Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (136)

Search Parameters:
Keywords = ton-year accounting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1978 KB  
Article
Challenging the Circular Economy: Hidden Hazards of Disposable E-Cigarette Waste
by Iwona Pasiecznik, Kamil Banaszkiewicz, Mateusz Koczkodaj and Aleksandra Ciesielska
Sustainability 2026, 18(2), 961; https://doi.org/10.3390/su18020961 - 17 Jan 2026
Viewed by 272
Abstract
Waste electrical and electronic equipment (WEEE) is one of the fastest-growing waste streams globally. Disposable e-cigarettes are among the products that have gained popularity in recent years. Their complex construction and embedded lithium-ion batteries (LIBs) present environmental, safety, and resource recovery challenges. Despite [...] Read more.
Waste electrical and electronic equipment (WEEE) is one of the fastest-growing waste streams globally. Disposable e-cigarettes are among the products that have gained popularity in recent years. Their complex construction and embedded lithium-ion batteries (LIBs) present environmental, safety, and resource recovery challenges. Despite growing research interest, integrated analyses linking material composition with user disposal behavior remain limited. This study is the first to incorporate device-level mass balance, material contamination assessment, battery residual charge measurements, and user behavior to evaluate the waste management challenges of disposable e-cigarettes. A mass balance of twelve types of devices on the Polish market was performed. Plastics dominated in five devices, while non-ferrous metals prevailed in the others, depending on casing design. Materials contaminated with e-liquid residues accounted for 4.4–10.7% of device mass. Battery voltage measurements revealed that 25.6% of recovered LIBs retained a residual charge (greater than 2.5 V), posing a direct fire hazard during waste handling and treatment. Moreover, it was estimated that 7 to 12 tons of lithium are introduced annually into the Polish market via disposable e-cigarettes, highlighting substantial resource potential. Survey results showed that 46% of users disposed of devices in mixed municipal waste, revealing a knowledge–practice gap largely independent of gender or education. Integrating technical and social findings demonstrates that improper handling is a systemic issue. The findings support the relevance of eco-design requirements, such as modular casings for battery removal, alongside the enforcement of Extended Producer Responsibility (EPR) schemes. Current product fees (0.01–0.03 EUR/unit) remain insufficient to establish an effective collection infrastructure, highlighting a key systemic barrier. Full article
(This article belongs to the Special Issue Resource Management and Circular Economy Sustainability)
Show Figures

Figure 1

38 pages, 40159 KB  
Article
Hybrid-Energy-Powered Electrochemical Ocean Alkalinity Enhancement Model: Plant Operation, Cost, and Profitability
by James Salvador Niffenegger, Kaitlin Brunik, Katie Peterson, Andrew Simms, Tristen Myers Stewart, Jessica Cross and Michael Lawson
Clean Technol. 2026, 8(1), 12; https://doi.org/10.3390/cleantechnol8010012 - 9 Jan 2026
Viewed by 358
Abstract
Electrochemical ocean alkalinity enhancement is a form of marine carbon dioxide removal, a rapidly growing industry that is powered by efficient onshore or offshore energy sources. As more and larger deployments are being planned, it is important to consider how variable energy sources [...] Read more.
Electrochemical ocean alkalinity enhancement is a form of marine carbon dioxide removal, a rapidly growing industry that is powered by efficient onshore or offshore energy sources. As more and larger deployments are being planned, it is important to consider how variable energy sources like tidal energy can impact plant performance and costs. An open-source Python-based generalizable model for electrodialysis-based ocean alkalinity enhancement has been developed that can capture key system-level insights of the electrochemistry, ocean chemistry, acid disposal, and co-product creation of these plants under various conditions. The model additionally accounts for hybrid energy system performance profiles and costs via the National Laboratory of the Rockies’ H2Integrate tool. The model was used to analyze an example theoretical plant deployment in North Admiralty Inlet, including how the plant is impacted by the available energy sources in the region and the scale at which plant costs are covered by the co-products it generates, such as recycled concrete aggregates, without requiring carbon credits. The results show that the example plant could be profitable without carbon credits at commercial scales of 100,000 to 1 million tons of carbon dioxide removal per year, so long as it uses low-cost electricity sources and either sells acid or recovers recycled concrete aggregates with about 1 molar acid concentrations, though more research is needed to confirm these results. Full article
(This article belongs to the Topic CO2 Capture and Renewable Energy, 2nd Edition)
Show Figures

Figure 1

30 pages, 3551 KB  
Article
Research on Bayesian Hierarchical Spatio-Temporal Model for Pricing Bias of Green Bonds
by Yiran Liu and Hanshen Li
Sustainability 2026, 18(1), 455; https://doi.org/10.3390/su18010455 - 2 Jan 2026
Viewed by 274
Abstract
Driven by carbon neutrality policies, the cumulative issuance volume of the global green bond market has surpassed $2.5 trillion over the past five years, with China, as the second largest issuer, accounting for 15%. However, there exists a yield difference of up to [...] Read more.
Driven by carbon neutrality policies, the cumulative issuance volume of the global green bond market has surpassed $2.5 trillion over the past five years, with China, as the second largest issuer, accounting for 15%. However, there exists a yield difference of up to 0.8% for bonds with the same credit rating across different policy regions, and the premium level fluctuates dramatically with market cycles, severely restricting the efficiency of green resource allocation. This study innovatively constructs a Bayesian hierarchical spatiotemporal model framework to systematically analyze pricing deviations through a three-level data structure: the base level quantifies the impact of bond micro-characteristics (third-party certification reduces financing costs by 0.15%), the temporal level captures market dynamics using autoregressive processes (premium volatility increases by 50% during economic recessions), and the spatial level reveals policy regional dependencies using conditional autoregressive models (carbon trading pilot provinces and cities form premium sinkholes). The core breakthroughs are: 1. Designing spatiotemporal interaction terms to explicitly model the policy diffusion process, with empirical evidence showing that the green finance reform pilot zone policy has a radiation radius of 200 km within three years, leading to a 0.10% increase in premiums in neighboring provinces; 2. Quantifying the posterior distribution of parameters using the Markov Chain Monte Carlo algorithm, demonstrating that the posterior mean of the policy effect in pilot provinces is −0.211%, with a half-life of 0.75 years, and the residual effect in non-pilot provinces is only −0.042%; 3. Establishing a hierarchical shrinkage prior mechanism, which reduces prediction error by 41% compared to traditional models in out-of-sample testing. Key findings include: the contribution of policy pilots is −0.192%, surpassing the effect of issuer credit ratings, and a 10 yuan/ton increase in carbon price can sustainably reduce premiums by 0.117%. In 2021, the “dual carbon” policy contributed 32% to premium changes through spatiotemporal interaction channels. The research results provide quantitative tools for issuers to optimize financing timing, investors to identify cross-regional arbitrage, and regulators to assess policy coordination, promoting the transformation of the green bond market from an efficiency priority to equitable allocation paradigm. Full article
Show Figures

Figure 1

26 pages, 1990 KB  
Review
Recent Advances in Mitigating PourPoint Limitations of Biomass-Based Lubricants
by Zhenpeng Wang, Jingwen Wang, Zexin Li, Wencong Li, Lei Jiao, Yan Long and Yinan Hao
Lubricants 2025, 13(12), 524; https://doi.org/10.3390/lubricants13120524 - 30 Nov 2025
Cited by 1 | Viewed by 607
Abstract
As a key medium in industry, lubricating oil plays a significant role in reducing friction, cooling sealing and transmitting power, which directly affects equipment life and energy efficiency. Traditional mineral-based lubricating oils rely on non-renewable petroleum, and they have high energy consumption and [...] Read more.
As a key medium in industry, lubricating oil plays a significant role in reducing friction, cooling sealing and transmitting power, which directly affects equipment life and energy efficiency. Traditional mineral-based lubricating oils rely on non-renewable petroleum, and they have high energy consumption and poor biodegradability (<30%) during the production process. They can easily cause lasting pollution after leakage and have a high carbon footprint throughout their life cycle, making it difficult to meet the “double carbon” goal. Bio-based lubricating oil uses renewable resources such as cottonseed oil and waste grease as raw materials. This material offers three significant advantages: sustainable sourcing, environmental friendliness, and adjustable performance. Its biodegradation rate is over 80%, and it reduces carbon emissions by 50–90%. Moreover, we can control its properties through processes like hydrogenation, isomerization, and transesterification to ensure it complies with ISO 6743 and other relevant standards. However, natural oils and fats have regular molecular structure, high freezing point (usually > −10 °C), and easy precipitation of wax crystals at low temperature, which restricts their industrial application. In recent years, a series of modification studies have been carried out around “pour point depression-viscosity preservation”. Catalytic isomerization can reduce the freezing point to −42 °C while maintaining a high viscosity index. Epoxidation–ring-opening modification introduces branched chains or ether bonds, taking into account low-temperature fluidity and oxidation stability. The deep dewaxing-isomerization dewaxing process improves the base oil yield, and the freezing point drops by 30 °C. The synergistic addition of polymer pour point depressant and nanomaterials can further reduce the freezing point by 10–15 °C and improve the cryogenic pumping performance. The life cycle assessment shows that using the “zero crude oil” route of waste oil and green hydrogen, the carbon emission per ton of lubricating oil is only 0.32 t, and the cost gradually approaches the level of imported synthetic esters. In the future, with the help of biorefinery integration, enzyme catalytic modification and AI molecular design, it is expected to realize high-performance, low-cost, near-zero-carbon lubrication solutions and promote the green transformation of industry. Full article
Show Figures

Figure 1

25 pages, 5863 KB  
Article
Research on the Possibilities of Reusing Mixed Reclaimed Asphalt Materials with a Focus on the Circular Economy
by Martin Decký, Eva Remišová and Martin Samek
Appl. Sci. 2025, 15(22), 12004; https://doi.org/10.3390/app152212004 - 12 Nov 2025
Cited by 1 | Viewed by 733
Abstract
This article presents the results of a 10-year research study on the possibilities of implementing circular economy principles into the recovery of construction waste in road construction and paving traffic areas. According to Eurostat, construction waste accounts for approximately 25–30% of the total [...] Read more.
This article presents the results of a 10-year research study on the possibilities of implementing circular economy principles into the recovery of construction waste in road construction and paving traffic areas. According to Eurostat, construction waste accounts for approximately 25–30% of the total amount of waste produced in Europe. New legislative policies strongly support selective demolition and recycling with the aim of recycling at least 70% of construction waste. The subject of this research was mixed reclaimed asphalt material (MRAM) composed of 70% asphalt mixture, 10% aggregate, 10% concrete, and 10% soil. Isomorphic models and experimental sections made of MRAM showed that the required characteristics cannot be achieved when using MRAM without heating and compaction. When laying MRAM using a light dynamic plate and additional heating due to solar radiation, the LDD 100 device detected a 53% increase in the deformation modulus. On isomorphic MRAM models, the CBR test showed a 4-, 5-, and 14-times increase in the CBR value when the temperature was increased from 20 °C to 40, 50, and 70 °C. The laboratory results were confirmed by monitoring the surface condition of a local road rehabilitated between 2017 and 2025 using MRAM, where some sections showed the properties of semi-bound layers after eight years. The road surface was improved with a 20 cm layer of MRAM at an air temperature of 30 °C and compacted with a 10-ton smooth roller. The research results presented made it possible to create a proposal for a systematic approach to the evaluation of materials obtained from asphalt roads, optimized on the principles of the circular economy. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

16 pages, 1895 KB  
Article
Modernization of Hoisting Operations Through the Design of an Automated Skip Loading System—Enhancing Efficiency and Sustainability
by Keane Baulen Size, Rejoice Moyo, Richard Masethe, Tawanda Zvarivadza and Moshood Onifade
Mining 2025, 5(4), 62; https://doi.org/10.3390/mining5040062 - 4 Oct 2025
Viewed by 1296
Abstract
This study presents the design and validation of an automated skip loading system for vertical shaft hoisting operations, aimed at addressing inefficiencies in current manual systems that contribute to consistent underperformance in meeting daily production targets. Initial assessments revealed a task completion rate [...] Read more.
This study presents the design and validation of an automated skip loading system for vertical shaft hoisting operations, aimed at addressing inefficiencies in current manual systems that contribute to consistent underperformance in meeting daily production targets. Initial assessments revealed a task completion rate of 91.6%, largely due to delays and inaccuracies in manual ore loading and accounting. To resolve these challenges, an automated system was developed using a bin and conveyor mechanism integrated with a suite of industrial automation components, including a programmable logic controller (PLC), stepper motors, hydraulic cylinders, ultrasonic sensors, and limit switches. The system is designed to transport ore from the draw point, halt when one ton is detected, and activate the hoisting process automatically. Digital simulations demonstrated that the automated system reduced loading time by 12% and increased utilization by 16.6%, particularly by taking advantage of the 2 h post-blast idle period. Financial evaluation of the system revealed a positive Net Present Value (NPV) of $1,019,701, a return on investment (ROI) of 69.7% over four years, and a payback period of 2 years and 11 months. The study concludes that the proposed solution significantly improves operational efficiency and recommends further enhancements to the hoisting infrastructure to fully optimize performance. Full article
(This article belongs to the Special Issue Mine Automation and New Technologies, 2nd Edition)
Show Figures

Figure 1

31 pages, 10459 KB  
Article
Ship Air Emission and Their Air Quality Impacts in the Panama Canal Area: An Integrated AIS-Based Estimation During Hotelling Mode in Anchorage Zone
by Yongchan Lee, Youngil Park, Gaeul Kim, Jiye Yoo, Cesar Pinzon-Acosta, Franchesca Gonzalez-Olivardia, Edmanuel Cruz and Heekwan Lee
J. Mar. Sci. Eng. 2025, 13(10), 1888; https://doi.org/10.3390/jmse13101888 - 2 Oct 2025
Cited by 2 | Viewed by 1631
Abstract
This study presents an integrated assessment of anchorage-related emissions and air quality impacts in the Panama Canal region through Automatic Identification System (AIS) data, bottom-up emission estimation, and atmospheric dispersion modeling. One year of terrestrial AIS observations (July 2024–June 2025) captured 4641 vessels [...] Read more.
This study presents an integrated assessment of anchorage-related emissions and air quality impacts in the Panama Canal region through Automatic Identification System (AIS) data, bottom-up emission estimation, and atmospheric dispersion modeling. One year of terrestrial AIS observations (July 2024–June 2025) captured 4641 vessels with highly variable waiting times: mean 15.0 h, median 4.9 h, with maximum episodes exceeding 1000 h. Annual emissions totaled 1,390,000 tons of CO2, 20,500 tons of NOx, 4250 tons of SO2, 656 tons of PM10, and 603 tons of PM2.5, with anchorage activities contributing 497,000 tons of CO2, 7010 tons of NOx, 1520 tons of SO2, 232 tons of PM10, and 214 tons of PM2.5. Despite the main engines being shut down during anchorage, these activities consistently accounted for 34–36% of the total emissions across all pollutants. High-resolution emission mapping revealed hotspots concentrated in anchorage zones, port berths, and canal approaches. Dispersion simulations revealed strong meteorological control: northwesterly flows transported emissions offshore, sea–land breezes produced afternoon fumigation peaks affecting Panama City, and southerly winds generated widespread onshore impacts. These findings demonstrate that anchorage operations constitute a major source of shipping-related pollution, highlighting the need for operational efficiency improvements and meteorologically informed mitigation strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 733 KB  
Article
Neglected and Underutilized Fish Species: The Potential Loss of Value in the Italian Context
by Margherita Masi, Yari Vecchio, Emanuele Dolfi, Ernesto Simone Marrocco, Gizem Yeter, Francesca Troise, Laura Prandini, Federica Savini, Felice Panebianco, Annamaria Pandiscia, Elisabetta Bonerba, Valentina Terio, Tiziana Civera, Andrea Serraino and Federica Giacometti
Sustainability 2025, 17(19), 8808; https://doi.org/10.3390/su17198808 - 1 Oct 2025
Viewed by 1058
Abstract
This study investigates Italian fishery discards through the lens of neglected and underutilized species (NUS). It estimates the potential loss of value (PLoV) to identify pathways for sustainable valorization under the European Union landing obligation (LO). NUS were selected through a stakeholder focus [...] Read more.
This study investigates Italian fishery discards through the lens of neglected and underutilized species (NUS). It estimates the potential loss of value (PLoV) to identify pathways for sustainable valorization under the European Union landing obligation (LO). NUS were selected through a stakeholder focus group. Data regarding landings and discards were collected for the period 2020–2022 within the Italian Ministry of Agriculture, Food Sovereignty, and Forestry (MASAF) database. Among the three years, fleets landed roughly 130,400 tons annually, worth about €700 million, while discarding around 6200 tons yearly. This corresponds to an average PLoV of approximately €21.5 million. Most of the discarded quantity and value is concentrated in a few species. Atlantic Horse Mackerel stands out, accounting for nearly one-third of discarded biomass and about one-quarter of total PLoV. In 2020 and 2022, its discards even exceeded reported landings. A conservative valorization scenario for this single species indicates potential revenues of up to €7.5 million per year. Overall, these findings suggest that targeted NUS valorization could represent a way to diversify seafood consumption, alleviate pressure on common stocks, and buffer fishers’ incomes. This potential depends on ensuring traceability and safety, supported by pilots in processing, product development, and consumer acceptance. Full article
(This article belongs to the Special Issue Future Trends in Food Processing and Food Preservation Techniques)
Show Figures

Figure 1

21 pages, 5183 KB  
Article
Evaluating Ecological Contributions of Tree Assemblages in Urban Expressway Interchange Landscapes: A Case Study from Nanjing, China
by Mingxing Xu and Lu Ding
Forests 2025, 16(8), 1355; https://doi.org/10.3390/f16081355 - 20 Aug 2025
Cited by 1 | Viewed by 1090
Abstract
Urban expressway interchanges, though primarily engineered for traffic efficiency, also serve as crucial ecological nodes within urban landscapes. This study evaluates the ecological functions of arborous vegetation across four typical interchange configurations—cloverleaf, single trumpet, double trumpet, and irregular—along the Nanjing Ring Expressway. Using [...] Read more.
Urban expressway interchanges, though primarily engineered for traffic efficiency, also serve as crucial ecological nodes within urban landscapes. This study evaluates the ecological functions of arborous vegetation across four typical interchange configurations—cloverleaf, single trumpet, double trumpet, and irregular—along the Nanjing Ring Expressway. Using the i-Tree Eco model, we quantified key ecosystem services, including carbon sequestration and storage, air pollutant removal, and stormwater mitigation. Field surveys documented 7985 trees from 45 species, with the 10 most abundant accounting for over two-thirds of total individuals. Results revealed that the trees sequester around 115 tons of carbon annually and store nearly 1850 tons in total, equivalent to an estimated economic benefit of ¥5.8 million. Trees also removed more than 1.5 tons of air pollutants and intercepted nearly 2400 cubic meters of stormwater each year. Species such as Sophora japonica, Phoebe zhennan, and Cinnamomum camphora emerged as key contributors to ecological performance. Among interchange types, double trumpet configurations yielded the highest overall service value, while single trumpet interchanges demonstrated superior efficiency per unit area. These findings highlight the underutilized ecological potential of transport-adjacent green spaces and underscore the importance of species selection and spatial design in maximizing multifunctional benefits. Full article
(This article belongs to the Special Issue Ecosystem Services of Urban Forest)
Show Figures

Figure 1

18 pages, 1316 KB  
Article
Economy-Wide Material Flow Accounting: Application in the Italian Glass Industry
by Salik Ahmed, Marco Ciro Liscio, Andrea Pelaggi, Paolo Sospiro, Irene Voukkali and Antonis A. Zorpas
Sustainability 2025, 17(13), 6180; https://doi.org/10.3390/su17136180 - 5 Jul 2025
Viewed by 1404
Abstract
Italy supplies about one-seventh of the European Union’s total glass production, and the sector’s sizeable resource demands make it a linchpin of national industrial strategy. With growing environmental regulations and the push for resource efficiency, Material Flow Accounting has become essential for companies [...] Read more.
Italy supplies about one-seventh of the European Union’s total glass production, and the sector’s sizeable resource demands make it a linchpin of national industrial strategy. With growing environmental regulations and the push for resource efficiency, Material Flow Accounting has become essential for companies to stay compliant and advance sustainability. The investigation concentrates on Italy’s glass industry to clarify its material requirements, ecological footprint, and overall sustainability performance. STAN software v2, combined with an Economy-Wide Material Flow Accounting (EW-MFA) framework, models the national economy as a single integrated input–output system. By tracking each material stream from initial extraction to end-of-life, the analysis delivers a cradle-to-grave picture of the sector’s environmental impacts. During the 2021 production year, Italy’s glass makers drew on a total of 10.5 million tonnes (Mt) of material inputs, supplied 76% (7.9 Mt) from domestic quarries, and 24% (2.6 Mt) via imports. Outbound trade in finished glass removed 1.0 Mt, leaving 9.5 Mt recorded as Domestic Material Consumption (DMC). Within that balance, 6.6 Mt (63%) was locked into long-lived stock, whereas 2.9 Mt (28%) left the system as waste streams and airborne releases, including roughly 2.1 Mt of CO2. At present, the post-consumer cult substitutes only one-third of the furnace batch, signalling considerable scope for improved circularity. When benchmarked against EU-27 aggregates for 2021, Italy registers a NAS/DMI ratio of 0.63 (EU median 0.55) and a DPO/DMI ratio of 0.28 (EU 0.31), indicating a higher share of material retained in stock and slightly lower waste generated per ton of input. A detailed analysis of glass production identifies critical stages, environmental challenges, and areas for improvement. Quantitative data on material use, waste generation, and recycling rates reveal the industry’s environmental footprint. The findings emphasise Economy-Wide Material Flow Accounting’s value in evaluating and improving sustainability efforts, offering insights for policymakers and industry leaders to drive resource efficiency and sustainable resource management. Results help scholars and policymakers in the analysis of the Italian glass industry context, supporting in the data gathering, while also in the use of this methodology for other sectors. Full article
(This article belongs to the Collection Waste Management towards a Circular Economy Transition)
Show Figures

Figure 1

18 pages, 3210 KB  
Article
A Spatial Analysis of the Wind and Hydrogen Production in the Black Sea Basin
by Alexandra Ionelia Manolache and Florin Onea
Energies 2025, 18(11), 2936; https://doi.org/10.3390/en18112936 - 3 Jun 2025
Cited by 1 | Viewed by 1068
Abstract
The aim of the present work is to assess the wind and hydrogen production capacity of the Black Sea basin from a spatial point of view, by using reanalysis data that covers a 10-year interval (2015–2024). Based on the ERA5 data it was [...] Read more.
The aim of the present work is to assess the wind and hydrogen production capacity of the Black Sea basin from a spatial point of view, by using reanalysis data that covers a 10-year interval (2015–2024). Based on the ERA5 data it was possible to highlight the general distribution of the wind resources at 100 m height, with more consistent resources being noticed in the region of the Azov Sea or in the north-western sector of the Black Sea, where average values of 8.3 m/s are expected. Taking into account that at this moment in the Black Sea area there are no operational offshore wind farms, several generators ranging from 3 to 15 MW were considered for assessment. In this case, from a single turbine, we can expect values in the range of 11.04 GWh (3 MW system) and 89 GWh (15 MW system), respectively. As a next step, the electricity generated from each wind turbine was used to highlight the hydrogen production of several electrolysers systems (or PEMs). The equivalent number of PEMs was identified, and in some cases it was noticed that some devices will not reach their full capacity, while for smaller PEMs a single 10 MW wind turbine could support the operation of almost four modules. Regarding hydrogen output, a maximum of 1560 tons/year can be expected from the PEMs connected to a 15 MW wind turbine. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

25 pages, 3716 KB  
Article
Evolution Characteristics and Control Suggestions for Agricultural Non-Point Source Pollution in the Yellow River Basin of China
by Qilu Tan, Haoran Su and Yousheng Zhang
Water 2025, 17(11), 1626; https://doi.org/10.3390/w17111626 - 27 May 2025
Cited by 3 | Viewed by 906
Abstract
The Yellow River Basin in China is the region with the most severe agricultural non-point source pollution. The control of agricultural non-point source pollution is an important task for ecological protection and high-quality development in the Yellow River Basin at present and in [...] Read more.
The Yellow River Basin in China is the region with the most severe agricultural non-point source pollution. The control of agricultural non-point source pollution is an important task for ecological protection and high-quality development in the Yellow River Basin at present and in the near future. This paper takes the eight provinces located along the Yellow River, except Sichuan, as the research object. This study estimates the total amount, intensity, and structure of agricultural non-point source pollution from 2014 to 2023 by adopting quantitative methods such as the pollutant discharge coefficient method, the equivalent pollution load method, and so on. The results reveal that the total amount of non-point source pollution of the Yellow River Basin has risen from approx. 4.94 million tons in 2014 to approx. 7.45 million tons in 2023. However, the growth rate has decelerated over the past five years, and the pollution intensity has decreased by 15~40% on average. The characteristics of agricultural non-point source pollution presents as follows: chemical oxygen demand (COD) emissions have become the most significant pollutant, accounting for 90% of the total pollution; livestock and poultry breeding has become the main source of pollution; and the key areas of pollution have shifted from the lower reaches to the middle and upper reaches, but the regional differences have been narrowing, as measured by the Gini coefficient. An analysis of the Kuznets curve indicates that most of the provinces in the Yellow River Basin still depend on an extensive growth model characterized by high input, high emission, and low output. Finally, this paper proposes a classified governance and measurement system for regions and sources, aiming to enhance the agricultural non-point source pollution prevention and control system. It also advocates for accelerating the green transformation of agricultural production in the Yellow River Basin to achieve the rapid decoupling of pollution emission from economic growth. Full article
Show Figures

Figure 1

13 pages, 8093 KB  
Article
Declines in Tapentadol Use in the US but Pronounced Regional Variation
by Ching Y. Low, Kenneth L. McCall and Brian J. Piper
Pharmacy 2025, 13(3), 67; https://doi.org/10.3390/pharmacy13030067 - 14 May 2025
Cited by 1 | Viewed by 1706
Abstract
Background: Tapentadol is an atypical opioid with a dual mechanism as a mu agonist and norepinephrine reuptake inhibitor. This study characterized tapentadol use in the United States (US) using three databases. Methods: Drug distribution data from 2010 to 2020 were extracted from the [...] Read more.
Background: Tapentadol is an atypical opioid with a dual mechanism as a mu agonist and norepinephrine reuptake inhibitor. This study characterized tapentadol use in the United States (US) using three databases. Methods: Drug distribution data from 2010 to 2020 were extracted from the Drug Enforcement Administration (DEA)’s Automated Reports and Consolidated Orders System (ARCOS), including use per region (mg/person) and business activity (i.e., pharmacy). Tapentadol prescription claims from the Medicare and Medicaid programs for 2010–2020 were also examined. Results: The distributed amount of tapentadol was 3.5 tons in 2020. Distribution was over twice as high in southern (South Atlantic = 29.0 mg/person, East South Central = 28.8) relative to Pacific (12.9) or New England (12.8) states. Tapentadol use decreased nationally between 2012 and 2020 by −53.8%. Adult diabetes prevalence was significantly associated with tapentadol distribution in 2012 (r(50) = +0.44, p < 0.01) and 2020 (r(50) = +0.28, p < 0.05). Tapentadol prescribing to Medicaid patients declined −55.2% from the peak year, 2011, until 2020. Tapentadol prescribed by Nurse Practitioners accounted for over one-sixth (18.0%) of 2019 in Medicare. Conclusions: There has been a substantial decline over the past decade in tapentadol distribution and prescribing. However, the substantial regional differences may warrant further attention by opioid stewardship programs. Full article
(This article belongs to the Special Issue Pharmacy in Pain Management: Substance Misuse and Addiction)
Show Figures

Graphical abstract

29 pages, 19185 KB  
Article
An AIS-Based Study to Estimate Ship Exhaust Emissions Using Spatio-Temporal Approach
by Akhahenda Whitney Khayenzeli, Woo-Ju Son, Dong-June Jo and Ik-Soon Cho
J. Mar. Sci. Eng. 2025, 13(5), 922; https://doi.org/10.3390/jmse13050922 - 7 May 2025
Cited by 5 | Viewed by 3617
Abstract
The global shipping industry facilitates the movement of approximately 80% of goods across the world but accounts for nearly 3% of total greenhouse gas (GHG) emissions every year, and other pollutants. One challenge in reducing shipping emissions is understanding and quantifying emission characteristics. [...] Read more.
The global shipping industry facilitates the movement of approximately 80% of goods across the world but accounts for nearly 3% of total greenhouse gas (GHG) emissions every year, and other pollutants. One challenge in reducing shipping emissions is understanding and quantifying emission characteristics. A detailed method for calculating shipping emissions should be applied when preparing exhaust gas inventory. This research focused on quantifying CO2, NOx, and SOx emissions from tankers, containers, bulk carriers, and general cargo in the Republic of Korea using spatio-temporal analysis and maritime big data. Using the bottom-up approach, this study calculates vessel emissions from the ship engines while considering the fuel type and operation mode. It leveraged the Geographic Information System (GIS) to generate spatial distribution maps of vessel exhausts. The research revealed variability in emissions according to ship types, sizes, and operational modes. CO2 emissions were dominant, totaling 10.5 million tons, NOx 179,355.2 tons, and SOx 32,505.1 tons. Tankers accounted for about 43.3%, containers 33.1%, bulk carriers 17.3%, and general cargo 6.3%. Further, emissions in hoteling and cruising were more significant than during maneuvering and reduced speed zones (RSZs). This study contributes to emission databases, providing a basis for the establishment of targeted emission control policies. Full article
Show Figures

Figure 1

30 pages, 4366 KB  
Review
A Revisit of Plant Food Waste Along Food Supply Chains: Impacts and Perspectives
by Joana Gonçalves, Ofélia Anjos and Raquel P. F. Guiné
Foods 2025, 14(8), 1364; https://doi.org/10.3390/foods14081364 - 15 Apr 2025
Cited by 8 | Viewed by 5416
Abstract
More than one billion tons of the food produced in the world ends up being wasted every year, accounting for about one-third of the food produced globally. For this reason, the problem of food waste management has been the focus of the different [...] Read more.
More than one billion tons of the food produced in the world ends up being wasted every year, accounting for about one-third of the food produced globally. For this reason, the problem of food waste management has been the focus of the different actors intervening in the food supply chains, who recognize that food waste has not only environmental but also economic and social impacts. This review focuses on foods of plant origin wasted at different stages of their life, namely primary production, transformation/processing, transportation, sales, catering and the domestic level. It addresses the subject from multiple angles, considering the environmental, economic and social perspectives. The review was based on a search carried out within scientific databases, for example, ScienceDirect, Scopus and the Web of Science. The results highlighted that in the generation and management of food waste from plant origin, there is a clear difference between developed and developing countries, with these last showing higher losses in production, principally the transportation and storage of the foods. Contrarily, in developed countries, excess food produced and not consumed is the strongest contributor to food waste. Valorization of agricultural waste and industrial residues for application into animal feed or agricultural fertilizers, or through the recovery of valuable compounds for industrial purposes, are some of the ways to deal with food waste while generating additional economic value and reducing environmental impact. However, there is still a need to modify processes and behaviors to reduce food waste and improve the sustainability of supply chains. Therefore, it is crucial to conduct research to identify and report food waste so that stakeholders can contribute positively to solving this problem. Full article
(This article belongs to the Special Issue Feature Review on Plant Foods)
Show Figures

Graphical abstract

Back to TopTop