Polygenic Score for Body Mass Index Is Associated with Weight Loss and Lipid Outcomes After Metabolic and Bariatric Surgery
Abstract
1. Introduction
2. Results
2.1. Sample Characteristics
2.2. Association of PGS with Weight Loss and Metabolic Outcomes
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Data
4.3. DNA Extraction and Genotyping
4.4. Quality Control, Imputation, and PGS Calculation
4.5. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maxim, M.; Soroceanu, R.P.; Vlăsceanu, V.I.; Platon, R.L.; Toader, M.; Miler, A.A.; Onofriescu, A.; Abdulan, I.M.; Ciuntu, B.-M.; Balan, G.; et al. Dietary Habits, Obesity, and Bariatric Surgery: A Review of Impact and Interventions. Nutrients 2025, 17, 474. [Google Scholar] [CrossRef] [PubMed]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 28 May 2025).
- Busebee, B.; Ghusn, W.; Cifuentes, L.; Acosta, A. Obesity: A Review of Pathophysiology and Classification. Mayo Clin. Proc. 2023, 98, 1842–1857. [Google Scholar] [CrossRef] [PubMed]
- Sjöström, L.; Narbro, K.; Sjöström, C.D.; Karason, K.; Larsson, B.; Wedel, H.; Lystig, T.; Sullivan, M.; Bouchard, C.; Carlsson, B.; et al. Effects of Bariatric Surgery on Mortality in Swedish Obese Subjects. N. Engl. J. Med. 2007, 357, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Adams, T.D.; Davidson, L.E.; Litwin, S.E.; Kim, J.; Kolotkin, R.L.; Nanjee, M.N.; Gutierrez, J.M.; Frogley, S.J.; Ibele, A.R.; Brinton, E.A.; et al. Weight and Metabolic Outcomes 12 Years after Gastric Bypass. N. Engl. J. Med. 2017, 377, 1143–1155. [Google Scholar] [CrossRef]
- Aderinto, N.; Olatunji, G.; Kokori, E.; Olaniyi, P.; Isarinade, T.; Yusuf, I.A. Recent Advances in Bariatric Surgery: A Narrative Review of Weight Loss Procedures. Ann. Med. Surg. 2023, 85, 6091–6104. [Google Scholar] [CrossRef]
- Mitchell, B.G.; Collier, S.A.; Gupta, N. Roux-En-Y Gastric Bypass. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Poublon, N.; Chidi, I.; Bethlehem, M.; Kuipers, E.; Gadiot, R.; Emous, M.; van Det, M.; Dunkelgrun, M.; Biter, U.; Apers, J. One Anastomosis Gastric Bypass vs. Roux-En-Y Gastric Bypass, Remedy for Insufficient Weight Loss and Weight Regain after Failed Restrictive Bariatric Surgery. Obes. Surg. 2020, 30, 3287–3294. [Google Scholar] [CrossRef]
- Arakkakunnel, J.; Grover, K. One Anastomosis Gastric Bypass and Mini Gastric Bypass. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Robert, M.; Poghosyan, T.; Maucort-Boulch, D.; Filippello, A.; Caiazzo, R.; Sterkers, A.; Khamphommala, L.; Reche, F.; Malherbe, V.; Torcivia, A.; et al. Efficacy and Safety of One Anastomosis Gastric Bypass versus Roux-En-Y Gastric Bypass at 5 Years (YOMEGA): A Prospective, Open-Label, Non-Inferiority, Randomised Extension Study. Lancet Diabetes Endocrinol. 2024, 12, 267–276. [Google Scholar] [CrossRef]
- Courcoulas, A.P.; Goodpaster, B.H.; Eagleton, J.K.; Belle, S.H.; Kalarchian, M.A.; Lang, W.; Toledo, F.G.S.; Jakicic, J.M. Surgical vs Medical Treatments for Type 2 Diabetes Mellitus: A Randomized Clinical Trial. JAMA Surg. 2014, 149, 707–715. [Google Scholar] [CrossRef]
- Arterburn, D.E.; Telem, D.A.; Kushner, R.F.; Courcoulas, A.P. Benefits and Risks of Bariatric Surgery in Adults: A Review. JAMA 2020, 324, 879–887. [Google Scholar] [CrossRef]
- Loos, R.J.F.; Yeo, G.S.H. The Genetics of Obesity: From Discovery to Biology. Nat. Rev. Genet. 2022, 23, 120–133. [Google Scholar] [CrossRef]
- Khera, A.V.; Chaffin, M.; Wade, K.H.; Zahid, S.; Brancale, J.; Xia, R.; Distefano, M.; Senol-Cosar, O.; Haas, M.E.; Bick, A.; et al. Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood. Cell 2019, 177, 587–596.e9. [Google Scholar] [CrossRef] [PubMed]
- Khera, A.V.; Chaffin, M.; Aragam, K.G.; Haas, M.E.; Roselli, C.; Choi, S.H.; Natarajan, P.; Lander, E.S.; Lubitz, S.A.; Ellinor, P.T.; et al. Genome-Wide Polygenic Scores for Common Diseases Identify Individuals with Risk Equivalent to Monogenic Mutations. Nat. Genet. 2018, 50, 1219–1224. [Google Scholar] [CrossRef] [PubMed]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic Studies of Body Mass Index Yield New Insights for Obesity Biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, M.; Okada, Y.; Kanai, M.; Takahashi, A.; Momozawa, Y.; Ikeda, M.; Iwata, N.; Ikegawa, S.; Hirata, M.; Matsuda, K.; et al. Genome-Wide Association Study Identifies 112 New Loci for Body Mass Index in the Japanese Population. Nat. Genet. 2017, 49, 1458–1467. [Google Scholar] [CrossRef]
- Yengo, L.; Sidorenko, J.; Kemper, K.E.; Zheng, Z.; Wood, A.R.; Weedon, M.N.; Frayling, T.M.; Hirschhorn, J.; Yang, J.; Visscher, P.M.; et al. Meta-Analysis of Genome-Wide Association Studies for Height and Body Mass Index in ~700000 Individuals of European Ancestry. Hum. Mol. Genet. 2018, 27, 3641–3649. [Google Scholar] [CrossRef]
- Aasbrenn, M.; Schnurr, T.M.; Have, C.T.; Svendstrup, M.; Hansen, D.L.; Worm, D.; Balslev-Harder, M.; Hollensted, M.; Grarup, N.; Burgdorf, K.S.; et al. Genetic Determinants of Weight Loss After Bariatric Surgery. Obes. Surg. 2019, 29, 2554–2561. [Google Scholar] [CrossRef]
- Peña, E.; Mas-Bermejo, P.; Lecube, A.; Ciudin, A.; Arenas, C.; Simó, R.; Rigla, M.; Caixàs, A.; Rosa, A. Use of Polygenic Risk Scores to Assess Weight Loss after Bariatric Surgery: A 5-Year Follow-up Study. J. Gastrointest. Surg. 2024, 28, 1400–1405. [Google Scholar] [CrossRef]
- German, J.; Cordioli, M.; Tozzo, V.; Urbut, S.; Arumäe, K.; Smit, R.A.J.; Lee, J.; Li, J.H.; Janucik, A.; Ding, Y.; et al. Association between Plausible Genetic Factors and Weight Loss from GLP1-RA and Bariatric Surgery. Nat. Med. 2025, 31, 2269–2276. [Google Scholar] [CrossRef]
- Sarzynski, M.A.; Jacobson, P.; Rankinen, T.; Carlsson, B.; Sjöström, L.; Bouchard, C.; Carlsson, L.M.S. Associations of Markers in 11 Obesity Candidate Genes with Maximal Weight Loss and Weight Regain in the SOS Bariatric Surgery Cases. Int. J. Obes. 2011, 35, 676–683. [Google Scholar] [CrossRef]
- Still, C.D.; Wood, G.C.; Chu, X.; Manney, C.; Strodel, W.; Petrick, A.; Gabrielsen, J.; Mirshahi, T.; Argyropoulos, G.; Seiler, J.; et al. Clinical Factors Associated with Weight Loss Outcomes after Roux-En-Y Gastric Bypass Surgery. Obesity 2014, 22, 888–894. [Google Scholar] [CrossRef]
- Schauer, P.R.; Bhatt, D.L.; Kirwan, J.P.; Wolski, K.; Aminian, A.; Brethauer, S.A.; Navaneethan, S.D.; Singh, R.P.; Pothier, C.E.; Nissen, S.E.; et al. Bariatric Surgery versus Intensive Medical Therapy for Diabetes—5-Year Outcomes. N. Engl. J. Med. 2017, 376, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Rubino, F.; Nathan, D.M.; Eckel, R.H.; Schauer, P.R.; Alberti, K.G.M.M.; Zimmet, P.Z.; Del Prato, S.; Ji, L.; Sadikot, S.M.; Herman, W.H.; et al. Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations. Diabetes Care 2016, 39, 861–877. [Google Scholar] [CrossRef] [PubMed]
- Brethauer, S.A.; Kim, J.; el Chaar, M.; Papasavas, P.; Eisenberg, D.; Rogers, A.; Ballem, N.; Kligman, M.; Kothari, S. ASMBS Clinical Issues Committee Standardized Outcomes Reporting in Metabolic and Bariatric Surgery. Surg. Obes. Relat. Dis. 2015, 11, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Magro, D.O.; Geloneze, B.; Delfini, R.; Pareja, B.C.; Callejas, F.; Pareja, J.C. Long-Term Weight Regain after Gastric Bypass: A 5-Year Prospective Study. Obes. Surg. 2008, 18, 648–651. [Google Scholar] [CrossRef]
- Rader, D.J.; Hovingh, G.K. HDL and Cardiovascular Disease. Lancet 2014, 384, 618–625. [Google Scholar] [CrossRef]
- Cadby, G.; Melton, P.E.; McCarthy, N.S.; Almeida, M.; Williams-Blangero, S.; Curran, J.E.; VandeBerg, J.L.; Hui, J.; Beilby, J.; Musk, A.W.; et al. Pleiotropy of Cardiometabolic Syndrome with Obesity-Related Anthropometric Traits Determined Using Empirically Derived Kinships from the Busselton Health Study. Hum. Genet. 2018, 137, 45–53. [Google Scholar] [CrossRef]
- Ke, J.; Gao, W.; Wang, B.; Cao, W.; Lv, J.; Yu, C.; Huang, T.; Sun, D.; Liao, C.; Pang, Y.; et al. Exploring the Genetic Association between Obesity and Serum Lipid Levels Using Bivariate Methods. Twin Res. Hum. Genet. 2022, 25, 234–244. [Google Scholar] [CrossRef]
- Risi, R.; Rossini, G.; Tozzi, R.; Pieralice, S.; Monte, L.; Masi, D.; Castagneto-Gissey, L.; Gallo, I.F.; Strigari, L.; Casella, G.; et al. Sex Difference in the Safety and Efficacy of Bariatric Procedures: A Systematic Review and Meta-Analysis. Surg. Obes. Relat. Dis. 2022, 18, 983–996. [Google Scholar] [CrossRef]
- Kantowski, T.; Schulze zur Wiesch, C.; Aberle, J.; Lautenbach, A. Obesity Management: Sex-Specific Considerations. Arch. Gynecol. Obstet. 2024, 309, 1745–1752. [Google Scholar] [CrossRef]
- Lin, S.; Guan, W.; Yang, N.; Zang, Y.; Liu, R.; Liang, H. Short-Term Outcomes of Sleeve Gastrectomy plus Jejunojejunal Bypass: A Retrospective Comparative Study with Sleeve Gastrectomy and Roux-En-Y Gastric Bypass in Chinese Patients with BMI ≥ 35 kg/m2. Obes. Surg. 2019, 29, 1352–1359. [Google Scholar] [CrossRef]
- Courcoulas, A.P.; King, W.C.; Belle, S.H.; Berk, P.; Flum, D.R.; Garcia, L.; Gourash, W.; Horlick, M.; Mitchell, J.E.; Pomp, A.; et al. Seven-Year Weight Trajectories and Health Outcomes in the Longitudinal Assessment of Bariatric Surgery (LABS) Study. JAMA Surg. 2018, 153, 427–434. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-Generation PLINK: Rising to the Challenge of Larger and Richer Datasets. GigaScience 2015, 4, s13742-015-0047–0048. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Loh, P.-R.; Danecek, P.; Palamara, P.F.; Fuchsberger, C.; Reshef, Y.A.; Finucane, H.K.; Schoenherr, S.; Forer, L.; McCarthy, S.; Abecasis, G.R.; et al. Reference-Based Phasing Using the Haplotype Reference Consortium Panel. Nat. Genet. 2016, 48, 1443–1448. [Google Scholar] [CrossRef] [PubMed]
- Rubinacci, S.; Delaneau, O.; Marchini, J. Genotype Imputation Using the Positional Burrows Wheeler Transform. PLoS Genet. 2020, 16, e1009049. [Google Scholar] [CrossRef] [PubMed]
- Cocca, M.; Barbieri, C.; Concas, M.P.; Robino, A.; Brumat, M.; Gandin, I.; Trudu, M.; Sala, C.F.; Vuckovic, D.; Girotto, G.; et al. A Bird’s-Eye View of Italian Genomic Variation through Whole-Genome Sequencing. Eur. J. Hum. Genet. 2020, 28, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Privé, F.; Arbel, J.; Vilhjálmsson, B.J. LDpred2: Better, Faster, Stronger. Bioinformatics 2021, 36, 5424–5431. [Google Scholar] [CrossRef]
- Loh, P.-R.; Kichaev, G.; Gazal, S.; Schoech, A.P.; Price, A.L. Mixed-Model Association for Biobank-Scale Datasets. Nat. Genet. 2018, 50, 906–908. [Google Scholar] [CrossRef]
- Studio: Integrated Development Environment for R. Posit Software, PBC: Boston, MA, USA, 2022.
Characteristics | All (n = 225) | Males (n = 59) | Females (n = 166) | p-Value |
---|---|---|---|---|
Age (mean ± SD) | 45.9 ± 9.4 | 47.0 ± 9.1 | 45.5 ± 9.5 | 0.24 |
Surgery (%) RYGB OAGB SG | 39.1 27.1 33.8 | 36.0 25.0 39.0 | 40.4 27.7 31.9 | 0.61 |
Diabetes (% Yes) | 27.6 | 52.5 | 18.7 | <0.001 |
Comorbidities (% Yes) | 66.2 | 84.7 | 59.6 | <0.001 |
Characteristics | All | Males | Females | p-Value |
---|---|---|---|---|
BMI, kg/m2, mean ± SD | ||||
T0 | 42.8 ± 5.5 | 43.6 ± 5.5 | 42.5 ± 5.5 | 0.19 |
T6 | 31.5 ± 4.3 | 32 ± 4.3 | 31.3 ± 4.3 | 0.33 |
T12 | 28.8 ± 4.4 | 29.4 ± 3.6 | 28.5 ± 4.6 | 0.13 |
TWL, %, mean ± SD | ||||
T6 | 26.2 ± 6.2 | 26.3 ± 5.6 | 26.1 ± 6.3 | 0.45 |
T12 | 32.4 ± 8.5 | 31.7 ± 8.1 | 32.6 ± 8.7 | 0.49 |
EWL, %, mean ± SD | ||||
T6 | 66.2 ± 18.5 | 65.1 ± 19.0 | 66.6 ± 18.3 | 0.47 |
T12 | 81.7 ± 23.1 | 77.7 ± 20.0 | 83.0 ± 24.1 | 0.46 |
HDL-C, mg/dL, median (IQR) | ||||
T0 | 48 (15) | 40 (11.5) | 50 (13) | <0.001 |
T6 | 50 (17) | 44 (14) | 53 (16) | 0.002 |
T12 | 57 (17) | 50.5 (18.5) | 60 (16.2) | <0.001 |
LDL-C, mg/dL, median (IQR) | ||||
T0 | 133 (43.6) | 114.4 (53) | 140.2 (41.3) | <0.001 |
T6 | 102.2 (42) | 92.6 (45.9) | 104 (38.3) | 0.03 |
T12 | 98.6 (47.9) | 84.4 (47) | 101.2 (45) | 0.002 |
TC, mg/dL, median (IQR) | ||||
T0 | 209 (60) | 180 (60) | 215 (51) | <0.001 |
T6 | 174 (49.5) | 147 (56) | 178.5 (43) | 0.003 |
T12 | 175 (52.5) | 151 (50) | 181 (48) | <0.001 |
TG, mg/dL, median (IQR) | ||||
T0 | 117 (66) | 151 (104.5) | 113 (55.5) | 0.013 |
T6 | 91 (39) | 87 (50.5) | 93 (35.8) | 0.48 |
T12 | 83 (39.5) | 79 (34) | 84 (41) | 0.83 |
ALT, U/L, median (IQR) | ||||
T0 | 24 (17) | 32 (23) | 21 (13.8) | <0.001 |
T6 | 18 (10) | 21 (16) | 17 (8) | 0.08 |
T12 | 17 (13.3) | 21 (17.5) | 16 (12) | 0.07 |
AST, U/L, median (IQR) | ||||
T0 | 21 (10) | 26 (14.5) | 20 (8) | <0.001 |
T6 | 19 (8) | 21 (7.8) | 18 (7) | 0.018 |
T12 | 19 (9) | 22 (10) | 18 (7) | 0.007 |
GGT, U/L, median (IQR) | ||||
T0 | 24 (25) | 39 (33) | 21.5 (17.8) | <0.001 |
T6 | 15 (12.8) | 21.5 (18.8) | 12 (11) | <0.001 |
T12 | 15 (11.5) | 21 (20) | 13 (8.8) | <0.001 |
HbA1c, %, median (IQR) | ||||
T0 | 5.8 (0.7) | 6.2 (1.2) | 5.8 (0.5) | 0.014 |
T6 | 5.4 (0.6) | 5.4 (0.6) | 5.4 (0.6) | 0.90 |
T12 | 5.3 (0.6) | 5.2 (0.7) | 5.4 (0.5) | 0.24 |
Variable | Estimate | p-Value | 95% CI Lower | 95% CI Upper |
---|---|---|---|---|
%TWL T6 | ||||
ACME | −1.22 | 0.014 | −2.56 | −0.19 |
ADE | −1.07 | 0.542 | −4.97 | 3.03 |
Total effect | −2.29 | 0.278 | −6.23 | 1.76 |
Proportion mediated | 0.53 | 0.292 | −3.61 | 3.50 |
%TWL T12 | ||||
ACME | −2.62 | 0.018 | −5.08 | −0.53 |
ADE | −4.06 | 0.144 | −9.70 | 1.43 |
Total effect | −6.68 | 0.028 | −12.47 | −1.09 |
Proportion mediated | 0.39 | 0.046 | 0.030 | 1.48 |
%EWL T6 | ||||
ACME | 7.95 | 0.024 | 1.27 | 14.58 |
ADE | −3.73 | 0.482 | −13.62 | 6.42 |
Total effect | 4.22 | 0.524 | −7.65 | 16.31 |
Proportion mediated | 1.88 | 0.512 | −18.15 | 11.77 |
%EWL T12 | ||||
ACME | 7.31 | 0.012 | 1.55 | 14.47 |
ADE | −10.94 | 0.170 | −24.26 | 4.75 |
Total effect | −3.63 | 0.674 | −18.12 | 12.67 |
Proportion mediated | −2.01 | 0.686 | −9.95 | 10.85 |
Variable | Estimate | p-Value | 95% CI Lower | 95% CI Upper |
---|---|---|---|---|
ΔHDL-C T6 | ||||
ACME | 0.00007 | 0.95 | −0.046 | 0.04 |
ADE | 0.3 | 0.004 | 0.062 | 0.6 |
Total effect | 0.3 | <0.001 | 0.084 | 0.6 |
Proportion mediated | 0.0002 | 0.95 | −0.1 | 0.3 |
ΔHDL-C T12 | ||||
ACME | −0.02 | 0.34 | −0.08 | 0.015 |
ADE | 0.17 | 0.12 | −0.03 | 0.46 |
Total effect | 0.15 | 0.14 | −0.04 | 0.41 |
Proportion mediated | −0.13 | 0.4 | −0.8 | 0.78 |
ΔLDL-C T6 | ||||
ACME | −0.01 | 0.78 | −0.096 | 0.037 |
ADE | 0.4 | 0.076 | −0.029 | 0.998 |
Total effect | 0.4 | 0.058 | −0.007 | 0.95 |
Proportion mediated | −0.028 | 0.73 | −0.28 | 0.34 |
ΔLDL-C T12 | ||||
ACME | 0.024 | 0.28 | −0.016 | 0.08 |
ADE | −0.073 | 0.59 | −0.32 | 0.18 |
Total effect | −0.048 | 0.73 | −0.29 | 0.2 |
Proportion mediated | −0.5 | 0.82 | −3.54 | 2.5 |
ΔTG T6 | ||||
ACME | −0.003 | 0.89 | −0.057 | 0.048 |
ADE | −0.19 | 0.21 | −0.47 | 0.11 |
Total effect | −0.2 | 0.18 | −0.47 | 0.09 |
Proportion mediated | 0.016 | 0.98 | −1.1 | 0.9 |
ΔTG T12 | ||||
ACME | 0.056 | 0.082 | −0.0056 | 0.15 |
ADE | −0.34 | 0.008 | −0.6 | −0.096 |
Total effect | −0.3 | 0.026 | −0.55 | −0.04 |
Proportion mediated | −0.18 | 0.108 | −1.15 | 0.034 |
ΔTC T6 | ||||
ACME | 0.008 | 0.54 | −0.02 | 0.04 |
ADE | 0.068 | 0.48 | −0.09 | 0.25 |
Total effect | 0.075 | 0.37 | −0.08 | 0.25 |
Proportion mediated | 0.1 | 0.8 | −1.7 | 1.88 |
ΔTC T12 | ||||
ACME | −0.004 | 0.90 | −0.063 | 0.038 |
ADE | 0.025 | 0.78 | −0.16 | 0.25 |
Total effect | 0.02 | 0.79 | −0.16 | 0.21 |
Proportion mediated | −0.2 | 0.81 | −3.3 | 2.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldegheri, L.; Cipullo, C.; Rosso, N.; Catamo, E.; Casagranda, B.; Giraudi, P.; de Manzini, N.; Palmisano, S.; Robino, A. Polygenic Score for Body Mass Index Is Associated with Weight Loss and Lipid Outcomes After Metabolic and Bariatric Surgery. Int. J. Mol. Sci. 2025, 26, 7337. https://doi.org/10.3390/ijms26157337
Aldegheri L, Cipullo C, Rosso N, Catamo E, Casagranda B, Giraudi P, de Manzini N, Palmisano S, Robino A. Polygenic Score for Body Mass Index Is Associated with Weight Loss and Lipid Outcomes After Metabolic and Bariatric Surgery. International Journal of Molecular Sciences. 2025; 26(15):7337. https://doi.org/10.3390/ijms26157337
Chicago/Turabian StyleAldegheri, Luana, Chiara Cipullo, Natalia Rosso, Eulalia Catamo, Biagio Casagranda, Pablo Giraudi, Nicolò de Manzini, Silvia Palmisano, and Antonietta Robino. 2025. "Polygenic Score for Body Mass Index Is Associated with Weight Loss and Lipid Outcomes After Metabolic and Bariatric Surgery" International Journal of Molecular Sciences 26, no. 15: 7337. https://doi.org/10.3390/ijms26157337
APA StyleAldegheri, L., Cipullo, C., Rosso, N., Catamo, E., Casagranda, B., Giraudi, P., de Manzini, N., Palmisano, S., & Robino, A. (2025). Polygenic Score for Body Mass Index Is Associated with Weight Loss and Lipid Outcomes After Metabolic and Bariatric Surgery. International Journal of Molecular Sciences, 26(15), 7337. https://doi.org/10.3390/ijms26157337