A Spatial Analysis of the Wind and Hydrogen Production in the Black Sea Basin
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA. Global Energy Review 2025; IEA: Paris, France, 2025. [Google Scholar]
- Jones, C.; Simmons, S.; Moore, J. Geology of the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) Enhanced Geothermal System (EGS) Site. Geothermics 2024, 122, 103054. [Google Scholar] [CrossRef]
- Xue, Z.; Ma, H.; Wei, Y.; Wu, W.; Sun, Z.; Chai, M.; Zhang, C.; Chen, Z. Integrated Technological and Economic Feasibility Comparisons of Enhanced Geothermal Systems Associated with Carbon Storage. Appl. Energy 2024, 359, 122757. [Google Scholar] [CrossRef]
- Djalab, A.; Djalab, Z.; El Hammoumi, A.; Marco TINA, G.; Motahhir, S.; Laouid, A.A. A Comprehensive Review of Floating Photovoltaic Systems: Tech Advances, Marine Environmental Influences on Offshore PV Systems, and Economic Feasibility Analysis. Sol. Energy 2024, 277, 112711. [Google Scholar] [CrossRef]
- Manolache, A.I.; Andrei, G.; Rusu, L. An Evaluation of the Efficiency of the Floating Solar Panels in the Western Black Sea and the Razim-Sinoe Lagunar System. J. Mar. Sci. Eng. 2023, 11, 203. [Google Scholar] [CrossRef]
- Widén, J.; Carpman, N.; Castellucci, V.; Lingfors, D.; Olauson, J.; Remouit, F.; Bergkvist, M.; Grabbe, M.; Waters, R. Variability Assessment and Forecasting of Renewables: A Review for Solar, Wind, Wave and Tidal Resources. Renew. Sustain. Energy Rev. 2015, 44, 356–375. [Google Scholar] [CrossRef]
- Manolache, A.I.; Andrei, G. A Comprehensive Review of Multi-Use Platforms for Renewable Energy and Aquaculture Integration. Energies 2024, 17, 4816. [Google Scholar] [CrossRef]
- Renewable Power Generation Costs in 2023. Available online: https://www.irena.org/Publications/2024/Sep/Renewable-Power-Generation-Costs-in-2023 (accessed on 16 February 2025).
- Maienza, C.; Avossa, A.M.; Picozzi, V.; Ricciardelli, F. Feasibility Analysis for Floating Offshore Wind Energy. Int. J. Life Cycle Assess. 2022, 27, 796–812. [Google Scholar] [CrossRef]
- Vinhoza, A.; Schaeffer, R. Brazil’s Offshore Wind Energy Potential Assessment Based on a Spatial Multi-Criteria Decision Analysis. Renew. Sustain. Energy Rev. 2021, 146, 111185. [Google Scholar] [CrossRef]
- Onea, F.; Rusu, E. An Evaluation of Marine Renewable Energy Resources Complementarity in the Portuguese Nearshore. J. Mar. Sci. Eng. 2022, 10, 1901. [Google Scholar] [CrossRef]
- Diaconita, A.; Chiroșcă, A.; Rusu, L. Assessment of Wind and Wave Climate Dynamics in the Mediterranean and Black Seas for Renewable Energy Potential Analysis. In Trends in Clean Energy Research; Springer: Cham, Switzerland, 2024; pp. 83–90. ISBN 978-3-031-67986-5. [Google Scholar]
- Bonthu, S.; Purvaja, R.; Singh, K.S.; Ganguly, D.; Muruganandam, R.; Paul, T.; Ramesh, R. Offshore Wind Energy Potential along the Indian Coast Considering Ecological Safeguards. Ocean Coast. Manag. 2024, 249, 107017. [Google Scholar] [CrossRef]
- Liu, L.; Wu, M.; Mao, Y.; Zheng, L.; Xue, M.; Bing, L.; Liang, F.; Liu, J.; Liu, B. Offshore Wind Energy Potential in Shandong Sea of China Revealed by ERA5 Reanalysis Data and Remote Sensing. J. Clean. Prod. 2024, 464, 142745. [Google Scholar] [CrossRef]
- Rusu, E. Assessment of the Wind Power Dynamics in the North Sea under Climate Change Conditions. Renew. Energy 2022, 195, 466–475. [Google Scholar] [CrossRef]
- Al-Shaikhi, A.; Rehman, S.; Irshad, K.; Ibrahim, N.I.; Mohandes, M.A. Offshore Windy Potential Sites Prioritization in the Gulf of South Suez. Arab. J. Sci. Eng. 2024, 49, 7307–7326. [Google Scholar] [CrossRef]
- Bhutta, M.S.; Xuebang, T.; Faheem, M.; Almasoudi, F.M.; Alatawi, K.S.S.; Guo, H. Neuro-Fuzzy Based High-Voltage DC Model to Optimize Frequency Stability of an Offshore Wind Farm. Processes 2023, 11, 2049. [Google Scholar] [CrossRef]
- Murcia Leon, J.P.; Koivisto, M.J.; Sørensen, P.; Magnant, P. Power Fluctuations in High-Installation-Density Offshore Wind Fleets. Wind Energy Sci. 2021, 6, 461–476. [Google Scholar] [CrossRef]
- Simpson, J.G.; Hanrahan, G.; Loth, E.; Koenig, G.M.; Sadoway, D.R. Liquid Metal Battery Storage in an Offshore Wind Turbine: Concept and Economic Analysis. Renew. Sustain. Energy Rev. 2021, 149, 111387. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Palazoglu, A.; El-Farra, N.H.; Shah, N. Optimization and Control of Offshore Wind Systems with Energy Storage. Energy Convers. Manag. 2018, 173, 426–437. [Google Scholar] [CrossRef]
- Kim, A.; Kim, H.; Choe, C.; Lim, H. Feasibility of Offshore Wind Turbines for Linkage with Onshore Green Hydrogen Demands: A Comparative Economic Analysis. Energy Convers. Manag. 2023, 277, 116662. [Google Scholar] [CrossRef]
- Dute, E.F.; Fokkema, J.E.; Land, M.J.; Wortmann, J.C.; Douwes, M. Determining Onshore or Offshore Hydrogen Storage for Large Offshore Wind Parks: The North Sea Wind Power Hub Case. J. Clean. Prod. 2024, 472, 143395. [Google Scholar] [CrossRef]
- Rasul, M.G.; Hazrat, M.A.; Sattar, M.A.; Jahirul, M.I.; Shearer, M.J. The Future of Hydrogen: Challenges on Production, Storage and Applications. Energy Convers. Manag. 2022, 272, 116326. [Google Scholar] [CrossRef]
- Remme, U. Global Hydrogen Review 2024; IEA: Paris, France, 2024. [Google Scholar]
- Incer-Valverde, J.; Korayem, A.; Tsatsaronis, G.; Morosuk, T. “Colors” of Hydrogen: Definitions and Carbon Intensity. Energy Convers. Manag. 2023, 291, 117294. [Google Scholar] [CrossRef]
- Ajanovic, A.; Sayer, M.; Haas, R. The Economics and the Environmental Benignity of Different Colors of Hydrogen. Int. J. Hydrogen Energy 2022, 47, 24136–24154. [Google Scholar] [CrossRef]
- AlHumaidan, F.S.; Absi Halabi, M.; Rana, M.S.; Vinoba, M. Blue Hydrogen: Current Status and Future Technologies. Energy Convers. Manag. 2023, 283, 116840. [Google Scholar] [CrossRef]
- Lundvall, N. Modelling Hydrogen Production From Offshore Wind Parks: A Techno-Economic Analysis of Dedicated Hydrogen Production. Master’s Thesis, Mälardalen University, Västerås, Sweden, 2022. [Google Scholar]
- Oliveira, A.M.; Beswick, R.R.; Yan, Y. A Green Hydrogen Economy for a Renewable Energy Society. Curr. Opin. Chem. Eng. 2021, 33, 100701. [Google Scholar] [CrossRef]
- Yap, J.; McLellan, B. Exploring Transitions to a Hydrogen Economy: Quantitative Insights from an Expert Survey. Int. J. Hydrogen Energy 2024, 66, 371–386. [Google Scholar] [CrossRef]
- Usman, M.R. Hydrogen Storage Methods: Review and Current Status. Renew. Sustain. Energy Rev. 2022, 167, 112743. [Google Scholar] [CrossRef]
- Benghanem, M.; Mellit, A.; Almohamadi, H.; Haddad, S.; Chettibi, N.; Alanazi, A.M.; Dasalla, D.; Alzahrani, A. Hydrogen Production Methods Based on Solar and Wind Energy: A Review. Energies 2023, 16, 757. [Google Scholar] [CrossRef]
- Rezaei-Shouroki, M.; Mostafaeipour, A.; Qolipour, M. Prioritizing of Wind Farm Locations for Hydrogen Production: A Case Study. Int. J. Hydrogen Energy 2017, 42, 9500–9510. [Google Scholar] [CrossRef]
- Kien, D.T.; Phap, V.M.; Duong, D.N.; Tu, L.; Huong, N.T. The Assessment of Hydrogen Production Potential from Wind Power in Vietnam. Polityka Energ.–Energy Policy J. 2024, 27, 5–18. [Google Scholar] [CrossRef]
- AlZohbi, G.; AlShuhail, L.; Almoaikel, A. An Estimation of Green Hydrogen Generation from Wind Energy: A Case Study from KSA. Energy Rep. 2023, 9, 262–267. [Google Scholar] [CrossRef]
- Paulino de Azevedo, J.H.; Pradelle, F.; Botelho, V.; Torres Serra, E.; Nohra Chaar Pradelle, R.; Leal Braga, S. An Integrated Geospatial Model for Evaluating Offshore Wind-to-Hydrogen Technical and Economic Production Potential in Brazil. Int. J. Hydrogen Energy 2025, 100, 800–815. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, X.; Wen, H.; Pei, A. Hydrogen Production from Offshore Wind Power in South China. Int. J. Hydrogen Energy 2022, 47, 24558–24568. [Google Scholar] [CrossRef]
- Dinh, Q.V.; Dinh, V.N.; Mosadeghi, H.; Todesco Pereira, P.H.; Leahy, P.G. A Geospatial Method for Estimating the Levelised Cost of Hydrogen Production from Offshore Wind. Int. J. Hydrogen Energy 2023, 48, 15000–15013. [Google Scholar] [CrossRef]
- Akdağ, O. The Operation and Applicability to Hydrogen Fuel Technology of Green Hydrogen Production by Water Electrolysis Using Offshore Wind Power. J. Clean. Prod. 2023, 425, 138863. [Google Scholar] [CrossRef]
- Onat, M.R.; Demir, M.E. Techno-Economic Assessment of Green Ammonia and Hydrogen Distribution from Offshore Wind Farms to European Ports. Int. J. Hydrogen Energy 2025. [Google Scholar] [CrossRef]
- Rusu, E. An Evaluation of the Expected Wind Dynamics in the Black Sea in the Context of the Climate Change. e-Prime-Adv. Electr. Eng. Electron. Energy 2023, 4, 100154. [Google Scholar] [CrossRef]
- Çarpar, T.; Ayat, B.; Aydoğan, B. Spatio-Seasonal Variations in Long-Term Trends of Offshore Wind Speeds Over the Black Sea; an Inter-Comparison of Two Reanalysis Data. Pure Appl. Geophys. 2020, 177, 3013–3037. [Google Scholar] [CrossRef]
- Onea, F.; Rusu, L. A Study on the Wind Energy Potential in the Romanian Coastal Environment. J. Mar. Sci. Eng. 2019, 7, 142. [Google Scholar] [CrossRef]
- Koletsis, I.; Kotroni, V.; Lagouvardos, K.; Soukissian, T. Assessment of Offshore Wind Speed and Power Potential over the Mediterranean and the Black Seas under Future Climate Changes. Renew. Sustain. Energy Rev. 2016, 60, 234–245. [Google Scholar] [CrossRef]
- Islek, F.; Yuksel, Y. Evaluation of Future Wind Power Potential and Their Projected Changes in the Black Sea and Possible Stable Locations for Wind Farms. Ocean Eng. 2022, 266, 112832. [Google Scholar] [CrossRef]
- Diaconita, A.I.; Rusu, L.; Andrei, G. A Local Perspective on Wind Energy Potential in Six Reference Sites on the Western Coast of the Black Sea Considering Five Different Types of Wind Turbines. Inventions 2021, 6, 44. [Google Scholar] [CrossRef]
- Rusu, L. The Wave and Wind Power Potential in the Western Black Sea. Renew. Energy 2019, 139, 1146–1158. [Google Scholar] [CrossRef]
- ERA-Interim|ECMWF. Available online: https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim (accessed on 18 August 2018).
- Venuti, F.; Rabier, F.; Andersson, E.; Modigliani, U.; English, S.; Kitchen, C.; Berrone, M.; Pinsault, D.; Debrux, J.; Jarraud, M. ECMWF’s Societal Impact through Service Provision, Partnerships and Collaborations. J. Eur. Meteorol. Soc. 2025, 2, 100013. [Google Scholar] [CrossRef]
- C3S ERA5 Hourly Data on Single Levels from 1940 to Present 2018. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview (accessed on 24 May 2025).
- Bell, B.; Hersbach, H.; Simmons, A.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis: Preliminary Extension to 1950. Q. J. R. Meteorol. Soc. 2021, 147, 4186–4227. [Google Scholar] [CrossRef]
- Gleixner, S.; Demissie, T.; Diro, G.T. Did ERA5 Improve Temperature and Precipitation Reanalysis over East Africa? Atmosphere 2020, 11, 996. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Hu, W.; Scholz, Y.; Yeligeti, M.; Bremen, L.V.; Deng, Y. Downscaling ERA5 Wind Speed Data: A Machine Learning Approach Considering Topographic Influences. Environ. Res. Lett. 2023, 18, 094007. [Google Scholar] [CrossRef]
- ERA5|Technical Documentation. Available online: https://docs.meteoblue.com/en/meteo/data-sources/era5 (accessed on 24 May 2025).
- Alkhalidi, M.; Al-Dabbous, A.; Al-Dabbous, S.; Alzaid, D. Evaluating the Accuracy of the ERA5 Model in Predicting Wind Speeds Across Coastal and Offshore Regions. J. Mar. Sci. Eng. 2025, 13, 149. [Google Scholar] [CrossRef]
- Uit Het Broek, M.A.J.; Veldman, J.; Fazi, S.; Greijdanus, R. Evaluating Resource Sharing for Offshore Wind Farm Maintenance: The Case of Jack-up Vessels. Renew. Sustain. Energy Rev. 2019, 109, 619–632. [Google Scholar] [CrossRef]
- Rezaei, A.; Guo, Y.; Keller, J.; Nejad, A.R. Effects of Wind Field Characteristics on Pitch Bearing Reliability: A Case Study of 5 MW Reference Wind Turbine at Onshore and Offshore Sites. Forsch Ing. 2023, 87, 321–338. [Google Scholar] [CrossRef]
- Ha, Y.-J.; Ahn, H.; Park, S.; Park, J.-Y.; Kim, K.-H. Development of Hybrid Model Test Technique for Performance Evaluation of a 10 MW Class Floating Offshore Wind Turbine Considering Asymmetrical Thrust. Ocean Eng. 2023, 272, 113783. [Google Scholar] [CrossRef]
- Chai, W.; He, L.; Chen, W.; Cao, L.; Shi, W.; Sinsabvarodom, C.; Hu, M.; Liu, Z. Short-Term Extreme Value Prediction for the Structural Responses of the IEA 15 MW Offshore Wind Turbine under Extreme Environmental Conditions. Ocean Eng. 2024, 306, 118120. [Google Scholar] [CrossRef]
- Scotland’s Largest Offshore Wind Farm, Seagreen, Now Fully Operational. Available online: https://www.4coffshore.com/news/scotland27s-largest-offshore-wind-farm2c-seagreen2c-now-fully-operational-nid28159.html (accessed on 24 April 2025).
- EolMed Floating Wind Farm—Under Construction—France|4C Offshore. Available online: https://www.4coffshore.com/windfarms/france/eolmed-france-fr64.html (accessed on 24 April 2025).
- Wind, B. Vestas Completes Installation of 15 MW Offshore Wind Turbine. Baltic Wind. 2024. Available online: https://balticwind.eu/vestas-completes-installation-of-15-mw-offshore-wind-turbine/ (accessed on 24 April 2025).
- Onea, F.; Rusu, E. The Expected Efficiency and Coastal Impact of a Hybrid Energy Farm Operating in the Portuguese Nearshore. Energy 2016, 97, 411–423. [Google Scholar] [CrossRef]
- Kubik, M.L.; Coker, P.J.; Hunt, C. Using Meteorological Wind Data to Estimate Turbine Generation Output: A Sensitivity Analysis. In Proceedings of the World Renewable Energy Congress, Linköping, Sweden, 8–13 May 2011; p. 4081, ISBN 978-91-7393-070-3. [Google Scholar]
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook, 1st ed.; Wiley: New York, NY, USA, 2011; ISBN 978-0-470-69975-1. [Google Scholar]
- Balaguru, V.S.S.; Swaroopan, N.J.; Raju, K.; Alsharif, M.H.; Kim, M.-K. Techno-Economic Investigation of Wind Energy Potential in Selected Sites with Uncertainty Factors. Sustainability 2021, 13, 2182. [Google Scholar] [CrossRef]
- Baki, H.; Basu, S.; Lavidas, G. Estimating the Offshore Wind Power Potential of Portugal by Utilizing Gray-Zone Atmospheric Modeling. J. Renew. Sustain. Energy 2024, 16, 63306. [Google Scholar] [CrossRef]
- Song, D.; Zheng, S.; Yang, S.; Yang, J.; Dong, M.; Su, M.; Joo, Y.H. Annual Energy Production Estimation for Variable-Speed Wind Turbine at High-Altitude Site. J. Mod. Power Syst. Clean Energy 2021, 9, 684–687. [Google Scholar] [CrossRef]
- Douak, M.; Settou, N. Estimation of Hydrogen Production Using Wind Energy in Algeria. Energy Procedia 2015, 74, 981–990. [Google Scholar] [CrossRef]
- Raileanu, A.B.; Onea, F.; Rusu, E. Implementation of Offshore Wind Turbines to Reduce Air Pollution in Coastal Areas—Case Study Constanta Harbour in the Black Sea. J. Mar. Sci. Eng. 2020, 8, 550. [Google Scholar] [CrossRef]
- Safari, F.; Dincer, I. Assessment and Optimization of an Integrated Wind Power System for Hydrogen and Methane Production. Energy Convers. Manag. 2018, 177, 693–703. [Google Scholar] [CrossRef]
- Roadmap for Romania: Building a New Offshore Wind Industry in the Black Sea. Available online: https://www.worldbank.org/en/news/press-release/2024/09/27/roadmap-for-romania-building-a-new-offshore-wind-industry-in-the-black-sea (accessed on 27 April 2025).
- Data Show Big Gains for Offshore Wind. Available online: https://www.nrel.gov/news/program/2020/2019-offshore-wind-data.html (accessed on 27 April 2025).
ID | Turbine | Hub Height (m) | Power Rating (MW) | Wind Speed (m/s) | Reference | ||
---|---|---|---|---|---|---|---|
Cut-In | Rated | Cut-Out | |||||
T3 | 3 MW | 100 | 3 | 3.00 | 14.00 | 25.00 | [57] |
T5 | NREL 5 MW | 90 | 5 | 3.00 | 11.40 | 25.00 | [58] |
T10 | DTU-10 MW | 119 | 10 | 4.00 | 11.40 | 25.00 | [59] |
T15 | IEA 15 MW | 150 | 15 | 3.00 | 10.59 | 25.00 | [60] |
ID | System | Production Capacity (kg/h) | Energy Consumption (kWh/kgH2) |
---|---|---|---|
PEM1 | HyLYZER®—4.000-30 | 330.8 | 51.0 |
PEM2 | HyLYZER®—1.000-30 | 82.7 | 52.0 |
PEM3 | HyLYZER®—500-30 | 41.4 | 61.7 |
PEM4 | SiLYZER 300 | 18.6 | 62.0 |
Turbine 3 MW | Turbine 5 MW | Turbine 10 MW | Turbine 15 MW | |
---|---|---|---|---|
PEM1 | 0.067 | 0.14 | 0.28 | 0.54 |
PEM2 | 0.26 | 0.55 | 1.11 | 2.13 |
PEM3 | 0.44 | 0.93 | 1.87 | 3.59 |
PEM4 | 0.98 | 2.07 | 4.16 | 7.95 |
PEM → | PEM1 | PEM2 | PEM3 | PEM4 |
Turbine ↓ | ||||
90% | ||||
T3 | 0.23–196 | 0.23–192 | 0.20–162 | 0.20–161 |
T5 | 0.37–410 | 0.37–402 | 0.31–339 | 0.31–337 |
T10 | 0.1–824 | 0.1–808 | 0.08–681 | 0.08–678 |
T15 | 2.18–1575 | 2.14–1545 | 1.81–1302 | 1.80–1296 |
65.4% | 64.1% | 54% | 53.8% | |
T3 | 0.17–142 | 0.16–137 | 0.11–97 | 0.11–96 |
T5 | 0.27–298 | 0.26–286 | 0.18–203 | 0.18–202 |
T10 | 0.07–599 | 0.07–576 | 0.04–409 | 0.04–405 |
T15 | 1.6–1145 | 1.5–1100 | 1.08–781 | 1.07–774 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manolache, A.I.; Onea, F. A Spatial Analysis of the Wind and Hydrogen Production in the Black Sea Basin. Energies 2025, 18, 2936. https://doi.org/10.3390/en18112936
Manolache AI, Onea F. A Spatial Analysis of the Wind and Hydrogen Production in the Black Sea Basin. Energies. 2025; 18(11):2936. https://doi.org/10.3390/en18112936
Chicago/Turabian StyleManolache, Alexandra Ionelia, and Florin Onea. 2025. "A Spatial Analysis of the Wind and Hydrogen Production in the Black Sea Basin" Energies 18, no. 11: 2936. https://doi.org/10.3390/en18112936
APA StyleManolache, A. I., & Onea, F. (2025). A Spatial Analysis of the Wind and Hydrogen Production in the Black Sea Basin. Energies, 18(11), 2936. https://doi.org/10.3390/en18112936