Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = titanium dioxide water nanofluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4977 KiB  
Article
Darcy–Brinkman Model for Ternary Dusty Nanofluid Flow across Stretching/Shrinking Surface with Suction/Injection
by Sudha Mahanthesh Sachhin, Ulavathi Shettar Mahabaleshwar, David Laroze and Dimitris Drikakis
Fluids 2024, 9(4), 94; https://doi.org/10.3390/fluids9040094 - 18 Apr 2024
Cited by 12 | Viewed by 2035 | Correction
Abstract
Understanding of dusty fluids for different Brinkman numbers in porous media is limited. This study examines the Darcy–Brinkman model for two-dimensional magneto-hydrodynamic fluid flow across permeable stretching/shrinking surfaces with heat transfer. Water was considered as a conventional base fluid in which the copper [...] Read more.
Understanding of dusty fluids for different Brinkman numbers in porous media is limited. This study examines the Darcy–Brinkman model for two-dimensional magneto-hydrodynamic fluid flow across permeable stretching/shrinking surfaces with heat transfer. Water was considered as a conventional base fluid in which the copper (Cu), silver (Ag), and titanium dioxide (TiO2) nanoparticles were submerged in a preparation of a ternary dusty nanofluid. The governing nonlinear partial differential equations are converted to ordinary differential equations through suitable similarity conversions. Under radiation and mass transpiration, analytical solutions for stretching sheets/shrinking sheets are obtained. Several parameters are investigated, including the magnetic field, Darcy–Brinkman model, solution domain, and inverse Darcy number. The outcomes of the present article reveal that increasing the Brinkman number and inverse Darcy number decreases the velocity of the fluid and dusty phase. Increasing the magnetic field decreases the momentum of the boundary layer. Ternary dusty nanofluids have significantly improved the heat transmission process for manufacturing with applications in engineering, and biological and physical sciences. The findings of this study demonstrate that the ternary nanofluid phase’s heat and mass transpiration performance is better than the dusty phase’s performance. Full article
(This article belongs to the Topic Advanced Heat and Mass Transfer Technologies)
Show Figures

Figure 1

16 pages, 3046 KiB  
Article
Thermal Performance Evaluation of Plate-Type Heat Exchanger with Alumina–Titania Hybrid Suspensions
by Atul Bhattad, Boggarapu Nageswara Rao, Vinay Atgur, Ibham Veza, Mohd Faiz Muaz Ahmad Zamri and Islam Md Rizwanul Fattah
Fluids 2023, 8(4), 120; https://doi.org/10.3390/fluids8040120 - 2 Apr 2023
Cited by 20 | Viewed by 3774
Abstract
This paper aims to develop models for the thermal conductivity and viscosity of hybrid nanofluids of aluminium oxide and titanium dioxide (Al2O3-TiO2). The study investigates the impact of fluid temperature (283 K–298 K) on the performance of [...] Read more.
This paper aims to develop models for the thermal conductivity and viscosity of hybrid nanofluids of aluminium oxide and titanium dioxide (Al2O3-TiO2). The study investigates the impact of fluid temperature (283 K–298 K) on the performance of a plate heat exchanger using Al2O3-TiO2 hybrid nanofluids with different particle volume ratios (0:5, 1:4, 2:3, 3:2, 4:1, and 5:0) prepared with a 0.1% concentration in deionised water. Experimental evaluations were conducted to assess the heat transfer rate, Nusselt number, heat transfer coefficient, Prandtl number, pressure drop, and performance index. Due to the lower thermal conductivity of TiO2 nanoparticles compared to Al2O3, a rise in the TiO2 ratio decreased the heat transfer coefficient, Nusselt number, and heat transfer rate. Inlet temperature was found to decrease pressure drop and performance index. The Al2O3 (5:0) nanofluid demonstrated the maximum enhancement of around 16.9%, 16.9%, 3.44%, and 3.41% for the heat transfer coefficient, Nusselt number, heat transfer rate, and performance index, respectively. Additionally, the TiO2 (0:5) hybrid nanofluid exhibited enhancements of 0.61% and 2.3% for pressure drop and Prandtl number, respectively. The developed hybrid nanofluids enhanced the performance of the heat exchanger when used as a cold fluid. Full article
Show Figures

Figure 1

15 pages, 4721 KiB  
Article
Analysis of a Squeezing Flow of a Casson Nanofluid between Two Parallel Disks in the Presence of a Variable Magnetic Field
by Reshu Gupta, Janani Selvam, Ashok Vajravelu and Sasitharan Nagapan
Symmetry 2023, 15(1), 120; https://doi.org/10.3390/sym15010120 - 1 Jan 2023
Cited by 23 | Viewed by 2113
Abstract
The present article deals with the MHD flow of a Casson nanofluid between two disks. The lower disk was fixed as well as permeable. The upper disk was not permeable, but it could move perpendicularly up and down toward the lower disk. Titanium [...] Read more.
The present article deals with the MHD flow of a Casson nanofluid between two disks. The lower disk was fixed as well as permeable. The upper disk was not permeable, but it could move perpendicularly up and down toward the lower disk. Titanium dioxide was selected as nanoparticles and water as a base fluid. The governing higher-order nonlinear partial differential equations were transformed into a set of nonlinear ordinary differential equations by using similarity transformation. The differential transform method (DTM) was applied to solve the nonlinear ODEs. The nature of the velocity profiles for the different values of the suction injection parameter, the squeeze number, the Casson fluid parameter, and the volume fraction parameter of the nanofluid are pictorially discussed in this paper. The coefficient of skin friction was tabulated for the novelty of the research. The comparison of the results was determined by the DTM and the numerical methods. The profile values were also compared with the literature work and found to agree. This comparative study proves the accuracy and efficiency of the method. It is concluded from this research that the flow properties behave oppositely for all parameters during suction and injection. Full article
(This article belongs to the Special Issue Symmetry in Numerical Analysis and Computational Fluid Dynamics)
Show Figures

Figure 1

16 pages, 7925 KiB  
Article
Solution of Water and Sodium Alginate-Based Casson Type Hybrid Nanofluid with Slip and Sinusoidal Heat Conditions: A Prabhakar Fractional Derivative Approach
by Ali Raza, Musawa Y. Almusawa, Qasim Ali, Absar Ul Haq, Kamel Al-Khaled and Ioannis E. Sarris
Symmetry 2022, 14(12), 2658; https://doi.org/10.3390/sym14122658 - 15 Dec 2022
Cited by 16 | Viewed by 2284
Abstract
This paper aims to investigate free convection heat transmission in hybrid nanofluids across an inclined pours plate, which characterizes an asymmetrical hybrid nanofluid flow and heat transfer behavior. With an angled magnetic field applied, sliding on the border of walls is also considered [...] Read more.
This paper aims to investigate free convection heat transmission in hybrid nanofluids across an inclined pours plate, which characterizes an asymmetrical hybrid nanofluid flow and heat transfer behavior. With an angled magnetic field applied, sliding on the border of walls is also considered with sinusoidal heat transfer boundary conditions. The non-dimensional leading equations are converted into a fractional model using an effective mathematical fractional approach known as the Prabhakar time fractional derivative. Silver (Ag) and titanium dioxide (TiO2) are both considered nanoparticles, with water (H2O) and sodium alginate (C6H9NaO7) serving as the base fluids. The solution of the momentum, concentration, and energy equation is found by utilizing the Laplace scheme, and different numerical algorithms are considered for the inverse of Laplace, i.e., Stehfest and Tzou’s. The graphical analysis investigates the impact and symmetry of significant physical and fractional parameters. Consequently, we surmise that water-based hybrid nanofluid has a somewhat higher velocity than sodium alginate-based hybrid nanofluid. Furthermore, the Casson parameter has a dual effect on the momentum profile. Furthermore, the memory effect reduces as fractional restriction increases for both the velocity and temperature layers. The results demonstrate that increasing the heat transmission in the solid nanoparticle volume fractions enhanced the heat transmission. In addition, the numerical assessment examined the increase in mass and heat transmission, while shear stress was increased with an increase in the Prabhakar fractional parameter α. Full article
(This article belongs to the Special Issue Symmetry: Recent Developments in Engineering Science and Applications)
Show Figures

Figure 1

18 pages, 3961 KiB  
Article
Non-Newtonian Nano-Fluids in Blasius and Sakiadis Flows Influenced by Magnetic Field
by Imran Abbas, Shahid Hasnain, Nawal A. Alatawi, Muhammad Saqib and Daoud S. Mashat
Nanomaterials 2022, 12(23), 4254; https://doi.org/10.3390/nano12234254 - 29 Nov 2022
Cited by 7 | Viewed by 1891
Abstract
Current study solves heat transfer and fluid flow problem in Newtonian and non-Newtonian nano-fluids through a permeable surface with a magnetic field effects which is done in the presence of injection and suction for the first time. In order to solve the governing [...] Read more.
Current study solves heat transfer and fluid flow problem in Newtonian and non-Newtonian nano-fluids through a permeable surface with a magnetic field effects which is done in the presence of injection and suction for the first time. In order to solve the governing partial differential equations numerically, we used the Runge-Kutta Fehlberg (RKF45) technique in which the similarity transformation method is applied. This approach converts the governing partial differential equations into ordinary differential equations. In this particular investigation nano-particles of copper, copper oxide, titanium dioxide, and aluminium oxide are studied by considering CMC/water as a base fluid with the effect of magnetic field on the classical Blasius and Sakiadis flows of nano-fluids. Validation is carried out using the previously obtained numerical findings. We looked at the power-law index (n), the volume fraction (φ) of nano-particles and the permeability parameter (fw) which affects the flow of nano-fluid and the transfer of heat. Non-Newtonian nano-fluid demonstrates superior performance in terms of heat transfer when compared to Newtonian nano-fluid in both the injection and the impermeable surfaces. Altering the nano-particles’ composition, on the other hand, has a far greater impact on the heat transfer process that occurs during suction. Graphics show the impacts of governing physical parameters on Blasius and Sakiadis flow velocity, temperature, skin friction coefficient, and reduced Nusselt number. Physical and engineering interest are explored in detail. Full article
(This article belongs to the Special Issue Theory and Computational Model of Nanofluids)
Show Figures

Figure 1

16 pages, 9479 KiB  
Article
Numerical Simulations through PCM for the Dynamics of Thermal Enhancement in Ternary MHD Hybrid Nanofluid Flow over Plane Sheet, Cone, and Wedge
by Muhammad Bilal, Ikram Ullah, Mohammad Mahtab Alam, Wajaree Weera and Ahmed M. Galal
Symmetry 2022, 14(11), 2419; https://doi.org/10.3390/sym14112419 - 15 Nov 2022
Cited by 41 | Viewed by 2730
Abstract
The Darcy ternary hybrid nanofluid flow comprising titanium dioxide (TiO2), cobalt ferrite (CoFe2O4) and magnesium oxide (MgO) nanoparticles (NPs) through wedge, cone, and plate surfaces is reported in the present study. TiO2, CoFe2O [...] Read more.
The Darcy ternary hybrid nanofluid flow comprising titanium dioxide (TiO2), cobalt ferrite (CoFe2O4) and magnesium oxide (MgO) nanoparticles (NPs) through wedge, cone, and plate surfaces is reported in the present study. TiO2, CoFe2O4, and MgO NPs were dispersed in water to synthesize a trihybrid nanofluid. For this purpose, a mathematical model was calculated to augment the energy transport rate and efficiency for variety of commercial and medical functions. The consequences of heat source/sink, activation energy, and the magnetic field are also analyzed. Such problems mostly occur in symmetrical phenomena and are applicable to engineering, physics, and applied mathematics. The phenomena were formulated in the form of a nonlinear system of PDEs, which are simplified to the system of dimensionless ODEs through similarity replacement (obtained from symmetry analysis). The obtained set of differential equations is resolved through a parametric continuation approach (PCM). Graphical depictions are used to evaluate and address the impact of significant factors on energy, mass, and flow exchange rates. The velocity and energy propagation rates over a cone surface were greater than those of a wedge and plate versus the variation of Grashof number, porosity effect, and heat source, while the mass transfer ratio under the impact of a chemical reaction and activation energy over a wedge surface was higher than that of a plate. Full article
(This article belongs to the Special Issue Symmetry of Nanofluids and Their Applications in Engineering)
Show Figures

Figure 1

15 pages, 3813 KiB  
Article
Numerical Analysis of an Unsteady, Electroviscous, Ternary Hybrid Nanofluid Flow with Chemical Reaction and Activation Energy across Parallel Plates
by Muhammad Bilal, A. El-Sayed Ahmed, Rami Ahmad El-Nabulsi, N. Ameer Ahammad, Khalid Abdulkhaliq M. Alharbi, Mohamed Abdelghany Elkotb, Waranont Anukool and Zedan A. S. A.
Micromachines 2022, 13(6), 874; https://doi.org/10.3390/mi13060874 - 31 May 2022
Cited by 67 | Viewed by 3497
Abstract
Despite the recycling challenges in ionic fluids, they have a significant advantage over traditional solvents. Ionic liquids make it easier to separate the end product and recycle old catalysts, particularly when the reaction media is a two-phase system. In the current analysis, the [...] Read more.
Despite the recycling challenges in ionic fluids, they have a significant advantage over traditional solvents. Ionic liquids make it easier to separate the end product and recycle old catalysts, particularly when the reaction media is a two-phase system. In the current analysis, the properties of transient, electroviscous, ternary hybrid nanofluid flow through squeezing parallel infinite plates is reported. The ternary hybrid nanofluid is synthesized by dissolving the titanium dioxide (TiO2), aluminum oxide (Al2O3), and silicon dioxide (SiO2) nanoparticles in the carrier fluid glycol/water. The purpose of the current study is to maximize the energy and mass transfer rate for industrial and engineering applications. The phenomena of fluid flow is studied, with the additional effects of the magnetic field, heat absorption/generation, chemical reaction, and activation energy. The ternary hybrid nanofluid flow is modeled in the form of a system of partial differential equations, which are subsequently simplified to a set of ordinary differential equations through resemblance substitution. The obtained nonlinear set of dimensionless ordinary differential equations is further solved, via the parametric continuation method. For validity purposes, the outcomes are statistically compared to an existing study. The results are physically illustrated through figures and tables. It is noticed that the mass transfer rate accelerates with the rising values of Lewis number, activation energy, and chemical reaction. The velocity and energy transfer rate boost the addition of ternary NPs to the base fluid. Full article
(This article belongs to the Special Issue Micro and Smart Devices and Systems)
Show Figures

Figure 1

15 pages, 3972 KiB  
Article
Computational Valuation of Darcy Ternary-Hybrid Nanofluid Flow across an Extending Cylinder with Induction Effects
by Khalid Abdulkhaliq M. Alharbi, Ahmed El-Sayed Ahmed, Maawiya Ould Sidi, Nandalur Ameer Ahammad, Abdullah Mohamed, Mohammed A. El-Shorbagy, Muhammad Bilal and Riadh Marzouki
Micromachines 2022, 13(4), 588; https://doi.org/10.3390/mi13040588 - 9 Apr 2022
Cited by 156 | Viewed by 4283
Abstract
The flow of an electroconductive incompressible ternary hybrid nanofluid with heat conduction in a boundary layer including metallic nanoparticles (NPs) over an extended cylindrical with magnetic induction effects is reported in this research. The ternary hybrid nanofluid has been synthesized with the dispersion [...] Read more.
The flow of an electroconductive incompressible ternary hybrid nanofluid with heat conduction in a boundary layer including metallic nanoparticles (NPs) over an extended cylindrical with magnetic induction effects is reported in this research. The ternary hybrid nanofluid has been synthesized with the dispersion of titanium dioxide, cobalt ferrite, and magnesium oxide NPs in the base fluid water. For a range of economical and biological applications, a computational model is designed to augment the mass and energy conveyance rate and promote the performance and efficiency of thermal energy propagation. The model has been written as a system of partial differential equations. Which are simplified to the system of ordinary differential equations through similarity replacements. The computing approach parametric continuation method is used to further process the resultant first order differential equations. The results are validated with the bvp4c package for accuracy and validity. The outcomes are displayed and analyzed through Figures and Tables. It has been observed that the inverse Prandtl magnetic number and a larger magnetic constant reduce the fluid flow and elevate the energy profile. The variation of ternary hybrid NPs significantly boosts the thermophysical features of the base fluid. Full article
(This article belongs to the Special Issue Micro/Nanofluids in Magnetic/Electric Fields)
Show Figures

Figure 1

11 pages, 497 KiB  
Article
Convective Heat Transfer of a Hybrid Nanofluid over a Nonlinearly Stretching Surface with Radiation Effect
by Emad H. Aly, Alin V. Roşca, Natalia C. Roşca and Ioan Pop
Mathematics 2021, 9(18), 2220; https://doi.org/10.3390/math9182220 - 10 Sep 2021
Cited by 35 | Viewed by 2083
Abstract
The flow of the hybrid nanofluid (copper–titanium dioxide/water) over a nonlinearly stretching surface was studied with suction and radiation effect. The governing partial differential equations were then converted into non-linear ordinary differential equations by using proper similarity transformations. Therefore, these equations were solved [...] Read more.
The flow of the hybrid nanofluid (copper–titanium dioxide/water) over a nonlinearly stretching surface was studied with suction and radiation effect. The governing partial differential equations were then converted into non-linear ordinary differential equations by using proper similarity transformations. Therefore, these equations were solved by applying a numerical technique, namely Chebyshev pseudo spectral differentiation matrix. The results of the flow field, temperature distribution, reduced skin friction coefficient and reduced Nusselt number were deduced. It was found that the rising of the mass flux parameter slows down the velocity and, hence, decreases the temperature. Further, on enlarging the stretching parameter, the velocity and temperature increases and decreases, respectively. In addition, it was mentioned that the radiation parameter can effectively control the thermal boundary layer. Finally, the temperature decreases when the values of the temperature parameter increases. Full article
(This article belongs to the Special Issue Applications of Partial Differential Equations in Engineering)
Show Figures

Figure 1

17 pages, 3091 KiB  
Article
Estimations on Properties of Redox Reactions to Electrical Energy and Storage Device of Thermoelectric Pipe (TEP) Using Polymeric Nanofluids
by Qin Gang, Rong-Tsu Wang and Jung-Chang Wang
Polymers 2021, 13(11), 1812; https://doi.org/10.3390/polym13111812 - 31 May 2021
Cited by 4 | Viewed by 2499
Abstract
A thermoelectric pipe (TEP) is constructed by tubular graphite electrodes, Teflon material, and stainless-steel tube containing polymeric nanofluids as electrolytes in this study. Heat dissipation and power generation (generating capacity) are both fulfilled with temperature difference via the thermal-electrochemistry and redox reaction effects [...] Read more.
A thermoelectric pipe (TEP) is constructed by tubular graphite electrodes, Teflon material, and stainless-steel tube containing polymeric nanofluids as electrolytes in this study. Heat dissipation and power generation (generating capacity) are both fulfilled with temperature difference via the thermal-electrochemistry and redox reaction effects of polymeric nanofluids. The notion of TEP is to recover the dissipative heat from the heat capacity generated by the relevant machine systems. The thermal conductivity and power density empirical formulas of the novel TEP were derived through the intelligent dimensional analysis with thermoelectric experiments and evaluated at temperatures between 25 and 100 °C and vacuum pressures between 400 and 760 torr. The results revealed that the polymeric nanofluids composed of titanium dioxide (TiO2) nanoparticles with 0.2 wt.% sodium hydroxide (NaOH) of the novel TEP have the best thermoelectric performance among these electrolytes, including TiO2 nanofluid, TiO2 nanofluid with 0.2 wt.% NaOH, deionized water, and seawater. Furthermore, the thermal conductivity and power density of the novel TEP are 203.1 W/(m·K) and 21.16 W/m3, respectively. Full article
(This article belongs to the Special Issue Polymer Materials in Sensors, Actuators and Energy Conversion)
Show Figures

Figure 1

16 pages, 3577 KiB  
Article
Thermal Performance of a Heated Pipe in the Presence of a Metal Foam and Twisted Tape Inserts
by K. Papazian, Z. Al Hajaj and M. Z. Saghir
Fluids 2020, 5(4), 195; https://doi.org/10.3390/fluids5040195 - 30 Oct 2020
Cited by 10 | Viewed by 2782
Abstract
To meet the demand for more efficient ways of cooling and heating, new designs and further development of heat exchangers is essential in industry. The present study focuses on the thermal performance of a circular pipe with two inserts. The first insert consists [...] Read more.
To meet the demand for more efficient ways of cooling and heating, new designs and further development of heat exchangers is essential in industry. The present study focuses on the thermal performance of a circular pipe with two inserts. The first insert consists of a porous medium having a porosity of 0.91, and the second one consists of a single twist solid insert. Different ranges of heating conditions have been applied for different flow rates. Water and titanium dioxide (TiO2) nanofluid 1% vol are the liquid media used for cooling. Laminar flow is assumed for two different Reynolds numbers of 1000 and 2000. The results of the study have shown that the twisted tape insert increases the thermal efficiency of the pipe more than the porous media insert and the plain pipe. In addition, different temperature readings in the cross section of the pipe have indicated that the twisted tape helps mixing up the fluid and provides a constant temperature in the overall volume of the fluid, whereas for the porous media insert and plain pipe the fluid temperature increases in the fluid particles close to the pipe inner surface. TiO2 nanofluid exhibited an enhancement when compared to water for a plain and porous pipe. However, this enhancement was absent when a twisted insert is used. Full article
(This article belongs to the Special Issue Thermal Flows)
Show Figures

Graphical abstract

19 pages, 5567 KiB  
Article
Symmetric MHD Channel Flow of Nonlocal Fractional Model of BTF Containing Hybrid Nanoparticles
by Muhammad Saqib, Sharidan Shafie, Ilyas Khan, Yu-Ming Chu and Kottakkaran Sooppy Nisar
Symmetry 2020, 12(4), 663; https://doi.org/10.3390/sym12040663 - 22 Apr 2020
Cited by 50 | Viewed by 3454
Abstract
A nonlocal fractional model of Brinkman type fluid (BTF) containing a hybrid nanostructure was examined. The magnetohydrodynamic (MHD) flow of the hybrid nanofluid was studied using the fractional calculus approach. Hybridized silver (Ag) and Titanium dioxide (TiO2) nanoparticles were dissolved in [...] Read more.
A nonlocal fractional model of Brinkman type fluid (BTF) containing a hybrid nanostructure was examined. The magnetohydrodynamic (MHD) flow of the hybrid nanofluid was studied using the fractional calculus approach. Hybridized silver (Ag) and Titanium dioxide (TiO2) nanoparticles were dissolved in base fluid water (H2O) to form a hybrid nanofluid. The MHD free convection flow of the nanofluid (Ag-TiO2-H2O) was considered in a microchannel (flow with a bounded domain). The BTF model was generalized using a nonlocal Caputo-Fabrizio fractional operator (CFFO) without a singular kernel of order α with effective thermophysical properties. The governing equations of the model were subjected to physical initial and boundary conditions. The exact solutions for the nonlocal fractional model without a singular kernel were developed via the fractional Laplace transform technique. The fractional solutions were reduced to local solutions by limiting α 1 . To understand the rheological behavior of the fluid, the obtained solutions were numerically computed and plotted on various graphs. Finally, the influence of pertinent parameters was physically studied. It was found that the solutions were general, reliable, realistic and fixable. For the fractional parameter, the velocity and temperature profiles showed a decreasing trend for a constant time. By setting the values of the fractional parameter, excellent agreement between the theoretical and experimental results could be attained. Full article
(This article belongs to the Special Issue Turbulence and Multiphase Flows and Symmetry)
Show Figures

Figure 1

16 pages, 981 KiB  
Article
Variable Wall Permeability Effects on Flow and Heat Transfer in a Leaky Channel Containing Water-Based Nanoparticles
by Aamir Shahzad, Wael Al-Kouz and Waqar A. Khan
Processes 2020, 8(4), 427; https://doi.org/10.3390/pr8040427 - 3 Apr 2020
Cited by 2 | Viewed by 2913
Abstract
This work presents the effects of variable wall permeability on two-dimensional flow and heat transfer in a leaky narrow channel containing water-based nanoparticles. The nanofluid is absorbed through the walls with an exponential rate. This situation arises in reverse osmosis, ultrafiltration, and transpiration [...] Read more.
This work presents the effects of variable wall permeability on two-dimensional flow and heat transfer in a leaky narrow channel containing water-based nanoparticles. The nanofluid is absorbed through the walls with an exponential rate. This situation arises in reverse osmosis, ultrafiltration, and transpiration cooling in industry. The mathematical model is developed by using the continuity, momentum, and energy equations. Using stream function, the transport equations are reduced and solved by using regular perturbation method. The expressions for stream function and temperature distribution are established, which helps in finding the components of velocity, wall shear stress, and heat transfer rate inside the channel. The results show that velocity components, temperature, wall shear stress, and rate of heat transfer are minimum at the entrance region due to the reabsorption of fluid containing nanoparticles. Additionally, with increasing volume fraction of nanoparticles, the rate of heat transfer enhances at all positions inside the channel. Titanium dioxide (TiO 2 ) nanoparticles show higher wall shear stress compared to copper and alumina. The streamlines confirms that all the fluid is reabsorbed before reaching the exit region of the channel for high reabsorption. Full article
(This article belongs to the Special Issue Flow, Heat and Mass Transport in Microdevices)
Show Figures

Figure 1

23 pages, 5405 KiB  
Article
Effects of Radiative Electro-Magnetohydrodynamics Diminishing Internal Energy of Pressure-Driven Flow of Titanium Dioxide-Water Nanofluid due to Entropy Generation
by Ahmed Zeeshan, Nasir Shehzad, Tehseen Abbas and Rahmat Ellahi
Entropy 2019, 21(3), 236; https://doi.org/10.3390/e21030236 - 1 Mar 2019
Cited by 101 | Viewed by 4328
Abstract
The internal average energy loss caused by entropy generation for steady mixed convective Poiseuille flow of a nanofluid, suspended with titanium dioxide (TiO2) particles in water, and passed through a wavy channel, was investigated. The models of thermal conductivity and viscosity [...] Read more.
The internal average energy loss caused by entropy generation for steady mixed convective Poiseuille flow of a nanofluid, suspended with titanium dioxide (TiO2) particles in water, and passed through a wavy channel, was investigated. The models of thermal conductivity and viscosity of titanium dioxide of 21 nm size particles with a volume concentration of temperature ranging from 15 °C to 35 °C were utilized. The characteristics of the working fluid were dependent on electro-magnetohydrodynamics (EMHD) and thermal radiation. The governing equations were first modified by taking long wavelength approximations, which were then solved by a homotopy technique, whereas for numerical computation, the software package BVPh 2.0 was utilized. The results for the leading parameters, such as the electric field, the volume fraction of nanoparticles and radiation parameters for three different temperatures scenarios were examined graphically. The minimum energy loss at the center of the wavy channel due to the increase in the electric field parameter was noted. However, a rise in entropy was observed due to the change in the pressure gradient from low to high. Full article
(This article belongs to the Special Issue Entropy Generation in Nanofluid Flows II)
Show Figures

Figure 1

30 pages, 11595 KiB  
Review
Preparation Techniques of TiO2 Nanofluids and Challenges: A Review
by Hafiz Muhammad Ali, Hamza Babar, Tayyab Raza Shah, Muhammad Usman Sajid, Muhammad Arslan Qasim and Samina Javed
Appl. Sci. 2018, 8(4), 587; https://doi.org/10.3390/app8040587 - 8 Apr 2018
Cited by 243 | Viewed by 17913
Abstract
Titanium dioxide (TiO2) has been used extensively because of its unique thermal and electric properties. Different techniques have been used for the preparation of TiO2 nanofluids which include single-step and two-step methods. In the natural world, TiO2 exists in [...] Read more.
Titanium dioxide (TiO2) has been used extensively because of its unique thermal and electric properties. Different techniques have been used for the preparation of TiO2 nanofluids which include single-step and two-step methods. In the natural world, TiO2 exists in three different crystalline forms as anatase, brookite, and rutile. Nanoparticles are not used directly in many heat transfer applications, and this provides a major challenge to researchers to advance towards stable nanofluid preparation methods. The primary step involved in the preparation of nanofluid is the production of nano-sized solid particles by using a suitable technique, and then these particles are dispersed into base fluids like oil, water, paraffin oil or ethylene glycol. However, nanofluid can also be prepared directly by using a liquid chemical method or vapor deposition technique (VDT). Nanofluids are mostly used in heat transfer applications and the size and cost of the heat transfer device depend upon the working fluid properties, thus, in the past decade scientists have made great efforts to formulate stable and cost-effective nanofluids with enhanced thermophysical properties. This review focuses on the different synthesis techniques and important physical properties (thermal conductivity and viscosity) that need to be considered very carefully during the preparation of TiO2 nanofluids for desired applications. Full article
(This article belongs to the Special Issue Nanofluids and Their Applications)
Show Figures

Figure 1

Back to TopTop