz technique. A total of 45 individuals were selected and divided into three groups: high parasite load (HL), low parasite load (LL), and uninfected controls (NegE). Serum samples were analyzed using mass-spectrometry-based lipidomics. The most abundant lipid subclasses across all groups were phosphatidylcholines (PC), triacylglycerols (TAG), and phosphatidylethanolamines (PE). However, individuals in the HL group exhibited distinct lipidomic profiles, with increased levels of specific phosphatidylinositols (PI) and reduced levels of certain TAG species compared to the NegE group. These changes may reflect host–parasite interactions and immune–metabolic alterations driven by intense infection. Our findings suggest that S. mansoni infection, particularly at higher parasite burdens, can influence the host’s serum lipid profile and may contribute to metabolic disturbances in endemic populations. Full article
(This article belongs to the Special Issue Omics Science and Research in Human Health and Disease)
Show Figures

Figure 1

21 pages, 5182 KiB  
Article
Effects of High-Phenolic Extra Virgin Olive Oil (EVOO) on the Lipid Profile of Patients with Hyperlipidemia: A Randomized Clinical Trial
by Christos Kourek, Emmanouil Makaris, Prokopios Magiatis, Virginia Zouganeli, Vassiliki Benetou, Alexandros Briasoulis, Andrew Xanthopoulos, Ioannis Paraskevaidis, Eleni Melliou, Georgios Koudounis and Philippos Orfanos
Nutrients 2025, 17(15), 2543; https://doi.org/10.3390/nu17152543 (registering DOI) - 2 Aug 2025
Abstract
Background/Objectives: Hyperlipidemia is a major risk factor for cardiovascular disease and atherosclerosis. Polyphenols found in polyphenol-rich extra virgin olive oil (EVOO) have been shown to possess strong antioxidant, anti-inflammatory, and cardioprotective properties. The present study aimed to assess the effects of two types [...] Read more.
Background/Objectives: Hyperlipidemia is a major risk factor for cardiovascular disease and atherosclerosis. Polyphenols found in polyphenol-rich extra virgin olive oil (EVOO) have been shown to possess strong antioxidant, anti-inflammatory, and cardioprotective properties. The present study aimed to assess the effects of two types of EVOO with different polyphenol content and dosages on the lipid profile of hyperlipidemic patients. Methods: In this single-blind, randomized clinical trial, 50 hyperlipidemic patients were randomized to receive either a higher-dose, lower-phenolic EVOO (414 mg/kg phenols, 20 g/day) or a lower-dose, higher-phenolic EVOO (1021 mg/kg phenols, 8 g/day), for a period of 4 weeks. These doses were selected to ensure equivalent daily polyphenol intake in both groups (~8.3 mg of total phenols/day), based on chemical analysis performed using NMR spectroscopy. The volumes used (8–20 g/day) reflect typical daily EVOO intake and were well tolerated by participants. A group of 20 healthy individuals, separated into two groups, also received the two types of EVOO, respectively, for the same duration. Primary endpoints included blood levels of total blood cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, lipoprotein-a (Lpa), and apolipoproteins A1 and B. Measurements were performed at baseline and at the end of the 4-week intervention. Linear mixed models were performed for the data analysis. Results: The higher-phenolic, lower-dose EVOO group showed a more favorable change in total blood cholesterol (p = 0.045) compared to the lower-phenolic, higher-dose group. EVOO intake was associated with a significant increase in HDL (p < 0.001) and reduction in Lp(a) (p = 0.040) among hyperlipidemic patients in comparison to healthy individuals. Conclusions: EVOO consumption significantly improved the lipid profile of hyperlipidemic patients. Higher-phenolic EVOO at lower dosages appears to be more effective in improving the lipid profile than lower-phenolic EVOO in higher dosages. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

18 pages, 309 KiB  
Article
Effects of Adding Hydroxytyrosol to the Diet of Pigs in the Nursery Phase on Growth Performance, Biochemical Markers, and Fatty Acid Profile
by Rafael Domingos Augusto Rofino, Cassio Antonio Ficagna, Taeline Zamboni, Bruna Klein, Enrico A. Altieri, Kevin E. O’Connor, Reeta Davis, Margaret Walsh, Fernando de Castro Tavernari, Marcel Manente Boiago, Aleksandro Schafer da Silva and Diovani Paiano
Animals 2025, 15(15), 2268; https://doi.org/10.3390/ani15152268 (registering DOI) - 1 Aug 2025
Abstract
This study evaluated the effects of dietary hydroxytyrosol (HT) addition on piglets during the nursery phase across two experiments. In the first, 72 weaned male piglets (~26 days old, 7.3 ± 0.5 kg) were assigned to one of four diets containing 0, 5, [...] Read more.
This study evaluated the effects of dietary hydroxytyrosol (HT) addition on piglets during the nursery phase across two experiments. In the first, 72 weaned male piglets (~26 days old, 7.3 ± 0.5 kg) were assigned to one of four diets containing 0, 5, 10, or 50 mg HT/kg feed. Growth performance, serum biochemistry, histological and behavioral parameters, and meat lipid profiles were assessed. In the second study, the apparent digestibility of diets containing 0, 25, or 50 mg HT/kg feed was evaluated using 15 male piglets (21.5 ± 1.5 kg) through total excreta collection. Results revealed that HT influenced serum glucose and gamma-glutamyl transferase, histological inflammation, and active behaviors. HT modified lipid profiles, reduced capric, lauric, linolenic, arachidonic, cis-5,8,11,14,17-eicosapentaenoic fatty acid concentrations, and increased the nervonic acid profile. The digestibility of dry matter, organic matter, energy, and protein increased with HT use up to 50 mg/kg of feed. These findings demonstrate that HT positively impacts piglet efficiency, changing the fatty acid profile with increased nervonic acid, highlighting its potential as a dietary additive for improving nursery pig production. Full article
(This article belongs to the Section Animal Nutrition)
14 pages, 898 KiB  
Article
Cardiovascular Risk in Rheumatic Patients Treated with JAK Inhibitors: The Role of Traditional and Emerging Biomarkers in a Pilot Study
by Diana Popescu, Minerva Codruta Badescu, Elena Rezus, Daniela Maria Tanase, Anca Ouatu, Nicoleta Dima, Oana-Nicoleta Buliga-Finis, Evelina Maria Gosav, Damiana Costin and Ciprian Rezus
J. Clin. Med. 2025, 14(15), 5433; https://doi.org/10.3390/jcm14155433 (registering DOI) - 1 Aug 2025
Viewed by 31
Abstract
Background: Despite therapeutic advances, morbidity and mortality remain high in patients with rheumatoid arthritis (RA) and psoriatic arthritis (PsA), primarily due to increased cardiovascular risk. Objectives: Our study aimed to evaluate the cardiovascular risk profile and biomarker dynamics in patients with RA and [...] Read more.
Background: Despite therapeutic advances, morbidity and mortality remain high in patients with rheumatoid arthritis (RA) and psoriatic arthritis (PsA), primarily due to increased cardiovascular risk. Objectives: Our study aimed to evaluate the cardiovascular risk profile and biomarker dynamics in patients with RA and PsA treated with Janus kinase inhibitors (JAKis). To our knowledge, this is the first study assessing Lp(a) levels in this context. Methods: This prospective, observational study assessed 48 adult patients. The follow-up period was 12 months. Traditional cardiovascular risk factors and biological markers, including lipid profile, lipoprotein(a) [Lp(a)], and uric acid (UA), were assessed at baseline and follow-up. Correlations between JAKi therapy, lipid profile changes, and cardiovascular risk factors were investigated. Cox regression analysis was used to identify predictors of non-major cardiovascular events. Results: A strong positive correlation was observed between baseline and 12-month Lp(a) levels (r = 0.926), despite minor statistical shifts. No major cardiovascular events occurred during follow-up; however, 47.9% of patients experienced non-major cardiovascular events (e.g., uncontrolled arterial hypertension, exertional angina, and new-onset arrhythmias). Active smoking [hazard ratio (HR) 9.853, p = 0.005], obesity (HR 3.7460, p = 0.050), and arterial hypertension (HR 1.219, p = 0.021) were independent predictors of these events. UA (HR 1.515, p = 0.040) and total cholesterol (TC) (HR 1.019, p = 0.034) were significant biochemical predictors as well. Elevated baseline Lp(a) combined with these factors was associated with an increased event rate, particularly after age 60. Conclusions: Traditional cardiovascular risk factors remain highly prevalent and predictive, underscoring the need for comprehensive cardiovascular risk management. Lp(a) remained stable and may serve as a complementary biomarker for risk stratification in JAKi-treated patients. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

28 pages, 820 KiB  
Systematic Review
The Effects of Nutritional Education and School-Based Exercise Intervention Programs on Preschool and Primary School Children’s Cardiometabolic Biomarkers: A Systematic Review of Randomized Controlled Trials
by Markel Rico-González, Daniel González-Devesa, Carlos D. Gómez-Carmona and Adrián Moreno-Villanueva
Appl. Sci. 2025, 15(15), 8564; https://doi.org/10.3390/app15158564 (registering DOI) - 1 Aug 2025
Viewed by 30
Abstract
Childhood obesity increases chronic disease risk, but no comprehensive synthesis has evaluated the impact of school-based combined nutrition education and physical activity interventions on cardiometabolic biomarkers in children aged 3 to 12 years. This systematic review was conducted in accordance with PRISMA guidelines [...] Read more.
Childhood obesity increases chronic disease risk, but no comprehensive synthesis has evaluated the impact of school-based combined nutrition education and physical activity interventions on cardiometabolic biomarkers in children aged 3 to 12 years. This systematic review was conducted in accordance with PRISMA guidelines and registered in PROSPERO (CRD420251085194). Five databases were systematically searched through June 2025. Twelve randomized controlled trials involving 18,231 children were included and assessed using the PEDro scale. Ten trials demonstrated significant improvements in at least one cardiometabolic biomarker. Blood pressure (8 studies) outcomes showed systolic reductions of 1.41–6.0 mmHg in six studies. Glucose metabolism (5 studies) improved in two studies with reductions of 0.20–0.22 mmol/L. Lipid profiles (7 studies) improved in three studies, including total cholesterol (−0.32 mmol/L). Insulin levels (5 studies) decreased significantly in two investigations. Anthropometric improvements included BMI and body fat. Physical activity increased by >45 min/week and dietary habits improved significantly. Programs with daily implementation (90-min sessions 4x/week), longer duration (≥12 months), family involvement (parent education), and curriculum integration (classroom lessons) showed superior effectiveness. Interventions targeting children with overweight/obesity demonstrated higher changes compared to the general population. However, methodological limitations included a lack of assessor blinding, absence of subject/therapist blinding, and inadequate retention rates. School-based interventions combining nutrition and physical activity can produce significant improvements in cardiometabolic biomarkers, supporting comprehensive, sustained multicomponent programs for early chronic disease prevention. Full article
(This article belongs to the Special Issue Research of Sports Medicine and Health Care: Second Edition)
Show Figures

Figure 1

12 pages, 1734 KiB  
Article
Lipid-Modulating Effects of Sargassum fulvellum Fermented by Lactococcus lactis KCCM12759P and Leuconostoc mesenteroides KCCM12756P in Ovariectomized Mice
by Hyun-Sol Jo, Young-Eun Cho and Sun-Mee Hong
Nutrients 2025, 17(15), 2527; https://doi.org/10.3390/nu17152527 - 31 Jul 2025
Viewed by 110
Abstract
Background/Objectives: Estrogen deficiency contributes to dyslipidemia and visceral adiposity, increasing cardiovascular risk in postmenopausal women. Sargassum fulvellum (Sf), a brown seaweed rich in bioactive compounds, possesses lipid-regulating properties that may be enhanced by lactic acid bacteria fermentation. This study aimed to evaluate [...] Read more.
Background/Objectives: Estrogen deficiency contributes to dyslipidemia and visceral adiposity, increasing cardiovascular risk in postmenopausal women. Sargassum fulvellum (Sf), a brown seaweed rich in bioactive compounds, possesses lipid-regulating properties that may be enhanced by lactic acid bacteria fermentation. This study aimed to evaluate the effects of fermented S. fulvellum (SfLlLm), prepared using Lactococcus lactis and Leuconostoc mesenteroides, on lipid metabolism and adipose tissue remodeling in an ovariectomized (OVX) mouse model of estrogen deficiency. Methods: Female C57BL/6 mice underwent ovariectomy and were fed an AIN-76A diet supplemented with either unfermented Sf or SfLlLm for eight weeks. Sham-operated and 17β-estradiol-treated OVX groups served as controls. Serum lipid levels—total cholesterol, triglycerides, LDL-C, and HDL-C—were assessed, and histological analysis of visceral adipose tissue was conducted to evaluate adipocyte morphology. Results: OVX-induced estrogen deficiency led to increased total cholesterol, triglycerides, and LDL-C, along with hypertrophic changes in visceral adipocytes. Supplementation with fermented Sargassum fulvellum (SfLlLm) markedly improved these parameters, reducing total cholesterol by 6.7%, triglycerides by 9.3%, and LDL-C by 52.9%, while increasing HDL-C by 17.5% compared to the OVX controls. SfLlLm also normalized visceral adipocyte size and distribution. These effects were comparable to or exceeded those of 17β-estradiol treatment. Conclusions: Fermented SfLlLm ameliorated dyslipidemia and visceral adiposity under estrogen-deficient conditions. These findings support its potential as a functional dietary intervention for managing postmenopausal lipid disorders and associated metabolic complications. Full article
(This article belongs to the Special Issue Diet and Nutrition: Metabolic Diseases---2nd Edition)
Show Figures

Figure 1

16 pages, 2218 KiB  
Article
The Effectiveness of Semaglutide on a Composite Endpoint of Glycemic Control and Weight Reduction and Its Effect on Lipid Profile Among Obese Type 2 Diabetes Patients
by Sumaiah J. Alarfaj
Medicina 2025, 61(8), 1393; https://doi.org/10.3390/medicina61081393 - 31 Jul 2025
Viewed by 141
Abstract
Background and Objectives: Obesity and type 2 diabetes (T2D) are closely linked and associated with a higher risk of complications. This study aims to evaluate the effectiveness of once-weekly semaglutide in achieving a composite endpoint of A1C and weight reduction. Materials and Methods: [...] Read more.
Background and Objectives: Obesity and type 2 diabetes (T2D) are closely linked and associated with a higher risk of complications. This study aims to evaluate the effectiveness of once-weekly semaglutide in achieving a composite endpoint of A1C and weight reduction. Materials and Methods: This retrospective cohort study assessed the effectiveness of semaglutide in obese patients with T2D at a tertiary care hospital in Saudi Arabia. This study included patients who received semaglutide treatment for 12 months, and the endpoint was reducing A1C by ≥ 1% and body weight by ≥ 5% after 12 months of starting semaglutide. Secondary endpoints include predictors of achieving the composite endpoint and the effect on the lipid profile. Results: The present study enrolled 459 participants, with dyslipidemia and hypertension being the most common comorbidities. After 12 months of treatment with semaglutide, 42% of the patients achieved the composite endpoint. Semaglutide significantly reduced weight, BMI, A1C, FBG, total cholesterol, LDL, and triglycerides. The subgroup analysis showed that patients who achieved the composite endpoint were younger and had significantly lower use of insulin. Females in the study had significantly higher BMI, A1C, and HDL levels and lower levels of triglycerides compared to males. Multivariate analysis revealed that baseline BMI (aOR = 0.953; 95% CI: 0.915 to 0.992; p = 0.02), baseline A1C (aOR = 1.213; 95% CI: 1.062 to 1.385; p = 0.004), and receiving insulin (aOR = 0.02; 95% CI: 0.001 to 0.343; p = 0.007) were significant predictors of composite endpoint achievement. Conclusions: Semaglutide is a valuable option for the treatment of obese patients with T2D. This study found that semaglutide is effective in reducing weight and A1C and improving the lipid profile. The predictors of achievement of the composite endpoint were lower baseline BMI, higher baseline A1C, and insulin non-use. Full article
(This article belongs to the Special Issue Clinical Management of Diabetes and Complications)
Show Figures

Figure 1

14 pages, 3747 KiB  
Article
Biocontrol Activity of Volatile Organic Compounds Emitted from Bacillus paralicheniformis 2-12 Against Fusarium oxysporum Associated with Astragalus membranaceus Root Rot
by Yan Wang, Jiaqi Yuan, Rui Zhao, Shengnan Yuan, Yaxin Su, Wenhui Jiao, Xinyu Huo, Meiqin Wang, Weixin Fan and Chunwei Wang
Microorganisms 2025, 13(8), 1782; https://doi.org/10.3390/microorganisms13081782 - 31 Jul 2025
Viewed by 217
Abstract
Root rot, mainly caused by Fusarium oxysporum, is one of the most destructive diseases and leads to significant economic loss of Astragalus membranaceus. To develop an effective strategy for the management of this serious disease, a bacterial strain 2-12 was screened [...] Read more.
Root rot, mainly caused by Fusarium oxysporum, is one of the most destructive diseases and leads to significant economic loss of Astragalus membranaceus. To develop an effective strategy for the management of this serious disease, a bacterial strain 2-12 was screened from A. membranaceus rhizosphere soil and identified as Bacillus paralicheniformis based on the phylogenetic analyses of gyrase subunit B gene (gyrB) and RNA polymerase gene (rpoB) sequences. Interestingly, the volatile organic compounds (VOCs) produced by B. paralicheniformis 2-12 exhibited potent antifungal activities against F. oxysporum, as well as fifteen other plant pathogens. Under scanning electron microscopy observation, hyphae treated with the VOCs exhibited abnormal variation such as distortion, twist, and vesiculation, leading to distinctive protoplasm shrinkage. After treatment with B. paralicheniformis 2-12 VOCs, the lesion diameter and disease incidence both reduced significantly compared to control (p < 0.05), thus demonstrating prominent biological efficiency. Moreover, B. paralicheniformis 2-12 VOCs were composed of 17 VOCs, including 9 alkanes, 3 alcohols, 3 acids and esters, 1 aromatic compound, and 1 alkyne compound. A total of 1945 DEGs, including 1001 up-regulated and 944 down-regulated genes, were screened via transcriptome analysis. These DEGs were mainly associated with membranes and membrane parts, amino acid metabolism, and lipid metabolism. The findings in this work strongly suggested that B. paralicheniformis 2-12 VOCs could be applied as a new candidate for the control of A. membranaceus root rot. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

21 pages, 1997 KiB  
Article
Genetic and Metabolic Factors of Familial Dysbetalipoproteinemia Phenotype: Insights from a Cross-Sectional Study
by Anastasia V. Blokhina, Alexandra I. Ershova, Anna V. Kiseleva, Evgeniia A. Sotnikova, Marija Zaicenoka, Anastasia A. Zharikova, Yuri V. Vyatkin, Vasily E. Ramensky, Elizaveta A. Novokhatskaya, Anna L. Borisova, Svetlana A. Shalnova, Alexey N. Meshkov and Oxana M. Drapkina
Int. J. Mol. Sci. 2025, 26(15), 7376; https://doi.org/10.3390/ijms26157376 (registering DOI) - 30 Jul 2025
Viewed by 109
Abstract
Familial dysbetalipoproteinemia (FD) is a prevalent and highly atherogenic hyperlipoproteinemia associated with the ε2/ε2 APOE genotype or rare APOE variants. The contributions of additional genetic and clinical factors to the FD phenotype remain unclear. We investigated these factors in both autosomal recessive and [...] Read more.
Familial dysbetalipoproteinemia (FD) is a prevalent and highly atherogenic hyperlipoproteinemia associated with the ε2/ε2 APOE genotype or rare APOE variants. The contributions of additional genetic and clinical factors to the FD phenotype remain unclear. We investigated these factors in both autosomal recessive and autosomal dominant forms of FD. Targeted (n = 4666) and exome (n = 194) sequencing were used to identify the ε2/ε2 APOE genotype or rare FD-causative APOE variants. Twenty-four lipid-related genes and forty variants included in a polygenic risk score for hypertriglyceridemia (HTG) were analyzed. FD was defined by the presence of FD variants and triglycerides (TG) ≥ 1.5 mmol/L (main study group). The comparison group consisted of patients with FD variants but TG < 1.5 mmol/L. Univariable and multivariable regression analyses were performed. A total of 71 unrelated subjects were identified (45.1% male, median age 50 years). FD was diagnosed in 52 patients, while 19 had FD variants only. Age (p = 0.019), elevated polygenic risk for HTG (p = 0.001), and the presence of metabolic syndrome components (p = 0.014) were independently associated with the FD phenotype. TG levels were significantly associated with polygenic burden (0.05 mmol/L per percentile), the presence of additional rare lipid-related variants (7.0 mmol/L), and glucose metabolism disorders (3.62 mmol/L), together explaining 30% of TG variance in cross-validated model. These results highlight the interplay of genetic and metabolic factors in FD development and support the integration of HTG genetic risk scores and metabolic control into personalized FD management. Full article
(This article belongs to the Special Issue Genes and Human Diseases: 3rd Edition)
Show Figures

Figure 1

15 pages, 1125 KiB  
Article
Mixed Green Banana (Musa spp.) Pulp and Peel Flour Reduced Body Weight Gain and Adiposity and Improved Lipid Profile and Intestinal Morphology in Wistar Rats
by Leonara Martins Viana, Bárbara Pereira da Silva, Fabiana Silva Rocha Rodrigues, Laise Trindade Paes, Marcella Duarte Villas Mishima, Renata Celi Lopes Toledo, Elad Tako, Hércia Stampini Duarte Martino and Frederico Barros
Nutrients 2025, 17(15), 2493; https://doi.org/10.3390/nu17152493 - 30 Jul 2025
Viewed by 193
Abstract
Background and Objectives: In recent years, there has been growing interest in the production of ingredients rich in dietary fiber and antioxidants, such as green banana flours. This study evaluated the effect of consumption of mixed green banana pulp (PF) and peel (PeF) [...] Read more.
Background and Objectives: In recent years, there has been growing interest in the production of ingredients rich in dietary fiber and antioxidants, such as green banana flours. This study evaluated the effect of consumption of mixed green banana pulp (PF) and peel (PeF) flours on the body weight gain, adiposity, lipid profile, and intestinal morphology of Wistar rats. Methods: Male young rats were divided into four groups (n = 8) that received a standard diet (SD), or one of the following three test diets: M1 (SD + 90% PF/10% PeF), M2 (SD + 80% PF/20% PeF), or P (SD + 100% PF) for 28 days. Results: Rats from M1, M2, and P groups showed reduced body weight gain and adiposity and had lower contents of total cholesterol, LDL-c, VLDL-c, and triglycerides. Animals from M1 and M2 groups had an increase in cecum weight, fecal moisture, acetic acid concentration, and crypt depth and reduced fecal pH. Moreover, consumption of the M1, M2, and P diets increased the expression of proteins involved in intestinal functionality. Significant negative correlations were observed between consumption of resistant starch and soluble dietary fiber, from the flours, and weight gain (r = −0.538 and r = −0.538, respectively), body adiposity (r = −0.780 and r = −0.767, respectively), total cholesterol (r = −0.789 and r = −0.800, respectively), and triglycerides (r = −0.790 and r = −0.786, respectively). Conclusions: Mixed green banana pulp and peel flour proved to be a viable alternative as a food ingredient that can promote weight loss, improve lipid profile and intestinal morphology, and minimize post-harvest losses. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

17 pages, 1463 KiB  
Article
Linseed, Walnut, and Algal Oil Emulsion Gels as Fat Replacers in Chicken Frankfurters: Effects on Composition, Lipid Profile and Sensory Quality
by Tamara Stamenić, Vanja Todorović, Maja Petričević, Tanja Keškić, Bogdan Cekić, Nenad Stojiljković and Nikola Stanišić
Foods 2025, 14(15), 2677; https://doi.org/10.3390/foods14152677 - 30 Jul 2025
Viewed by 335
Abstract
The replacement of animal fat with unsaturated lipid sources in processed meats enhances nutritional value but introduces challenges regarding oxidative stability and sensory acceptability. In this study, the effects of replacing pork back fat with pre-emulsified walnut, linseed, or algal oils on the [...] Read more.
The replacement of animal fat with unsaturated lipid sources in processed meats enhances nutritional value but introduces challenges regarding oxidative stability and sensory acceptability. In this study, the effects of replacing pork back fat with pre-emulsified walnut, linseed, or algal oils on the proximate composition, fatty acid profile, nutritional indices, lipid oxidation, and sensory properties of chicken frankfurters were investigated. Four formulations were prepared: a control group (25% pork fat) and three groups that were completely reformulated using oil emulsions (ratio inulin/water/oil 1:2:1). The fat substitute significantly reduced total fat, SFA, cholesterol (up to 30%), and calorie density, while Ʃn-3 fatty acids were enriched (p < 0.05). The linseed oil samples had the highest levels of α-linolenic acid (47.53%), while the algal oil had the highest levels of eicosapentaenoic acid (10.98%) and docosahexaenoic acid (64.73%) and the most favourable Ʃn-6/Ʃn-3 ratio (p < 0.05). All reformulated groups showed significantly improved atherogenic and thrombogenic indices and increased hypocholesterolaemic/hypercholesterolaemic ratios, which reached 17.43 in the algal oil samples (p < 0.05). Lipid oxidation was increased in the linseed and algal oil treatments, with the walnut oil group showing moderate TBARS levels and minimal accumulation of secondary oxidation products. Principal component analysis revealed that walnut oil offered the most balanced compromise between nutritional improvement, oxidative stability and sensory acceptability. These findings support a healthier reformulation of meat products by identifying oil-based fat substitutes that improve nutritional value without compromising sensory quality, which is beneficial for both research and industry. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

21 pages, 2807 KiB  
Article
Phage Therapy Enhances Survival, Immune Response, and Metabolic Resilience in Pacific White Shrimp (Litopenaeus vannamei) Challenged with Vibrio parahaemolyticus
by Chao Zeng, Long Qi, Chao-Li Guan, Yu-Lin Chang, Yu-Yun He, Hong-Zheng Zhao, Chang Wang, Yi-Ran Zhao, Yi-Chen Dong and Guo-Fang Zhong
Fishes 2025, 10(8), 366; https://doi.org/10.3390/fishes10080366 - 30 Jul 2025
Viewed by 258
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at [...] Read more.
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at various concentrations significantly improved shrimp survival, with the 1 ppm group demonstrating the highest survival rate. Enzymatic assays revealed that phage-treated shrimp exhibited enhanced immune enzyme activities, including acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM). In addition, antioxidant defenses such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and total antioxidant capacity (T-AOC) significantly improved, accompanied by reduced malondialdehyde (MDA) levels. Serum biochemical analyses demonstrated marked improvements in lipid metabolism, particularly reductions in triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL), alongside higher levels of beneficial high-density lipoprotein (HDL). Transcriptomic analysis identified 2274 differentially expressed genes (DEGs), notably enriched in pathways involving fatty acid metabolism, peroxisome functions, lysosomes, and Toll-like receptor (TLR) signaling. Specifically, phage treatment upregulated immune and metabolic regulatory genes, including Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MYD88), interleukin-1β (IL-1β), nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor (PPAR), indicating activation of innate immunity and antioxidant defense pathways. These findings suggest that phage therapy induces protective immunometabolic adaptations beyond its direct antibacterial effects, thereby providing an ecologically sustainable alternative to antibiotics for managing bacterial diseases in shrimp aquaculture. Full article
(This article belongs to the Special Issue Healthy Aquaculture and Disease Control)
Show Figures

Figure 1

11 pages, 275 KiB  
Article
Polygenic Score for Body Mass Index Is Associated with Weight Loss and Lipid Outcomes After Metabolic and Bariatric Surgery
by Luana Aldegheri, Chiara Cipullo, Natalia Rosso, Eulalia Catamo, Biagio Casagranda, Pablo Giraudi, Nicolò de Manzini, Silvia Palmisano and Antonietta Robino
Int. J. Mol. Sci. 2025, 26(15), 7337; https://doi.org/10.3390/ijms26157337 - 29 Jul 2025
Viewed by 264
Abstract
Metabolic and bariatric surgery (MBS) is an effective treatment for severe obesity, though individual responses vary widely, partly due to genetic predisposition. This study investigates the association of a body mass index (BMI) polygenic score (PGS) with weight loss and metabolic outcomes following [...] Read more.
Metabolic and bariatric surgery (MBS) is an effective treatment for severe obesity, though individual responses vary widely, partly due to genetic predisposition. This study investigates the association of a body mass index (BMI) polygenic score (PGS) with weight loss and metabolic outcomes following surgery. A cohort of 225 patients undergoing MBS was analyzed at baseline (T0), six (T6), and twelve (T12) months, with anthropometric and biochemical parameters recorded at each time point. Total weight loss (TWL) and excess weight loss (EWL) percentages were calculated. PGS was computed using the LDpred-grid Bayesian method. The mean age was 45.9 ± 9.4 years. Males had a higher baseline prevalence of type 2 diabetes (T2D) and comorbidities (p < 0.001). Linear regression analysis confirmed an association between PGS and baseline BMI (p = 0.012). Moreover, mediation analysis revealed that baseline BMI mediated the effect of the PGS on %TWL at T12, with an indirect effect (p-value = 0.018). In contrast, high-density lipoprotein-cholesterol (HDL-C) at T6 and triglycerides (TG) at T12 showed direct associations with the PGS (p-value = 0.004 and p-value = 0.08, respectively), with no significant mediation by BMI. This study showed a BMI-mediated association of PGS with %TWL and a direct association with lipid changes, suggesting its potential integration into personalized obesity treatment. Full article
(This article belongs to the Special Issue Genetic and Molecular Mechanisms of Obesity)
21 pages, 7017 KiB  
Article
Chronic Heat Stress Caused Lipid Metabolism Disorder and Tissue Injury in the Liver of Huso dauricus via Oxidative-Stress-Mediated Ferroptosis
by Yining Zhang, Yutao Li, Ruoyu Wang, Sihan Wang, Bo Sun, Dingchen Cao, Zhipeng Sun, Weihua Lv, Bo Ma and Ying Zhang
Antioxidants 2025, 14(8), 926; https://doi.org/10.3390/antiox14080926 - 29 Jul 2025
Viewed by 144
Abstract
High-temperature stress has become an important factor that has restricted the aquaculture industry. Huso dauricus is a high-economic-value fish that has faced the threat of thermal stress. Based on this point, our investigation aimed to explore the detailed mechanism of the negative impacts [...] Read more.
High-temperature stress has become an important factor that has restricted the aquaculture industry. Huso dauricus is a high-economic-value fish that has faced the threat of thermal stress. Based on this point, our investigation aimed to explore the detailed mechanism of the negative impacts of heat stress on the liver metabolism functions in Huso dauricus. In this study, we set one control group (19 °C) and four high-temperature treatment groups (22 °C, 25 °C, 28 °C, 31 °C) with 40 fish in each group for continuous 53-day heat exposure. Histological analysis, biochemical detection, and transcriptome technology were used to explore the effects of heat stress on the liver structure and functions of juvenile Huso dauricus. It suggested heat-stress-induced obvious liver injury and reactive oxygen species accumulation in Huso dauricus with a time/temperature-dependent manner. Serum total protein, transaminase, and alkaline phosphatase activities showed significant changes under heat stress (p < 0.05). In addition, 6433 differentially expressed genes (DEGs) were identified based on the RNA-seq project. Gene Ontology enrichment analysis showed that various DEGs could be mapped to the lipid-metabolism-related terms. KEGG enrichment and immunohistochemistry analysis showed that ferroptosis and FoxO signaling pathways were significantly enriched (p < 0.05). These results demonstrated that thermal stress induced oxidative stress damage in the liver of juvenile Huso dauricus, which triggered lipid metabolism disorder and hepatocyte ferroptosis to disrupt normal liver functions. In conclusion, chronic thermal stress can cause antioxidant capacity imbalance in the liver of Huso dauricus to mediate the ferroptosis process, which would finally disturb the lipid metabolism homeostasis. In further research, it will be necessary to verify the detailed cellular signaling pathways that are involved in the heat-stress-induced liver function disorder response based on the in vitro experiment, while the multi-organ crosswalk mode under the thermal stress status is also essential for understanding the comprehensive mechanism of heat-stress-mediated negative effects on fish species. Full article
Show Figures

Figure 1

14 pages, 5364 KiB  
Article
Study on the Microbial Inactivation and Quality Assurance of Ultrasonic-Assisted Slightly Acidic Electrolyzed Water for Mirror Carp (Cyprinus carpio L.) Fillets During Refrigerated Storage
by Qiang Zhong, Xiufang Xia and Fangfei Li
Foods 2025, 14(15), 2652; https://doi.org/10.3390/foods14152652 - 29 Jul 2025
Viewed by 204
Abstract
The advancement of non-thermal disinfection technologies represents a critical pathway for ensuring food safety, meeting environmental sustainability requirements, and meeting consumer preferences for clean-label products. This study systematically evaluated the combined preservation effect of ultrasonic-assisted slightly acidic electrolyzed water (US+SAEW) on mirror carp [...] Read more.
The advancement of non-thermal disinfection technologies represents a critical pathway for ensuring food safety, meeting environmental sustainability requirements, and meeting consumer preferences for clean-label products. This study systematically evaluated the combined preservation effect of ultrasonic-assisted slightly acidic electrolyzed water (US+SAEW) on mirror carp fillets during refrigeration. Results demonstrated that US+SAEW exhibited superior antimicrobial efficacy compared to individual US or SAEW, achieving reductions of 0.73, 0.74, and 0.79 log CFU/g in total viable counts (TVC), Aeromonas bacteria, and lactic acid bacteria counts compared to the control, respectively. Furthermore, the combined intervention significantly suppressed microbial proliferation throughout the refrigeration period while simultaneously delaying protein and lipid degradation/oxidation induced by spoilage bacteria, thereby inhibiting the formation of alkaline nitrogenous compounds. Consequently, lower levels of pH, total volatile basic nitrogen (TVB-N), protein carbonyl, and thiobarbituric acid reactive substances (TBARS) were observed in US+SAEW compared to the other treatments. Multimodal characterization through low-field nuclear magnetic resonance (LF-NMR), texture, and color analysis confirmed that US+SAEW effectively preserved quality characteristics, extending the shelf life of mirror carp fillets by four days. This study provides a novel non-thermal preservation strategy that combines microbial safety maintenance with quality retention, offering particular advantages for thermolabile food. Full article
(This article belongs to the Special Issue Innovative Muscle Foods Preservation and Packaging Technologies)
Show Figures

Figure 1

Back to TopTop