Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (782)

Search Parameters:
Keywords = total investment cost

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6168 KiB  
Article
Valorization of Sugarcane Bagasse in Thailand: An Economic Analysis of Ethanol and Co-Product Recovery via Organosolv Fractionation
by Suphalerk Khaowdang, Nopparat Suriyachai, Saksit Imman, Nathiya Kreetachat, Santi Chuetor, Surachai Wongcharee, Kowit Suwannahong, Methawee Nukunudompanich and Torpong Kreetachat
Sustainability 2025, 17(15), 7145; https://doi.org/10.3390/su17157145 - 7 Aug 2025
Abstract
A comprehensive techno-economic assessment was undertaken to determine the viability of bioethanol production from sugarcane bagasse in Thailand through organosolv fractionation, incorporating three distinct catalytic systems: sulfuric acid, formic acid, and sodium methoxide. Rigorous process simulations were executed using Aspen Plus, facilitating the [...] Read more.
A comprehensive techno-economic assessment was undertaken to determine the viability of bioethanol production from sugarcane bagasse in Thailand through organosolv fractionation, incorporating three distinct catalytic systems: sulfuric acid, formic acid, and sodium methoxide. Rigorous process simulations were executed using Aspen Plus, facilitating the derivation of detailed mass and energy balances, which served as the foundational input for downstream cost modeling. Economic performance metrics, including the total annualized cost and minimum ethanol selling price, were systematically quantified for each scenario. Among the evaluated configurations, the formic acid-catalyzed organosolv system exhibited superior techno-economic attributes, achieving the lowest unit production costs of 1.14 USD/L for ethanol and 1.84 USD/kg for lignin, corresponding to an estimated ethanol selling price of approximately 1.14 USD/L. This favorable outcome was attained with only moderate capital intensity, indicating a well-balanced trade-off between operational efficiency and investment burden. Conversely, the sodium methoxide-based process configuration imposed the highest economic burden, with a TAC of 15.27 million USD/year, culminating in a markedly elevated MESP of 5.49 USD/kg (approximately 4.33 USD/L). The sulfuric acid-driven system demonstrated effective delignification performance. Sensitivity analysis revealed that reagent procurement costs exert the greatest impact on TAC variation, highlighting chemical expenditure as the key economic driver. These findings emphasize the critical role of solvent choice, catalytic performance, and process integration in improving the cost-efficiency of lignocellulosic ethanol production. Among the examined options, the formic acid-based organosolv process stands out as the most economically viable for large-scale implementation within Thailand’s bioeconomy. Full article
Show Figures

Figure 1

15 pages, 425 KiB  
Article
Game-Optimization Modeling of Shadow Carbon Pricing and Low-Carbon Transition in the Power Sector
by Guangzeng Sun, Bo Yuan, Han Zhang, Peng Xia, Cong Wu and Yichun Gong
Energies 2025, 18(15), 4173; https://doi.org/10.3390/en18154173 - 6 Aug 2025
Abstract
Under China’s ‘Dual Carbon’ strategy, the power sector plays a central role in achieving carbon neutrality. This study develops a bi-level game-optimization model involving the government, power producers, and technology suppliers to explore the dynamic coordination between shadow carbon pricing and emission trajectories. [...] Read more.
Under China’s ‘Dual Carbon’ strategy, the power sector plays a central role in achieving carbon neutrality. This study develops a bi-level game-optimization model involving the government, power producers, and technology suppliers to explore the dynamic coordination between shadow carbon pricing and emission trajectories. The upper-level model, guided by the government, focuses on minimizing total costs, including emission reduction costs, technological investments, and operational costs, by dynamically adjusting emission targets and shadow carbon prices. The lower-level model employs evolutionary game theory to simulate the adaptive behaviors and strategic interactions among power producers, regulatory authorities, and technology suppliers. Three representative uncertainty scenarios, disruptive technological breakthroughs, major policy interventions, and international geopolitical shifts, are incorporated to evaluate system robustness. Simulation results indicate that an optimistic scenario is characterized by rapid technological advancement and strong policy incentives. Conversely, under a pessimistic scenario with sluggish technology development and weak regulatory frameworks, there are substantially higher transition costs. This research uniquely contributes by explicitly modeling dynamic feedback between policy and stakeholder behavior under multiple uncertainties, highlighting the critical roles of innovation-driven strategies and proactive policy interventions in shaping effective, resilient, and cost-efficient carbon pricing and low-carbon transition pathways in the power sector. Full article
Show Figures

Figure 1

36 pages, 5151 KiB  
Article
Flexibility Resource Planning and Stability Optimization Methods for Power Systems with High Penetration of Renewable Energy
by Haiteng Han, Xiangchen Jiang, Yang Cao, Xuanyao Luo, Sheng Liu and Bei Yang
Energies 2025, 18(15), 4139; https://doi.org/10.3390/en18154139 - 4 Aug 2025
Viewed by 180
Abstract
With the accelerating global transition toward sustainable energy systems, power grids with a high share of renewable energy face increasing challenges due to volatility and uncertainty, necessitating advanced flexibility resource planning and stability optimization strategies. This paper presents a comprehensive distribution network planning [...] Read more.
With the accelerating global transition toward sustainable energy systems, power grids with a high share of renewable energy face increasing challenges due to volatility and uncertainty, necessitating advanced flexibility resource planning and stability optimization strategies. This paper presents a comprehensive distribution network planning framework that coordinates and integrates multiple types of flexibility resources through joint optimization and network reconfiguration to enhance system adaptability and operational resilience. A novel virtual network coupling modeling approach is proposed to address topological constraints during network reconfiguration, ensuring radial operation while allowing rapid topology adjustments to isolate faults and restore power supply. Furthermore, to mitigate the uncertainty and fault risks associated with extreme weather events, a CVaR-based risk quantification framework is incorporated into a bi-level optimization model, effectively balancing investment costs and operational risks under uncertainty. In this model, the upper-level planning stage optimizes the siting and sizing of flexibility resources, while the lower-level operational stage coordinates real-time dispatch strategies through demand response, energy storage operation, and dynamic network reconfiguration. Finally, a hybrid SA-PSO algorithm combined with conic programming is employed to enhance computational efficiency while ensuring high solution quality for practical system scales. Case study analyses demonstrate that, compared to single-resource configurations, the proposed coordinated planning of multiple flexibility resources can significantly reduce the total system cost and markedly improve system resilience under fault conditions. Full article
(This article belongs to the Special Issue Analysis and Control of Power System Stability)
20 pages, 2735 KiB  
Article
Techno-Economic Assessment of Electrification and Hydrogen Pathways for Optimal Solar Integration in the Glass Industry
by Lorenzo Miserocchi and Alessandro Franco
Solar 2025, 5(3), 35; https://doi.org/10.3390/solar5030035 - 1 Aug 2025
Viewed by 116
Abstract
Direct electrification and hydrogen utilization represent two key pathways for decarbonizing the glass industry, with their effectiveness subject to adequate furnace design and renewable energy availability. This study presents a techno-economic assessment for optimal solar energy integration in a representative 300 t/d oxyfuel [...] Read more.
Direct electrification and hydrogen utilization represent two key pathways for decarbonizing the glass industry, with their effectiveness subject to adequate furnace design and renewable energy availability. This study presents a techno-economic assessment for optimal solar energy integration in a representative 300 t/d oxyfuel container glass furnace with a specific energy consumption of 4.35 GJ/t. A mixed-integer linear programming formulation is developed to evaluate specific melting costs, carbon emissions, and renewable energy self-consumption and self-production rates across three scenarios: direct solar coupling, battery storage, and a hydrogen-based infrastructure. Battery storage achieves the greatest reductions in specific melting costs and emissions, whereas hydrogen integration minimizes electricity export to the grid. By incorporating capital investment considerations, the study quantifies the cost premiums and capacity requirements under varying decarbonization targets. A combination of 30 MW of solar plant and 9 MW of electric boosting enables the realization of around 30% carbon reduction while increasing total costs by 25%. Deeper decarbonization targets require more advanced systems, with batteries emerging as a cost-effective solution. These findings offer critical insights into the economic and environmental trade-offs, as well as the technical constraints associated with renewable energy adoption in the glass industry, providing a foundation for strategic energy and decarbonization planning. Full article
Show Figures

Figure 1

8 pages, 810 KiB  
Proceeding Paper
Towards Cost Modelling for Rapid Prototyping and Tooling Technology-Based Investment Casting Process for Development of Low-Cost Dies
by Samina Bibi and Muhammad Sajid
Mater. Proc. 2025, 23(1), 6; https://doi.org/10.3390/materproc2025023006 - 30 Jul 2025
Viewed by 35
Abstract
In precision manufacturing, selecting the most economically viable process is essential for low-volume, high-complexity applications. This study compares the machining process (MP), conventional investment casting (CIC), and rapid prototyping (RP) through a mathematical cost model based on the activity-based costing (ABC) approach. The [...] Read more.
In precision manufacturing, selecting the most economically viable process is essential for low-volume, high-complexity applications. This study compares the machining process (MP), conventional investment casting (CIC), and rapid prototyping (RP) through a mathematical cost model based on the activity-based costing (ABC) approach. The model captures detailed cost drivers across design, logistics, production, and environmental dimensions. Results show that MP incurs the highest production cost (94.45%) but minimal logistics (3.43%). CIC bears the highest total cost and significant production overhead (93.2%), while RIC achieves the lowest total cost, driven by major savings in production (84.6%) and labor. Although RIC has slightly higher logistics than MP, it demonstrates superior economic efficiency for small-batch, high-accuracy production. This study provides a unified quantitative framework for cost comparison and offers valuable guidance for manufacturers aiming to enhance efficiency, sustainability, and profitability across diverse fabrication strategies. Full article
Show Figures

Figure 1

33 pages, 709 KiB  
Article
Integrated Generation and Transmission Expansion Planning Through Mixed-Integer Nonlinear Programming in Dynamic Load Scenarios
by Edison W. Intriago Ponce and Alexander Aguila Téllez
Energies 2025, 18(15), 4027; https://doi.org/10.3390/en18154027 - 29 Jul 2025
Viewed by 253
Abstract
A deterministic Mixed-Integer Nonlinear Programming (MINLP) model for the Integrated Generation and Transmission Expansion Planning (IGTEP) problem is presented. The proposed framework is distinguished by its foundation on the complete AC power flow formulation, which is solved to global optimality using BARON, a [...] Read more.
A deterministic Mixed-Integer Nonlinear Programming (MINLP) model for the Integrated Generation and Transmission Expansion Planning (IGTEP) problem is presented. The proposed framework is distinguished by its foundation on the complete AC power flow formulation, which is solved to global optimality using BARON, a deterministic MINLP solver, which ensures the identification of truly optimal expansion strategies, overcoming the limitations of heuristic approaches that may converge to local optima. This approach is employed to establish a definitive, high-fidelity economic and technical benchmark, addressing the limitations of commonly used DC approximations and metaheuristic methods that often fail to capture the nonlinearities and interdependencies inherent in power system planning. The co-optimization model is formulated to simultaneously minimize the total annualized costs, which include investment in new generation and transmission assets, the operating costs of the entire generator fleet, and the cost of unsupplied energy. The model’s effectiveness is demonstrated on the IEEE 14-bus system under various dynamic load growth scenarios and planning horizons. A key finding is the model’s ability to identify the most economic expansion pathway; for shorter horizons, the optimal solution prioritizes strategic transmission reinforcements to unlock existing generation capacity, thereby deferring capital-intensive generation investments. However, over longer horizons with higher demand growth, the model correctly identifies the necessity for combined investments in both significant new generation capacity and further network expansion. These results underscore the value of an integrated, AC-based approach, demonstrating its capacity to reveal non-intuitive, economically superior expansion strategies that would be missed by decoupled or simplified models. The framework thus provides a crucial, high-fidelity benchmark for the validation of more scalable planning tools. Full article
Show Figures

Figure 1

30 pages, 906 KiB  
Article
The Impact of Carbon Trading Market on the Layout Decision of Renewable Energy Investment—Theoretical Modeling and Case Study
by Ning Yan, Shenhai Huang, Yan Chen, Daini Zhang, Qin Xu, Xiangyi Yang and Shiyan Wen
Energies 2025, 18(15), 3950; https://doi.org/10.3390/en18153950 - 24 Jul 2025
Viewed by 297
Abstract
The Carbon Emissions Trading System (ETS) serves as a market-based mechanism to drive renewable energy (RE) investments, yet its heterogeneous impacts on different stakeholders remain underexplored. This paper treats the carbon market as an exogenous shock and develops a multi-agent equilibrium model incorporating [...] Read more.
The Carbon Emissions Trading System (ETS) serves as a market-based mechanism to drive renewable energy (RE) investments, yet its heterogeneous impacts on different stakeholders remain underexplored. This paper treats the carbon market as an exogenous shock and develops a multi-agent equilibrium model incorporating carbon pricing, encompassing power generation enterprises, power transmission enterprises, power consumers, and the government, to analyze how carbon prices reshape RE investment layouts under dual-carbon goals. Using panel data from Zhejiang Province (2017–2022), a high-energy-consumption region with 25% net electricity imports, we simulate heterogeneous responses of agents to carbon price fluctuations (CNY 50–250/ton). The results show that RE on-grid electricity increases (+0.55% to +2.89%), while thermal power declines (–4.98% to −15.39%) on the generation side. Transmission-side RE sales rise (+3.25% to +9.74%), though total electricity sales decrease (−0.49% to −2.22%). On the consumption side, RE self-generation grows (+2.12% to +5.93%), yet higher carbon prices reduce overall utility (−0.44% to −2.05%). Furthermore, external electricity integration (peaking at 28.5% of sales in 2020) alleviates provincial entities’ carbon cost pressure under high carbon prices. This study offers systematic insights for renewable energy investment decisions and policy optimization. Full article
Show Figures

Figure 1

19 pages, 1188 KiB  
Article
Incentive Scheme for Low-Carbon Travel Based on the Public–Private Partnership
by Yingtian Zhang, Gege Jiang and Anqi Chen
Mathematics 2025, 13(15), 2358; https://doi.org/10.3390/math13152358 - 23 Jul 2025
Viewed by 179
Abstract
This paper proposes an incentive scheme based on a public–private partnership (PPP) to encourage low-carbon travel behavior by inducing the mode choice shift from private cars to public transit. The scheme involves three key entities: travelers, the government, and the private sector. Travelers [...] Read more.
This paper proposes an incentive scheme based on a public–private partnership (PPP) to encourage low-carbon travel behavior by inducing the mode choice shift from private cars to public transit. The scheme involves three key entities: travelers, the government, and the private sector. Travelers can choose between private cars and public transit, producing different emissions. As the leader, the government aims to reduce total emission to a certain level with limited budgets. The private sector, as an intermediary, invests subsidies in low-carbon rewards to attract green travelers and benefits from a larger user pool. A two-layer multi-objective optimization model is proposed, which includes travel time, monetary cost, and emission. The objective of the upper level is to maximize the utilities of the private sector and minimize social costs to the government. The lower layer is the user equilibrium of the travelers. The numerical results obtained through heuristic algorithms demonstrate that the proposed scheme can achieve a triple-win situation, where all stakeholders benefit. Moreover, sensitivity analysis finds that prioritizing pollution control strategies will be beneficial to the government only if the unit pollution control cost coefficient is below a low threshold. Contrary to intuition, larger government subsidies do not necessarily lead to better promotion of low-carbon travel. Full article
Show Figures

Figure 1

20 pages, 7197 KiB  
Article
Simulation of Water–Energy–Food–Carbon Nexus in the Agricultural Production Process in Liaocheng Based on the System Dynamics (SD)
by Wenshuang Yuan, Hao Wang, Yuyu Liu, Song Han, Xin Cong and Zhenghe Xu
Sustainability 2025, 17(14), 6607; https://doi.org/10.3390/su17146607 - 19 Jul 2025
Viewed by 384
Abstract
To achieve regional sustainable development, the low-carbon transformation of agriculture is essential, as it serves both as a significant carbon source and as a potential carbon sink. This study calculated the agricultural carbon emissions in Liaocheng from 2010 to 2022 by analyzing processes [...] Read more.
To achieve regional sustainable development, the low-carbon transformation of agriculture is essential, as it serves both as a significant carbon source and as a potential carbon sink. This study calculated the agricultural carbon emissions in Liaocheng from 2010 to 2022 by analyzing processes including crop cultivation, animal husbandry, and agricultural input. Additionally, a simulation model of the water–energy–food–carbon nexus (WEFC-Nexus) for Liaocheng’s agricultural production process was developed. Using Vensim PLE 10.0.0 software, this study constructed a WEFC-Nexus model encompassing four major subsystems: economic development, agricultural production, agricultural inputs, and water use. The model explored four policy scenarios: business-as-usual scenario (S1), ideal agricultural development (S2), strengthening agricultural investment (S3), and reducing agricultural input costs (S4). It also forecast the trends in carbon emissions and primary sector GDP under these different scenarios from 2023 to 2030. The conclusions were as follows: (1) Total agricultural carbon emissions exhibited a three-phase trajectory, namely, “rapid growth (2010–2014)–sharp decline (2015–2020)–gradual rebound (2021–2022)”, with sectoral contributions ranked as livestock farming (50%) > agricultural inputs (27%) > crop cultivation (23%). (2) The carbon emissions per unit of primary sector GDP (CEAG) for S2, S3, and S4 decreased by 8.86%, 5.79%, and 7.72%, respectively, compared to S1. The relationship between the carbon emissions under the four scenarios is S3 > S1 > S2 > S4. The relationship between the four scenarios in the primary sector GDP is S3 > S2 > S4 > S1. S2 can both control carbon emissions and achieve growth in primary industry output. Policy recommendations emphasize reducing chemical fertilizer use, optimizing livestock management, enhancing agricultural technology efficiency, and adjusting agricultural structures to balance economic development with environmental sustainability. Full article
Show Figures

Figure 1

18 pages, 1945 KiB  
Article
Research on an Active Distribution Network Planning Strategy Considering Diversified Flexible Resource Allocation
by Minglei Jiang, Youqing Xu, Dachi Zhang, Yuanqi Liu, Qiushi Du, Xiaofeng Gao, Shiwei Qi and Hongbo Zou
Processes 2025, 13(7), 2254; https://doi.org/10.3390/pr13072254 - 15 Jul 2025
Viewed by 289
Abstract
When planning distributed intelligent power distribution networks, it is necessary to take into account the interests of various distributed generation (DG) operators and power supply enterprises, thereby diversifying and complicating planning models. Additionally, the integration of a high proportion of distributed resources has [...] Read more.
When planning distributed intelligent power distribution networks, it is necessary to take into account the interests of various distributed generation (DG) operators and power supply enterprises, thereby diversifying and complicating planning models. Additionally, the integration of a high proportion of distributed resources has triggered a transformation in the power flow pattern of active distribution networks, shifting from the traditional unidirectional flow mode to a bidirectional interactive mode. The intermittent and fluctuating operation modes of distributed photovoltaic and wind power generation have also increased the difficulty of distribution network planning. To address the aforementioned challenges, this paper proposes an active distribution network planning strategy that considers the allocation of diverse flexible resources, exploring scheduling flexibility from both the power supply side and the load side. Firstly, a bi-level optimization model integrating planning and operation is constructed, where the upper-level model determines the optimal capacity of investment and construction equipment, and the lower-level model formulates an economic dispatching scheme. Through iterative solving of the upper and lower levels, the final planning strategy is determined. Meanwhile, to reduce the complexity of problem-solving, this paper employs an improved PSO-CS hybrid algorithm for iterative optimization. Finally, the effectiveness and feasibility of the proposed algorithm are demonstrated through validation using an improved IEEE-33-bus test system. Compared with conventional algorithms, the convergence speed of the method proposed in this paper can be improved by up to 21.4%, and the total investment cost can be reduced by up to 3.26%. Full article
(This article belongs to the Special Issue Applications of Smart Microgrids in Renewable Energy Development)
Show Figures

Figure 1

37 pages, 5333 KiB  
Review
The Potential of Microbial Fuel Cells as a Dual Solution for Sustainable Wastewater Treatment and Energy Generation: A Case Study
by Shajjadur Rahman Shajid, Monjur Mourshed, Md. Golam Kibria and Bahman Shabani
Energies 2025, 18(14), 3725; https://doi.org/10.3390/en18143725 - 14 Jul 2025
Viewed by 419
Abstract
Microbial fuel cells (MFCs) are bio-electrochemical systems that harness microorganisms to convert organic pollutants in wastewater directly into electricity, offering a dual solution for sustainable wastewater treatment and renewable energy generation. This paper presents a holistic techno-economic and environmental feasibility assessment of large-scale [...] Read more.
Microbial fuel cells (MFCs) are bio-electrochemical systems that harness microorganisms to convert organic pollutants in wastewater directly into electricity, offering a dual solution for sustainable wastewater treatment and renewable energy generation. This paper presents a holistic techno-economic and environmental feasibility assessment of large-scale MFC deployment in Dhaka’s industrial zone, Bangladesh, as a relevant case study. Here, treating 100,000 cubic meters of wastewater daily would require a capital investment of approximately USD 500 million, with a total project cost ranging between USD 307.38 million and 1.711 billion, depending on system configurations. This setup has an estimated theoretical energy recovery of 478.4 MWh/day and a realistic output of 382 MWh/day, translating to a per-unit energy cost of USD 0.2–1/kWh. MFCs show great potential for treating wastewater and addressing energy challenges. However, this paper explores remaining challenges, including high capital costs, electrode and membrane inefficiencies, and scalability issues. Full article
(This article belongs to the Special Issue A Circular Economy Perspective: From Waste to Energy)
Show Figures

Figure 1

21 pages, 4683 KiB  
Article
Economic and Sustainability Assessment of Floating Photovoltaic Systems in Irrigation Ponds: A Case Study from Alicante (Spain)
by María Inmaculada López-Ortiz, Joaquín Melgarejo-Moreno and José Alberto Redondo-Orts
Sustainability 2025, 17(13), 6212; https://doi.org/10.3390/su17136212 - 7 Jul 2025
Viewed by 497
Abstract
Environmental problems, along with the increasing energy demand and high electricity costs in the agricultural sector, justify the need to explore renewable energy sources in order to improve irrigation efficiency and sustainability. Therefore, the objective of this study is to analyse the feasibility [...] Read more.
Environmental problems, along with the increasing energy demand and high electricity costs in the agricultural sector, justify the need to explore renewable energy sources in order to improve irrigation efficiency and sustainability. Therefore, the objective of this study is to analyse the feasibility of installing floating photovoltaic panels in the irrigation ponds of irrigation communities (ICs) in the province of Alicante. To this end, a practical case study based on the operating data of a photovoltaic installation on an irrigation pond, which shows 31% self-consumption and a 27% reduction in energy costs, is presented. Based on these results, this type of installation has been considered for the rest of the ponds in the province of Alicante, with an estimated total investment of EUR 130 million and annual savings of EUR 23 million in energy costs. Additionally, barriers such as the initial investment and the need for public financing for large-scale implementation are identified. Finally, it is concluded that the adoption of floating photovoltaic energy represents a key opportunity to reduce dependence on fossil fuels, mitigate environmental impact, and promote the circular economy in the agricultural sector. Full article
Show Figures

Figure 1

19 pages, 273 KiB  
Article
The Impact of Automation and Digitalization in Hospital Medication Management: Economic Analysis in the European Countries
by Federico Filippo Orsini, Daniele Bellavia, Fabrizio Schettini and Emanuela Foglia
Healthcare 2025, 13(13), 1604; https://doi.org/10.3390/healthcare13131604 - 4 Jul 2025
Viewed by 457
Abstract
Background/Objectives: European healthcare systems are increasingly adopting automation technologies to improve efficiency. This study evaluates the economic viability of hospital automation and medication management digitalization. Methods: An economic evaluation was based on a standardized hospital model comprising 561 beds, representative of an average [...] Read more.
Background/Objectives: European healthcare systems are increasingly adopting automation technologies to improve efficiency. This study evaluates the economic viability of hospital automation and medication management digitalization. Methods: An economic evaluation was based on a standardized hospital model comprising 561 beds, representative of an average acute care hospital across EU27 + UK. For each technology, several cost items were estimated using country-specific parameters such as labor costs, medication error rates, healthcare expenditure, and money discount rate. The financial metrics (Return On Investment—ROI, Net Present Value—NPV, Payback Time—PBT) were first calculated at the hospital level. These results were then extrapolated to the national level by scaling the per-hospital estimates according to the total number of hospital beds reported in each country. Finally, national results were aggregated to derive the overall European impact. Results: The analysis estimated a total European investment of EUR 3.55 billion, with an average PBT of 4.46 years and annual savings of 1,96 billion. ROI averaged 167%, and the total NPV was 8.21 billion. A major saving driver was the reduction in Medication Administration Errors that has an impact of 37.2% on the total savings. Payback times ranged from 3 years in high-GDP countries, to 7 years in lower-GDP nations. Conclusions: These findings demonstrate how providing structured data on hospital automation benefits could support decision-making processes, highlighting the organizational and economic feasibility of the investment across different European national contexts. Full article
24 pages, 3552 KiB  
Article
Research on the Implementation of a Heat Pump in a District Heating System Operating with Gas Boiler and CHP Unit
by Damir Požgaj, Boris Delač, Branimir Pavković and Vedran Medica-Viola
Appl. Sci. 2025, 15(13), 7280; https://doi.org/10.3390/app15137280 - 27 Jun 2025
Viewed by 290
Abstract
Given the widespread use of gas-fired boilers and combined heat and power (CHP) units in existing district heating (DH) systems, this study investigates the integration of medium-scale heat pumps (HPs) into such configurations. Fifteen DH system variants were analysed, differing in installed HP [...] Read more.
Given the widespread use of gas-fired boilers and combined heat and power (CHP) units in existing district heating (DH) systems, this study investigates the integration of medium-scale heat pumps (HPs) into such configurations. Fifteen DH system variants were analysed, differing in installed HP capacity, operational strategies, and the synchronisation of heat and electricity production with thermal demand. A dynamic simulation model incorporating real-world equipment performance was developed to assess energy efficiency, environmental impact, and economic viability under three distinct energy price scenarios. The results demonstrate that an HP sized to 17% of the total heating capacity of the DH system achieves a 54% decrease in primary energy consumption and a 68% decrease in emissions compared to the base system. Larger HP capacities enhance environmental performance and increase the share of renewable energy but also entail higher investment. An economic analysis reveals that electricity-to-gas price ratios strongly influence the cost-effectiveness of HP integration. Under favourable electricity pricing conditions, systems with HP operational priority achieve the lowest levelized cost of heating. The most economically viable configuration consists of 600 kW HP and achieves a payback period of 4.7 years. The findings highlight the potential for HPs to decarbonize DH systems while emphasising the importance of market conditions and system design in ensuring economic feasibility. Full article
Show Figures

Figure 1

21 pages, 755 KiB  
Article
Exploring the Determinants of Energy Vulnerability in Micro-Enterprises: Insights from the Croatian Case Study
by Ivana Rogulj, Saša Žiković and Stavros Spyridakos
Sustainability 2025, 17(13), 5894; https://doi.org/10.3390/su17135894 - 26 Jun 2025
Viewed by 391
Abstract
Micro-enterprises are vital to the European economy, including in Croatia, where they make over 88% of the total number of businesses. Despite their significance, they face substantial energy vulnerability due to factors like small size, limited financial resources, and high energy costs. This [...] Read more.
Micro-enterprises are vital to the European economy, including in Croatia, where they make over 88% of the total number of businesses. Despite their significance, they face substantial energy vulnerability due to factors like small size, limited financial resources, and high energy costs. This paper investigates the determinants of energy vulnerability among Croatian micro-enterprises, employing a survey of 470 micro-enterprises. The study covers firms across all Croatian NUTS2 regions and ensures geographic and sectoral representativeness. Key findings reveal that enterprises with higher energy expenditures relative to revenue are most susceptible to energy vulnerability, which is aligned with our assumption. On the other hand, businesses that own their premises, have more employees, and have been operational longer are more likely to invest in energy efficiency measures, thereby reducing vulnerability. Notably, a significant proportion of micro-enterprises report that energy costs adversely affect their household finances, highlighting the nature of business and personal economic stability. The paper underscores the need for targeted policies and support mechanisms to enhance the energy-related resilience of micro-enterprises, considering their unique structural and financial constraints. Full article
(This article belongs to the Special Issue Tackling Energy Poverty and Vulnerability Through Energy Efficiency)
Show Figures

Figure 1

Back to TopTop