Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (167)

Search Parameters:
Keywords = titania coatings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 15569 KiB  
Article
Studies on the Chemical Etching and Corrosion Resistance of Ultrathin Laminated Alumina/Titania Coatings
by Ivan Netšipailo, Lauri Aarik, Jekaterina Kozlova, Aivar Tarre, Maido Merisalu, Kaisa Aab, Hugo Mändar, Peeter Ritslaid and Väino Sammelselg
Corros. Mater. Degrad. 2025, 6(3), 36; https://doi.org/10.3390/cmd6030036 - 2 Aug 2025
Viewed by 245
Abstract
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic [...] Read more.
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic layer deposition. The coatings were chemically etched and subjected to corrosion, ultrasound, and thermal shock tests. The coating etching resistance efficiency (Re) was determined by measuring via XRF the change in the coating sublayer mass thickness after etching in hot 80% H2SO4. The maximum Re values of ≥98% for both alumina and titania sublayers were obtained for the laminates deposited at 250–400 °C on both substrates. In these coatings, the titania sublayers were crystalline. The lowest Re values of 15% and 50% for the alumina and titania sublayers, respectively, were measured for laminate grown at 80 °C on silicon. The coatings deposited at 160–200 °C demonstrated a delay in the increase of Re values, attributed to the changes in the titania sublayers before full crystallization. Coatings grown at higher temperatures were also more resistant to ultrasound and liquid nitrogen treatments. In contrast, coatings deposited at 125 °C on SS had better corrosion protection, as demonstrated via electrochemical impedance spectroscopy and a standard immersion test in FeCl3 solution. Full article
Show Figures

Graphical abstract

35 pages, 30622 KiB  
Review
Nanotopographical Features of Polymeric Nanocomposite Scaffolds for Tissue Engineering and Regenerative Medicine: A Review
by Kannan Badri Narayanan
Biomimetics 2025, 10(5), 317; https://doi.org/10.3390/biomimetics10050317 - 15 May 2025
Viewed by 1112
Abstract
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development [...] Read more.
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development of nanostructured surfaces of polymeric nanocomposites has garnered increasing attention in the fields of tissue engineering and regenerative medicine due to their ability to modulate cellular responses and enhance tissue regeneration. Various top-down and bottom-up techniques, including nanolithography, etching, deposition, laser ablation, template-assisted synthesis, and nanografting techniques, are employed to create structured surfaces on biomaterials. Additionally, nanotopographies can be fabricated using polymeric nanocomposites, with or without the integration of organic and inorganic nanomaterials, through advanced methods such as using electrospinning, layer-by-layer (LbL) assembly, sol–gel processing, in situ polymerization, 3D printing, template-assisted methods, and spin coating. The surface topography of polymeric nanocomposite scaffolds can be tailored through the incorporation of organic nanomaterials (e.g., chitosan, dextran, alginate, collagen, polydopamine, cellulose, polypyrrole) and inorganic nanomaterials (e.g., silver, gold, titania, silica, zirconia, iron oxide). The choice of fabrication technique depends on the desired surface features, material properties, and specific biomedical applications. Nanotopographical modifications on biomaterials’ surface play a crucial role in regulating cell behavior, including adhesion, proliferation, differentiation, and migration, which are critical for tissue engineering and repair. For effective tissue regeneration, it is imperative that scaffolds closely mimic the native extracellular matrix (ECM), providing a mechanical framework and topographical cues that replicate matrix elasticity and nanoscale surface features. This ECM biomimicry is vital for responding to biochemical signaling cues, orchestrating cellular functions, metabolic processes, and subsequent tissue organization. The integration of nanotopography within scaffold matrices has emerged as a pivotal regulator in the development of next-generation biomaterials designed to regulate cellular responses for enhanced tissue repair and organization. Additionally, these scaffolds with specific surface topographies, such as grooves (linear channels that guide cell alignment), pillars (protrusions), holes/pits/dots (depressions), fibrous structures (mimicking ECM fibers), and tubular arrays (array of tubular structures), are crucial for regulating cell behavior and promoting tissue repair. This review presents recent advances in the fabrication methodologies used to engineer nanotopographical microenvironments in polymeric nanocomposite tissue scaffolds through the incorporation of nanomaterials and biomolecular functionalization. Furthermore, it discusses how these modifications influence cellular interactions and tissue regeneration. Finally, the review highlights the challenges and future perspectives in nanomaterial-mediated fabrication of nanotopographical polymeric scaffolds for tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers 2025)
Show Figures

Figure 1

15 pages, 6315 KiB  
Article
Effect of Various Nanofillers on Piezoelectric Nanogenerator Performance of P(VDF-TrFE) Nanocomposite Thin Film
by Sangkwon Park and Hafiz Muhammad Abid Yaseen
Nanomaterials 2025, 15(5), 403; https://doi.org/10.3390/nano15050403 - 6 Mar 2025
Viewed by 986
Abstract
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low [...] Read more.
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO2), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix. The nanocomposite films were prepared by depositing molecularly thin films of P(VDF-TrFE) and nanofiller nanoparticles (NPs) spread at the air/water interface onto the indium tin oxide-coated polyethylene terephthalate (ITO-PET) substrate, and they were characterized by measuring their microstructures, crystallinity, β-phase contents, and piezoelectric coefficients (d33) using SEM, FT-IR, XRD, and quasi-static meter, respectively. Multiple PENGs incorporating various nanofillers within the polymer matrix were developed by assembling thin film-coated substrates into a sandwich-like structure. Their piezoelectric properties, such as open-circuit output voltage (VOC) and short-circuit current (ISC), were analyzed. As a result, the PENG containing 4 wt% PZT, which was named P-PZT-4, showed the best performance of VOC of 68.5 V with the d33 value of 78.2 pC/N and β-phase content of 97%. The order of the maximum VOC values for the PENGs of nanocomposite thin films containing various nanofillers was PZT (68.5 V) > rGO (64.0 V) > ZnO (50.9 V) > TiO2 (48.1 V). When the best optimum PENG was integrated into a simple circuit comprising rectifiers and a capacitor, it demonstrated an excellent two-dimensional power density of 20.6 μW/cm2 and an energy storage capacity of 531.4 μJ within 3 min. This piezoelectric performance of PENG with the optimized nanofiller type and content was found to be superior when it was compared with those in the literature. This PENG comprising nanocomposite thin film with optimized nanofiller type and content shows a potential application for a power source for low-powered electronics such as wearable devices. Full article
Show Figures

Figure 1

16 pages, 5470 KiB  
Article
Surface Properties of Coatings Based on Iron Amino-Functionalized Oxides Deposited on DH 36 Steel Plates for Shipbuilding
by Maria Luisa Testa, Carla Calabrese, Valeria La Parola, Cristina Scolaro, Annamaria Visco, Simone Cappello and Leonarda Francesca Liotta
Nanomaterials 2025, 15(3), 150; https://doi.org/10.3390/nano15030150 - 21 Jan 2025
Cited by 1 | Viewed by 946
Abstract
The development of eco-friendly paint formulations is part of the transition process to more sustainable materials, which involves many industries such as offshore and shipbuilding, where the deterioration of steel in seawater is a key factor. This article aims to produce innovative coatings [...] Read more.
The development of eco-friendly paint formulations is part of the transition process to more sustainable materials, which involves many industries such as offshore and shipbuilding, where the deterioration of steel in seawater is a key factor. This article aims to produce innovative coatings and test their protective action on DH 36 steel plates. SiO2 and TiO2 were modified with amino groups and iron sites to be used as filler for the design of ecological paint formulations The antimicrobial features of both NH2 groups and iron ionic species were combined with the chemical and mechanical stability of silica and titania, with silica-based powders showing increased efficacy. The surface properties of the resulting coatings were examined by determination of thickness, water wettability, roughness, and cross-cut adhesion tests (before and after a degradation test in seawater according to ASTM D870-97 standards). Preliminary tests of the microbiological activity of the iron amino functionalized materials were carried out to monitor, as proof of concept, the growth of some bacterial strains through measurements of optical density. The findings indicate that these coatings not only provide effective corrosion protection but are promising for enhancing the durability and environmental performance of steel surfaces exposed to marine environments. Full article
Show Figures

Figure 1

17 pages, 3662 KiB  
Article
Superhydrophilic Titania Coatings on Glass Substrates via the Hydrosol Approach
by George V. Theodorakopoulos, Michalis K. Arfanis, Nafsika Mouti, Andreas Kaidatzis, Christian Mitterer, Konstantinos Giannakopoulos and Polycarpos Falaras
Surfaces 2025, 8(1), 5; https://doi.org/10.3390/surfaces8010005 - 6 Jan 2025
Viewed by 1305
Abstract
This study presents a comprehensive investigation into the synthesis and characterization of TiO2 coatings on glass substrates, focusing on the development of superhydrophilic, self-cleaning titania coatings using the hydrosol approach. Stringent cleaning protocols were accurately followed to ensure the pristine condition of [...] Read more.
This study presents a comprehensive investigation into the synthesis and characterization of TiO2 coatings on glass substrates, focusing on the development of superhydrophilic, self-cleaning titania coatings using the hydrosol approach. Stringent cleaning protocols were accurately followed to ensure the pristine condition of glass surfaces prior to deposition. Various organic precursor solutions were precisely prepared and applied to the glass substrate via dip-coating, followed by subsequent thermal treatment. A range of characterization techniques, including Raman spectroscopy, UV/Vis spectroscopy, scanning and atomic force microscopy, X-ray photoelectron spectroscopy, and contact angle measurements, were employed to assess the properties of the coatings. The results revealed that the samples were influenced by precursor concentration and withdrawal rate, with slow speed leading to minimal alteration of transmittance. The coatings show superhydrophilic properties, as evidenced by contact angle values below 3 degrees for the thinnest films. Their thickness is approximately 13 nm with very low roughness, indicative of a smooth and uniform surface. Optimization of the deposition conditions permits the fabrication of uniform and transparent TiO2 coatings on glass substrates, offering promising opportunities for the practical use of photoinduced self-cleaning surfaces in real-life applications. Finally, a cost analysis of scaling up the coating and mirror fabrication processes confirmed the economic feasibility of this approach for concentrated solar power (CSP) applications. Full article
Show Figures

Graphical abstract

18 pages, 5386 KiB  
Article
Photocatalytic Oxidation of Pesticides with TiO2-CeO2 Thin Films Using Sunlight
by Tania Arelly Tinoco Pérez, Evaristo Salaya Gerónimo, José Gilberto Torres Torres, Gloria Alicia del Angel Montes, Israel Rangel Vázquez, Adrian Cordero García, Adrian Cervantes Uribe, Adib Abiu Silahua Pavon and Juan Carlos Arevalo Pérez
Catalysts 2025, 15(1), 46; https://doi.org/10.3390/catal15010046 - 6 Jan 2025
Viewed by 1088
Abstract
TiO2 thin film coatings significantly improve catalyst separation in photocatalytic processes. They can be applied in heterogeneous photocatalysis under sunlight by mixing TiO2 with other oxides, such as CeO2, for the removal of pollutants in water. Here, TiO2 [...] Read more.
TiO2 thin film coatings significantly improve catalyst separation in photocatalytic processes. They can be applied in heterogeneous photocatalysis under sunlight by mixing TiO2 with other oxides, such as CeO2, for the removal of pollutants in water. Here, TiO2-CeO2 thin films deposited on borosilicate slides were analyzed and applied in solar heterogeneous photocatalysis for the oxidation of pesticides. The films were synthesized by the sol-gel method with spin coating. The waste solutions from the synthesis were used to prepare TiO2 and TiO2-CeO2 powders. These were analyzed by XRD and XPS to explain the behavior of the films. The thin films were characterized by UV-Vis spectroscopy with transmittance, UV-Vis spectroscopy with RDS, profilometry, AFM and SEM. The addition of CeO2 to TiO2 caused a decrease in the average crystal size and an increase in the strain index. The addition of a second layer made the TiO2-CeO2 thin films thinner. The CeO2 created surface and electronic defects in the titania films, which enhanced their photocatalytic properties under sunlight in the mineralization of diuron and methyl parathion. The TiO2-CeO2-5.0% single-layer thin film samples were the most active in this study and will undoubtedly be applied in larger-scale reaction systems. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation)
Show Figures

Figure 1

18 pages, 4484 KiB  
Article
One-Step Fabrication Process of Silica–Titania Superhydrophobic UV-Blocking Thin Coatings onto Polymeric Films
by Sharon Hayne, Naftali Kanovsky and Shlomo Margel
Biomimetics 2024, 9(12), 756; https://doi.org/10.3390/biomimetics9120756 - 12 Dec 2024
Viewed by 1136
Abstract
Developing a durable multifunctional superhydrophobic coating on polymeric films that can be industrially scalable is a challenge in the field of surface engineering. This article presents a novel method for a scalable technology using a simple single-step fabrication of a superhydrophobic coating on [...] Read more.
Developing a durable multifunctional superhydrophobic coating on polymeric films that can be industrially scalable is a challenge in the field of surface engineering. This article presents a novel method for a scalable technology using a simple single-step fabrication of a superhydrophobic coating on polymeric films that exhibits excellent water-repelling and UV-blocking properties, along with impressive wear resistance and chemical robustness. A mixture of titanium precursors, tetraethylorthosilicate (TEOS), hydrophobic silanes and silica nano/micro-particles is polymerized directly on a corona-treated polymeric film which reacts with the surface via siloxane chemistry. The mixture is then spread on polymeric films using a Mayer rod, which eliminates the need for expensive equipment or multistep processes. The incorporation of silica nanoparticles along with titanium precursor and TEOS results in the formation of a silica–titania network around the silica nanoparticles. This chemically binds them to the activated surface, forming a unique dual-scale surface morphology depending on the size of the silica nanoparticles used in the coating mixture. The coated films were shown to be superhydrophobic with a high water contact angle of over 180° and a rolling angle of 0°. This is due to the combination of dual-scale micro/nano roughness with fluorinated hydrocarbons that lowered the surface free energy. The coatings exhibited excellent chemical and mechanical durability, as well as UV-blocking capabilities. The results show that the coatings remain superhydrophobic even after a sandpaper abrasion test under a pressure of 2.5 kPa for a distance of 30 m. Full article
(This article belongs to the Special Issue Superhydrophobic Surfaces: Challenges, Solutions and Applications)
Show Figures

Figure 1

22 pages, 7801 KiB  
Article
Crystallization and Optical Behaviour of Nanocomposite Sol-Gel TiO2:Ag Films
by Tatyana Ivanova, Antoaneta Harizanova, Tatyana Koutzarova and Raphael Closset
Molecules 2024, 29(21), 5156; https://doi.org/10.3390/molecules29215156 - 31 Oct 2024
Cited by 5 | Viewed by 1986
Abstract
Sol-gel spin coating method was employed for depositing TiO2 and Ag-doped TiO2 films. The effects of Ag doping and the annealing temperatures (300–600 °C) were studied with respect to their structural, morphological, vibrational, and optical properties. Field Emission Scanning Electron microscopy [...] Read more.
Sol-gel spin coating method was employed for depositing TiO2 and Ag-doped TiO2 films. The effects of Ag doping and the annealing temperatures (300–600 °C) were studied with respect to their structural, morphological, vibrational, and optical properties. Field Emission Scanning Electron microscopy (FESEM) investigation exhibited the grained, compact structures of TiO2-based films. Ag incorporation resulted in a rougher film surface. X-ray diffraction (XRD) results confirmed the formation of Ag nanoparticles and AgO phase, along with anatase and rutile TiO2, strongly depending on Ag concentration and technological conditions. AgO fraction diminished after high temperature annealing above 500 °C. The vibrational properties were characterized by Fourier Transform Infrared (FTIR) spectroscopy. It was found that silver presence induced changes in IR bands of TiO2 films. UV–VIS spectroscopy revealed that the embedment of Ag NPs in titania matrix resulted in higher absorbance across the visible spectral range due to local surface plasmon resonance (LSPR). Ag doping reduced the optical band gap of sol-gel TiO2 films. The optical and plasmonic modifications of TiO2:Ag thin films by the number of layers and different technological conditions (thermal and UV treatment) are discussed. Full article
(This article belongs to the Special Issue Physicochemical Research on Material Surfaces)
Show Figures

Figure 1

15 pages, 5545 KiB  
Article
Electroless Copper Patterning on TiO2-Functionalized Mica for Flexible Electronics
by Bozhidar I. Stefanov, Boriana R. Tzaneva, Valentin M. Mateev and Ivo T. Iliev
Appl. Sci. 2024, 14(21), 9780; https://doi.org/10.3390/app14219780 - 25 Oct 2024
Viewed by 1233
Abstract
The formation of conductive copper patterns on mica holds promise for developing cost-effective flexible electronics and sensing devices, though it is challenging due to the low adhesion of mica’s atomically flat surface. Herein, we present a wet-chemical method for copper patterning on flexible [...] Read more.
The formation of conductive copper patterns on mica holds promise for developing cost-effective flexible electronics and sensing devices, though it is challenging due to the low adhesion of mica’s atomically flat surface. Herein, we present a wet-chemical method for copper patterning on flexible mica substrates via electroless copper deposition (Cu-ELD). The process involves pre-functionalizing 50 µm thick muscovite mica with a titanium dioxide (TiO2) layer, via a sol–gel dip-coating method with a titanium acetylacetonate-based sol. Photolithography is employed to selectively activate the TiO2-coated mica substrates for Cu-ELD, utilizing in situ photodeposited silver (Ag) nanoclusters as a catalyst. Copper is subsequently plated using a formaldehyde-based Cu-ELD bath, with the duration of deposition primarily determining the thickness and electrical properties of the copper layer. Conductive Cu layers with thicknesses in the 70–130 nm range were formed within 1–2 min of deposition, exhibiting an inverse relationship between plating time and sheet resistance, which ranged from 600 to 300 mΩ/sq. The electrochemical thickening of these layers to 1 μm further reduced the sheet resistance to 27 mΩ/sq. Finally, the potential of Cu-ELD patterning on TiO2-functionalized mica for creating functional sensing devices was demonstrated by fabricating a functional resistance temperature detector (RTD) on the titania surface. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

18 pages, 3457 KiB  
Article
Influence of UV-A Light Modulation on Phenol Mineralization by TiO2 Photocatalytic Process Coadjuvated with H2O2
by Nicola Morante, Luca De Guglielmo, Nunzio Oliva, Katia Monzillo, Nicola Femia, Giulia Di Capua, Vincenzo Vaiano and Diana Sannino
Catalysts 2024, 14(8), 544; https://doi.org/10.3390/catal14080544 - 20 Aug 2024
Cited by 4 | Viewed by 1845
Abstract
This work examined the influence of UV-A light modulation on the photocatalytic process coadjuvated with H2O2 to mineralize phenol in an aqueous solution. A fixed-bed batch photocatalytic reactor with a flat-plate geometry, irradiated by UV-A LEDs, was employed. The successful [...] Read more.
This work examined the influence of UV-A light modulation on the photocatalytic process coadjuvated with H2O2 to mineralize phenol in an aqueous solution. A fixed-bed batch photocatalytic reactor with a flat-plate geometry, irradiated by UV-A LEDs, was employed. The successful deposition of commercial TiO2 PC105 on a steel plate (SP) was achieved, and the structured photocatalyst was characterized using Raman spectroscopy, specific surface area (SSA) measurements, and UV–vis DRS analysis. These analyses confirmed the formation of a titania coating in the anatase phase with a bandgap energy of 3.25 eV. Various LED-dimming techniques, with both fixed and variable duty cycle values, were tested to evaluate the stability of the photocatalyst’s activity and the influence of operating parameters during the mineralization of 450 mL of a phenol solution. The optimal operating parameters were identified as an initial phenol concentration of 10 ppm, a hydrogen peroxide dosage of 0.208 g L−1, and triangular variable duty cycle light modulation. Under these conditions, the highest apparent phenol degradation kinetic constant (0.39 min−1) and the total mineralization were achieved. Finally, the energy consumption for mineralizing 90% phenol in one cubic meter of treated water was determined, showing the greatest energy savings with triangular light modulation. Full article
(This article belongs to the Special Issue Commemorative Special Issue for Prof. Dr. Dion Dionysiou)
Show Figures

Figure 1

13 pages, 3349 KiB  
Article
The Effect of Loading W&V:TiO2 Nanoparticles with Noble Metals for CH4 Detection
by Monica Scarisoreanu, Izabela Constantinoiu, Evghenii Goncearenco, Iuliana P. Morjan, Valentin Serban Teodorescu and Cristian Viespe
Chemosensors 2024, 12(8), 160; https://doi.org/10.3390/chemosensors12080160 - 9 Aug 2024
Cited by 1 | Viewed by 1302
Abstract
TiO2 nanoparticles (NPs) doped with W (W:TiO2), double-doped with W and V (W&V:TiO2), and loaded with noble metals (W:TiO2 @Pt/Pd/Ag and W&V:TiO2@Pt/Pd/Ag) were synthesized by laser pyrolysis followed by chemical impregnation and reduction. Due to [...] Read more.
TiO2 nanoparticles (NPs) doped with W (W:TiO2), double-doped with W and V (W&V:TiO2), and loaded with noble metals (W:TiO2 @Pt/Pd/Ag and W&V:TiO2@Pt/Pd/Ag) were synthesized by laser pyrolysis followed by chemical impregnation and reduction. Due to its exceptional properties, TiO2 is considered a key material being used in a wide range of applications. To improve its detection activity, the increase in the specific surface of the material, and the presence of defects in its structure play a decisive role. Doped and double-doped TiO2 nanoparticles with dimensions in the range of 25–30 nm presented a mixture of phases corresponding to titania, with the anatase phase accounting for the majority (95%). By loading these nanoparticles with small particles of noble metals, a significant increase in the specific surface area by three or even five times the original values was achieved. Sensitive thin films for surface acoustic wave (SAW) sensors were made with the NPs, embedded in polyethyleneimine (PEI) polymer and deposited by spin-coating. Each sensor was tested at CH4 concentrations between 0.4 and 2%, at room temperature, and the best results were obtained by the sensor with NPs doped with V and decorated with Pd, with a limit of detection (LOD) of 17 ppm, due to the strong catalytic effect of Pd. Full article
Show Figures

Graphical abstract

21 pages, 8106 KiB  
Article
Synthesis and Characterization of Titania-Coated Hollow Mesoporous Hydroxyapatite Composites for Photocatalytic Degradation of Methyl Red Dye in Water
by Farishta Shafiq, Simiao Yu, Yongxin Pan and Weihong Qiao
Coatings 2024, 14(8), 921; https://doi.org/10.3390/coatings14080921 - 23 Jul 2024
Cited by 3 | Viewed by 1516
Abstract
Hollow mesoporous hydroxyapatite (HM-HAP) composites coated with titania are prepared to increase the stability and catalytic performance of titania for azo dyes present in the wastewater system. In this work, HM-HAP particles were first synthesized by a hydrothermal method utilizing the CaCO3 [...] Read more.
Hollow mesoporous hydroxyapatite (HM-HAP) composites coated with titania are prepared to increase the stability and catalytic performance of titania for azo dyes present in the wastewater system. In this work, HM-HAP particles were first synthesized by a hydrothermal method utilizing the CaCO3 core as a template and then coated with titania to form TiO2/HM-HAP composites. Utilizing SEM, XRD, XPS, BET, FTIR, EDS, UV–vis DRS spectroscopy, and point of zero charge (PZC) analysis, the coating morphological and physicochemical parameters of the produced samples were analyzed. The photocatalytic efficiency of the synthesized coated composites was assessed by the degradation of methyl red (MR) dye in water. The results indicated that TiO2/HM-HAP particles could efficiently photodegrade MR dye in water under UV irradiation. The 20% TiO2/HM-HAP coating exhibited high catalytic performance, and the degradation process was followed by the pseudo-first-order (PFO) kinetic model with a rate constant of 0.033. The effect of pH on the degradation process was also evaluated, and the maximum degradation was observed at pH 6. The analysis of degraded MR dye products was investigated using LC-MS and FTIR analysis. Finally, a good support material, HM-HAP for TiO2 coatings, which provides a large number of active adsorption sites and has catalytic degradation performance for MR dye, was revealed. Full article
Show Figures

Graphical abstract

14 pages, 5170 KiB  
Article
Innovative Photocatalytic Reactor for Sustainable Industrial Water Decontamination: Utilizing 3D-Printed Components and Silica-Titania Trilayer Coatings
by George V. Theodorakopoulos, Michalis K. Arfanis, Tadej Stepišnik Perdih, Simos Malamis, Dimitrios Iatrou, George Em. Romanos and Polycarpos Falaras
Environments 2024, 11(7), 156; https://doi.org/10.3390/environments11070156 - 20 Jul 2024
Cited by 1 | Viewed by 2047
Abstract
Industrial activities generate enormous quantities of polluted effluents, necessitating advanced methods of wastewater treatment to prevent potential environmental threats. Thus, the design of a novel photocatalytic reactor for industrial water decontamination, purification, and reuse is proposed as an efficient advanced oxidation technology. In [...] Read more.
Industrial activities generate enormous quantities of polluted effluents, necessitating advanced methods of wastewater treatment to prevent potential environmental threats. Thus, the design of a novel photocatalytic reactor for industrial water decontamination, purification, and reuse is proposed as an efficient advanced oxidation technology. In this work, the development of the active reactor components is described, utilizing a two-step sol–gel technique to prepare a silica-titania trilayer coating on 3D-printed polymeric filters. The initial dip-coated SiO2 insulator further protects and enhances the stability of the polymer matrix, and the subsequent TiO2 layers endow the composite architecture with photocatalytic functionality. The structural and morphological characteristics of the modified photocatalytic filters are extensively investigated, and their performance is assessed by studying the photocatalytic degradation of the Triton X-100, a common and standard chemical surfactant, presented in the contaminated wastewater of the steel metal industry. The promising outcomes of the innovative versatile reactor pave the way for developing scalable, cost-effective reactors for efficient water treatment technologies. Full article
(This article belongs to the Special Issue Photocatalytic Applications in Wastewater Treatment)
Show Figures

Figure 1

15 pages, 5199 KiB  
Article
Anticorrosion Performance of Waterborne Coatings with Modified Nanoscale Titania under Subtropical Maritime Climate
by Yang Lyu, Weipeng Sun, Tingyou Feng, Wenge Li, Yong Jiang, Chenglin Zuo and Shuangxi Wang
Polymers 2024, 16(13), 1919; https://doi.org/10.3390/polym16131919 - 5 Jul 2024
Cited by 1 | Viewed by 1423
Abstract
Steel structures located in subtropical marine climates face harsh conditions such as strong sunlight and heavy rain, and they are extremely corroded. In this study, a waterborne coating with excellent corrosion resistance, hydrophobic ability, high-temperature resistance and high density was successfully prepared by [...] Read more.
Steel structures located in subtropical marine climates face harsh conditions such as strong sunlight and heavy rain, and they are extremely corroded. In this study, a waterborne coating with excellent corrosion resistance, hydrophobic ability, high-temperature resistance and high density was successfully prepared by using modified nanoscale titania powders and grafted polymers. The effects of three modifiers on titania nanoparticles and waterborne coatings’ properties were studied independently. The experimental results showed that the activation index of the modification employing methacryloxy silane reached 97.5%, which achieved the best modification effect at 64.4 °C for 43.3 min. The waterborne coating with nanoscale titania modified by methacryloxy silane exhibited the best hydrophobic effect, with a drop contact angle of 115.4° and excellent heat resistance of up to 317.2 °C. The application of the waterborne modified coating in steel structures under subtropical maritime climates showed that the waterborne titania coatings demonstrated excellent resistance to corrosion, high temperatures and harsh sunlight, with a maximum service life of up to five years. Economic analysis indicated that, considering a conservative three-year effective lifespan, this coating could save more than 50% in cost compared with conventional industrial coatings. Finally, the strengthening mechanism of the polymer coatings with modified nanoscale titania was analyzed. Full article
Show Figures

Figure 1

29 pages, 664 KiB  
Review
Nano-Based Approaches in Surface Modifications of Dental Implants: A Literature Review
by Chrysa Marasli, Hector Katifelis, Maria Gazouli and Nefeli Lagopati
Molecules 2024, 29(13), 3061; https://doi.org/10.3390/molecules29133061 - 27 Jun 2024
Cited by 12 | Viewed by 5621
Abstract
Rehabilitation of fully or partially edentulous patients with dental implants represents one of the most frequently used surgical procedures. The work of Branemark, who observed that a piece of titanium embedded in rabbit bone became firmly attached and difficult to remove, introduced the [...] Read more.
Rehabilitation of fully or partially edentulous patients with dental implants represents one of the most frequently used surgical procedures. The work of Branemark, who observed that a piece of titanium embedded in rabbit bone became firmly attached and difficult to remove, introduced the concept of osseointegration and revolutionized modern dentistry. Since then, an ever-growing need for improved implant materials towards enhanced material–tissue integration has emerged. There is a strong belief that nanoscale materials will produce a superior generation of implants with high efficiency, low cost, and high volume. The aim of this review is to explore the contribution of nanomaterials in implantology. A variety of nanomaterials have been proposed as potential candidates for implant surface customization. They can have inherent antibacterial properties, provide enhanced conditions for osseointegration, or act as reservoirs for biomolecules and drugs. Titania nanotubes alone or in combination with biological agents or drugs are used for enhanced tissue integration in dental implants. Regarding immunomodulation and in order to avoid implant rejection, titania nanotubes, graphene, and biopolymers have successfully been utilized, sometimes loaded with anti-inflammatory agents and extracellular vesicles. Peri-implantitis prevention can be achieved through the inherent antibacterial properties of metal nanoparticles and chitosan or hybrid coatings bearing antibiotic substances. For improved corrosion resistance various materials have been explored. However, even though these modifications have shown promising results, future research is necessary to assess their clinical behavior in humans and proceed to widespread commercialization. Full article
(This article belongs to the Special Issue Synthesis of Nanomaterials and Their Applications in Biomedicine)
Show Figures

Figure 1

Back to TopTop