Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,467)

Search Parameters:
Keywords = tissue remodeling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1800 KiB  
Article
Healing Kinetics of Sinus Lift Augmentation Using Biphasic Calcium Phosphate Granules: A Case Series in Humans
by Michele Furlani, Valentina Notarstefano, Nicole Riberti, Emira D’Amico, Tania Vanessa Pierfelice, Carlo Mangano, Elisabetta Giorgini, Giovanna Iezzi and Alessandra Giuliani
Bioengineering 2025, 12(8), 848; https://doi.org/10.3390/bioengineering12080848 (registering DOI) - 6 Aug 2025
Abstract
Sinus augmentation provides a well-established model for investigating the three-dimensional morphometry and macromolecular dynamics of bone regeneration, particularly when using biphasic calcium phosphate (BCP) graft substitutes. This case series included six biopsies from patients who underwent maxillary sinus augmentation using BCP granules composed [...] Read more.
Sinus augmentation provides a well-established model for investigating the three-dimensional morphometry and macromolecular dynamics of bone regeneration, particularly when using biphasic calcium phosphate (BCP) graft substitutes. This case series included six biopsies from patients who underwent maxillary sinus augmentation using BCP granules composed of 30% hydroxyapatite (HA) and 70% β-tricalcium phosphate (β-TCP). Bone core biopsies were obtained at healing times of 6 months, 9 months, and 12 months. Histological evaluation yielded qualitative and quantitative insights into new bone distribution, while micro-computed tomography (micro-CT) and Raman microspectroscopy (RMS) were employed to assess the three-dimensional architecture and macromolecular composition of the regenerated bone. Micro-CT analysis revealed progressive maturation of the regenerated bone microstructure over time. At 6 months, the apical regenerated area exhibited a significantly higher mineralized volume fraction (58 ± 5%) compared to the basal native bone (44 ± 11%; p = 0.0170), as well as significantly reduced trabecular spacing (Tb.Sp: 187 ± 70 µm vs. 325 ± 96 µm; p = 0.0155) and degree of anisotropy (DA: 0.37 ± 0.05 vs. 0.73 ± 0.03; p < 0.0001). By 12 months, the mineralized volume fraction in the regenerated area (53 ± 5%) was statistically comparable to basal bone (44 ± 3%; p > 0.05), while Tb.Sp (211 ± 20 µm) and DA (0.23 ± 0.09) remained significantly lower (Tb.Sp: 395 ± 41 µm, p = 0.0041; DA: 0.46 ± 0.04, p = 0.0001), indicating continued structural remodelling and organization. Raman microspectroscopy further revealed dynamic macromolecular changes during healing. Characteristic β-TCP peaks (e.g., 1315, 1380, 1483 cm−1) progressively diminished over time and were completely absent in the regenerated tissue at 12 months, contrasting with their partial presence at 6 months. Simultaneously, increased intensity of collagen-specific bands (e.g., Amide I at 1661 cm−1, Amide III at 1250 cm−1) and carbonate peaks (1065 cm−1) reflected active matrix formation and mineralization. Overall, this case series provides qualitative and quantitative evidence that bone regeneration and integration of BCP granules in sinus augmentation continues beyond 6 months, with ongoing maturation observed up to 12 months post-grafting. Full article
Show Figures

Figure 1

19 pages, 332 KiB  
Review
Redefining Treatment Paradigms in Thyroid Eye Disease: Current and Future Therapeutic Strategies
by Nicolò Ciarmatori, Flavia Quaranta Leoni and Francesco M. Quaranta Leoni
J. Clin. Med. 2025, 14(15), 5528; https://doi.org/10.3390/jcm14155528 - 6 Aug 2025
Abstract
Background: Thyroid eye disease (TED) is a rare autoimmune orbital disorder predominantly associated with Graves’ disease. It is characterized by orbital inflammation, tissue remodeling, and potential visual morbidity. Conventional therapies, particularly systemic glucocorticoids, offer only partial symptomatic relief, failing to reverse chronic structural [...] Read more.
Background: Thyroid eye disease (TED) is a rare autoimmune orbital disorder predominantly associated with Graves’ disease. It is characterized by orbital inflammation, tissue remodeling, and potential visual morbidity. Conventional therapies, particularly systemic glucocorticoids, offer only partial symptomatic relief, failing to reverse chronic structural changes such as proptosis and diplopia, and are associated with substantial adverse effects. This review aims to synthesize recent developments in understandings of TED pathogenesis and to critically evaluate emerging therapeutic strategies. Methods: A systematic literature review was conducted using MEDLINE, Embase, and international clinical trial registries focusing on pivotal clinical trials and investigational therapies targeting core molecular pathways involved in TED. Results: Current evidence suggests that TED pathogenesis is primarily driven by the autoimmune activation of orbital fibroblasts (OFs) through thyrotropin receptor (TSH-R) and insulin-like growth factor-1 receptor (IGF-1R) signaling. Teprotumumab, a monoclonal IGF-1R inhibitor and the first therapy approved by the U.S. Food and Drug Administration for TED, has demonstrated substantial clinical benefit, including improvements in proptosis, diplopia, and quality of life. However, concerns remain regarding relapse rates and treatment-associated adverse events, particularly hearing impairment. Investigational therapies, including next-generation IGF-1R inhibitors, small-molecule antagonists, TSH-R inhibitors, neonatal Fc receptor (FcRn) blockers, cytokine-targeting agents, and gene-based interventions, are under development. These novel approaches aim to address both inflammatory and fibrotic components of TED. Conclusions: Teprotumumab has changed TED management but sustained control and toxicity reduction remain challenges. Future therapies should focus on targeted, mechanism-based, personalized approaches to improve long-term outcomes and patient quality of life. Full article
(This article belongs to the Section Ophthalmology)
22 pages, 2029 KiB  
Article
Regulatory Effects of Endometriosis-Associated Genetic Variants: A Multi-Tissue eQTL Analysis
by Asbiel Felipe Garibaldi-Ríos, Perla Graciela Rodríguez-Gutiérrez, Jesús Magdiel García-Díaz, Guillermo Moisés Zúñiga-González, Luis E. Figuera, Belinda Claudia Gómez-Meda, Ana María Puebla-Pérez, Ingrid Patricia Dávalos-Rodríguez, Blanca Miriam Torres-Mendoza, Itzae Adonai Gutiérrez-Hurtado and Martha Patricia Gallegos-Arreola
Diseases 2025, 13(8), 248; https://doi.org/10.3390/diseases13080248 - 6 Aug 2025
Abstract
Backgroud. Endometriosis is a chronic, estrogen-dependent inflammatory disease characterized by the ectopic presence of endometrial-like tissue. Although genome-wide association studies (GWAS) have identified susceptibility variants, their tissue-specific regulatory impact remains poorly understood. Objective. To functionally characterize endometriosis-associated variants by exploring their regulatory effects [...] Read more.
Backgroud. Endometriosis is a chronic, estrogen-dependent inflammatory disease characterized by the ectopic presence of endometrial-like tissue. Although genome-wide association studies (GWAS) have identified susceptibility variants, their tissue-specific regulatory impact remains poorly understood. Objective. To functionally characterize endometriosis-associated variants by exploring their regulatory effects as expression quantitative trait loci (eQTLs) across six physiologically relevant tissues: peripheral blood, sigmoid colon, ileum, ovary, uterus, and vagina. Methods. GWAS-identified variants were cross-referenced with tissue-specific eQTL data from the GTEx v8 database. We prioritized genes either frequently regulated by eQTLs or showing the strongest regulatory effects (based on slope values, which indicate the direction and magnitude of the effect on gene expression). Functional interpretation was performed using MSigDB Hallmark gene sets and Cancer Hallmarks gene collections. Results. A tissue specificity was observed in the regulatory profiles of eQTL-associated genes. In the colon, ileum, and peripheral blood, immune and epithelial signaling genes predominated. In contrast, reproductive tissues showed the enrichment of genes involved in hormonal response, tissue remodeling, and adhesion. Key regulators such as MICB, CLDN23, and GATA4 were consistently linked to hallmark pathways, including immune evasion, angiogenesis, and proliferative signaling. Notably, a substantial subset of regulated genes was not associated with any known pathway, indicating potential novel regulatory mechanisms. Conclusions. This integrative approach highlights the com-plexity of tissue-specific gene regulation mediated by endometriosis-associated variants. Our findings provide a functional framework to prioritize candidate genes and support new mechanistic hypotheses for the molecular pathophysiology of endometriosis. Full article
Show Figures

Figure 1

26 pages, 769 KiB  
Review
Immunomodulatory and Regenerative Functions of MSC-Derived Exosomes in Bone Repair
by Manorathna Arun, Sheeja Rajasingh, Parani Madasamy and Johnson Rajasingh
Bioengineering 2025, 12(8), 844; https://doi.org/10.3390/bioengineering12080844 (registering DOI) - 5 Aug 2025
Abstract
Bone integrity is maintained through continuous remodeling, orchestrated by the coordinated actions of osteocytes, osteoblasts, and osteoclasts. Once considered passive bystanders, osteocytes are now recognized as central regulators of this process, mediating biochemical signaling and mechanotransduction. Malfunctioning osteocytes contribute to serious skeletal disorders [...] Read more.
Bone integrity is maintained through continuous remodeling, orchestrated by the coordinated actions of osteocytes, osteoblasts, and osteoclasts. Once considered passive bystanders, osteocytes are now recognized as central regulators of this process, mediating biochemical signaling and mechanotransduction. Malfunctioning osteocytes contribute to serious skeletal disorders such as osteoporosis. Mesenchymal stromal cells (MSCs), multipotent stem cells capable of differentiating into osteoblasts, have emerged as promising agents for bone regeneration, primarily through the paracrine effects of their secreted exosomes. MSC-derived exosomes are nanoscale vesicles enriched with proteins, lipids, and nucleic acids that promote intercellular communication, osteoblast proliferation and differentiation, and angiogenesis. Notably, they deliver osteoinductive microRNAs (miRNAs) that influence osteogenic markers and support bone tissue repair. In vivo investigations validate their capacity to enhance bone regeneration, increase bone volume, and improve biomechanical strength. Additionally, MSC-derived exosomes regulate the immune response, creating pro-osteogenic and pro-angiogenic factors, boosting their therapeutic efficacy. Due to their cell-free characteristics, MSC-derived exosomes offer benefits such as diminished immunogenicity and minimal risk of off-target effects. These properties position them as promising and innovative approaches for bone regeneration, integrating immunomodulatory effects with tissue-specific regenerative capabilities. Full article
Show Figures

Figure 1

23 pages, 11168 KiB  
Article
Persistent Inflammation, Maladaptive Remodeling, and Fibrosis in the Kidney Following Long COVID-like MHV-1 Mouse Model
by Rajalakshmi Ramamoorthy, Anna Rosa Speciale, Emily M. West, Hussain Hussain, Nila Elumalai, Klaus Erich Schmitz Abe, Madesh Chinnathevar Ramesh, Pankaj B. Agrawal, Arumugam R. Jayakumar and Michael J. Paidas
Diseases 2025, 13(8), 246; https://doi.org/10.3390/diseases13080246 - 5 Aug 2025
Abstract
Background: Accumulating evidence indicates that SARS-CoV-2 infection results in long-term multiorgan complications, with the kidney being a primary target. This study aimed to characterize the long-term transcriptomic changes in the kidney following coronavirus infection using a murine model of MHV-1-induced SARS-like illness and [...] Read more.
Background: Accumulating evidence indicates that SARS-CoV-2 infection results in long-term multiorgan complications, with the kidney being a primary target. This study aimed to characterize the long-term transcriptomic changes in the kidney following coronavirus infection using a murine model of MHV-1-induced SARS-like illness and to evaluate the therapeutic efficacy of SPIKENET (SPK). Methods: A/J mice were infected with MHV-1. Renal tissues were collected and subjected to immunofluorescence analysis and Next Generation RNA Sequencing to identify differentially expressed genes associated with acute and chronic infection. Bioinformatic analyses, including PCA, volcano plots, and GO/KEGG pathway enrichment, were performed. A separate cohort received SPK treatment, and comparative transcriptomic profiling was conducted. Gene expression profile was further confirmed using real-time PCR. Results: Acute infection showed the upregulation of genes involved in inflammation and fibrosis. Long-term MHV-1 infection led to the sustained upregulation of genes involved in muscle regeneration, cytoskeletal remodeling, and fibrotic responses. Notably, both expression and variability of SLC22 and SLC22A8, key proximal tubule transporters, were reduced, suggesting a loss of segment-specific identity. Further, SLC12A1, a critical regulator of sodium reabsorption and blood pressure, was downregulated and is associated with the onset of polyuria and hydronephrosis. SLC transporters exhibited expression patterns consistent with tubular dysfunction and inflammation. These findings suggest aberrant activation of myogenic pathways and structural proteins in renal tissues, consistent with a pro-fibrotic phenotype. In contrast, SPK treatment reversed the expression of most genes, thereby restoring the gene profiles to those observed in control mice. Conclusions: MHV-1-induced long COVID is associated with persistent transcriptional reprogramming in the kidney, indicative of chronic inflammation, cytoskeletal dysregulation, and fibrogenesis. SPK demonstrates robust therapeutic potential by normalizing these molecular signatures and preventing long-term renal damage. These findings underscore the relevance of the MHV-1 model and support further investigation of SPK as a candidate therapy for COVID-19-associated renal sequelae. Full article
(This article belongs to the Special Issue COVID-19 and Global Chronic Disease 2025: New Challenges)
Show Figures

Figure 1

16 pages, 1247 KiB  
Review
When Bone Forms Where It Shouldn’t: Heterotopic Ossification in Muscle Injury and Disease
by Anthony Facchin, Sophie Lemaire, Li Gang Toner, Anteneh Argaw and Jérôme Frenette
Int. J. Mol. Sci. 2025, 26(15), 7516; https://doi.org/10.3390/ijms26157516 - 4 Aug 2025
Viewed by 30
Abstract
Heterotopic ossification (HO) refers to the pathological formation of bone in soft tissues, typically following trauma, surgical procedures, or as a result of genetic disorders. Notably, injuries to the central nervous system significantly increase the risk of HO, a condition referred to as [...] Read more.
Heterotopic ossification (HO) refers to the pathological formation of bone in soft tissues, typically following trauma, surgical procedures, or as a result of genetic disorders. Notably, injuries to the central nervous system significantly increase the risk of HO, a condition referred to as neurogenic HO (NHO). This review outlines the cellular and molecular mechanisms driving HO, focusing on the inflammatory response, progenitor cell reprogramming, and current treatment strategies. HO is primarily fuelled by a prolonged and dysregulated inflammatory response, characterized by sustained expression of osteoinductive cytokines secreted by M1 macrophages. These cytokines promote the aberrant differentiation of fibro-adipogenic progenitor cells (FAPs) into osteoblasts, leading to ectopic mineralization. Additional factors such as hypoxia, BMP signalling, and mechanotransduction pathways further contribute to extracellular matrix (ECM) remodelling and osteogenic reprogramming of FAPs. In the context of NHO, neuroendocrine mediators enhance ectopic bone formation by influencing both local inflammation and progenitor cell fate decisions. Current treatment options such as nonsteroidal anti-inflammatory drugs (NSAIDs), radiation therapy, and surgical excision offer limited efficacy and are associated with significant risks. Novel therapeutic strategies targeting inflammation, neuropeptide signalling, and calcium metabolism may offer more effective approaches to preventing or mitigating HO progression. Full article
Show Figures

Graphical abstract

18 pages, 2044 KiB  
Review
Histopathological and Molecular Insights into Chronic Nasopharyngeal and Otic Disorders in Children: Structural and Immune Mechanisms Underlying Disease Chronicity
by Diana Szekely, Flavia Zara, Raul Patrascu, Cristina Stefania Dumitru, Dorin Novacescu, Alexia Manole, Carmen Aurelia Mogoanta, Dan Iovanescu and Gheorghe Iovanescu
Life 2025, 15(8), 1228; https://doi.org/10.3390/life15081228 - 3 Aug 2025
Viewed by 294
Abstract
Chronic nasopharyngeal and otic disorders in children represent a significant clinical challenge due to their multifactorial etiology, variable presentation, and frequent resistance to standard therapies. Although often approached from a symptomatic or anatomical perspective, these conditions are deeply rooted in histological and molecular [...] Read more.
Chronic nasopharyngeal and otic disorders in children represent a significant clinical challenge due to their multifactorial etiology, variable presentation, and frequent resistance to standard therapies. Although often approached from a symptomatic or anatomical perspective, these conditions are deeply rooted in histological and molecular alterations that sustain inflammation, impair mucosal function, and promote recurrence. This narrative review synthesizes the current knowledge on the normal histology of the nasopharynx, Eustachian tube, and middle ear, and explores key pathophysiological mechanisms, including epithelial remodeling, immune cell infiltration, cytokine imbalance, and tissue fibrosis. Special emphasis is placed on the role of immunohistochemistry in defining inflammatory phenotypes, barrier dysfunction, and remodeling pathways. The presence of biofilm, epithelial plasticity, and dysregulated cytokine signaling are also discussed as contributors to disease chronicity. These findings have direct implications for diagnosis, therapeutic stratification, and postoperative monitoring. By integrating histological, immunological, and molecular data, clinicians can better characterize disease subtypes, anticipate treatment outcomes, and move toward a more personalized and biologically informed model of pediatric ENT care. Full article
(This article belongs to the Special Issue New Trends in Otorhinolaryngology)
Show Figures

Figure 1

21 pages, 3631 KiB  
Article
Genome-Wide Analyses of the XTH Gene Family in Brachypodium distachyon and Functional Analyses of the Role of BdXTH27 in Root Elongation
by Hongyan Shen, Qiuping Tan, Wenzhe Zhao, Mengdan Zhang, Cunhao Qin, Zhaobing Liu, Xinsheng Wang, Sendi An, Hailong An and Hongyu Wu
Int. J. Mol. Sci. 2025, 26(15), 7457; https://doi.org/10.3390/ijms26157457 - 1 Aug 2025
Viewed by 110
Abstract
Xyloglucan endotransglucosylase/hydrolases (XTHs) are a class of cell wall-associated enzymes involved in the construction and remodeling of cellulose/xyloglucan crosslinks. However, knowledge of this gene family in the model monocot Brachypodium distachyon is limited. A total of 29 BdXTH genes were identified from the [...] Read more.
Xyloglucan endotransglucosylase/hydrolases (XTHs) are a class of cell wall-associated enzymes involved in the construction and remodeling of cellulose/xyloglucan crosslinks. However, knowledge of this gene family in the model monocot Brachypodium distachyon is limited. A total of 29 BdXTH genes were identified from the whole genome, and these were further divided into three subgroups (Group I/II, Group III, and the Ancestral Group) through evolutionary analysis. Gene structure and protein motif analyses indicate that closely clustered BdXTH genes are relatively conserved within each group. A highly conserved amino acid domain (DEIDFEFLG) responsible for catalytic activity was identified in all BdXTH proteins. We detected three pairs of segmentally duplicated BdXTH genes and five groups of tandemly duplicated BdXTH genes, which played vital roles in the expansion of the BdXTH gene family. Cis-elements related to hormones, growth, and abiotic stress responses were identified in the promoters of each BdXTH gene, and when roots were treated with two abiotic stresses (salinity and drought) and four plant hormones (IAA, auxin; GA3, gibberellin; ABA, abscisic acid; and BR, brassinolide), the expression levels of many BdXTH genes changed significantly. Transcriptional analyses of the BdXTH genes in 38 tissue samples from the publicly available RNA-seq data indicated that most BdXTH genes have distinct expression patterns in different tissues and at different growth stages. Overexpressing the BdXTH27 gene in Brachypodium led to reduced root length in transgenic plants, which exhibited higher cellulose levels but lower hemicellulose levels compared to wild-type plants. Our results provide valuable information for further elucidation of the biological functions of BdXTH genes in the model grass B. distachyon. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 - 1 Aug 2025
Viewed by 159
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

22 pages, 11006 KiB  
Article
Supervised Machine-Based Learning and Computational Analysis to Reveal Unique Molecular Signatures Associated with Wound Healing and Fibrotic Outcomes to Lens Injury
by Catherine Lalman, Kylie R. Stabler, Yimin Yang and Janice L. Walker
Int. J. Mol. Sci. 2025, 26(15), 7422; https://doi.org/10.3390/ijms26157422 - 1 Aug 2025
Viewed by 134
Abstract
Posterior capsule opacification (PCO), a frequent complication of cataract surgery, arises from dysregulated wound healing and fibrotic transformation of residual lens epithelial cells. While transcriptomic and machine learning (ML) approaches have elucidated fibrosis-related pathways in other tissues, the molecular divergence between regenerative and [...] Read more.
Posterior capsule opacification (PCO), a frequent complication of cataract surgery, arises from dysregulated wound healing and fibrotic transformation of residual lens epithelial cells. While transcriptomic and machine learning (ML) approaches have elucidated fibrosis-related pathways in other tissues, the molecular divergence between regenerative and fibrotic outcomes in the lens remains unclear. Here, we used an ex vivo chick lens injury model to simulate post-surgical conditions, collecting RNA from lenses undergoing either regenerative wound healing or fibrosis between days 1–3 post-injury. Bulk RNA sequencing data were normalized, log-transformed, and subjected to univariate filtering prior to training LASSO, SVM, and RF ML models to identify discriminatory gene signatures. Each model was independently validated using a held-out test set. Distinct gene sets were identified, including fibrosis-associated genes (VGLL3, CEBPD, MXRA7, LMNA, gga-miR-143, RF00072) and wound-healing-associated genes (HS3ST2, ID1), with several achieving perfect classification. Gene Set Enrichment Analysis revealed divergent pathway activation, including extracellular matrix remodeling, DNA replication, and spliceosome associated with fibrosis. RT-PCR in independent explants confirmed key differential expression levels. These findings demonstrate the utility of supervised ML for discovering lens-specific fibrotic and regenerative gene features and nominate biomarkers for targeted intervention to mitigate PCO. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

27 pages, 5071 KiB  
Article
Immunohistochemical and Ultrastructural Study of the Degenerative Processes of the Hip Joint Capsule and Acetabular Labrum
by Riana Maria Huzum, Bogdan Huzum, Marius Valeriu Hînganu, Ludmila Lozneanu, Fabian Cezar Lupu and Delia Hînganu
Diagnostics 2025, 15(15), 1932; https://doi.org/10.3390/diagnostics15151932 - 31 Jul 2025
Viewed by 247
Abstract
Background/Objectives: Degenerative processes of the hip joint increasingly affect not only the articular cartilage but also periarticular structures such as the joint capsule and acetabular labrum. This study aimed to investigate the structural and molecular changes occurring in these tissues during advanced [...] Read more.
Background/Objectives: Degenerative processes of the hip joint increasingly affect not only the articular cartilage but also periarticular structures such as the joint capsule and acetabular labrum. This study aimed to investigate the structural and molecular changes occurring in these tissues during advanced hip osteoarthritis. Methods: A combined analysis using immunohistochemistry (IHC), scanning electron microscopy (SEM), and micro-computed tomography (microCT) was conducted on tissue samples from patients undergoing total hip arthroplasty and from controls with morphologically normal joints. Markers associated with proliferation (Ki67), inflammation (CD68), angiogenesis (CD31, ERG), chondrogenesis (SOX9), and lubrication (Lubricin) were evaluated. Results: The pathological group showed increased expression of Ki67, CD68, CD31, ERG, and SOX9, with a notable decrease in Lubricin. SEM analysis revealed ultrastructural disorganization, collagen fragmentation, and neovascular remodeling in degenerative samples. A significant correlation between structural damage and molecular expression was identified. Conclusions: These results suggest that joint capsule and acetabular labrum degeneration are interconnected and reflect a broader pathophysiological continuum, supporting the use of integrated IHC and SEM profiling for early detection and targeted intervention in hip joint disease. Full article
(This article belongs to the Special Issue Diagnosis and Management of Osteoporosis)
Show Figures

Figure 1

14 pages, 2149 KiB  
Article
Three-Dimensional-Printed Thermoplastic Polyurethane (TPU) Graft and H-Button Stabilization System for Intra-Articular Cranial Cruciate Ligament Reconstruction: Cadaveric Study
by Menna Nahla, Yara Abouelela, Mohammed Amer, Marwa Ali, Abdelbary Prince, Ayman Tolba and Ayman Mostafa
Vet. Sci. 2025, 12(8), 725; https://doi.org/10.3390/vetsci12080725 - 31 Jul 2025
Viewed by 113
Abstract
Cranial cruciate ligament (CrCL) rupture is a common orthopedic disorder in dogs, leading to stifle joint instability and progressive osteoarthritis. This study aimed to develop and biomechanically evaluate a novel intra-articular reconstruction system designed to mimic the natural ligament and restore joint stability [...] Read more.
Cranial cruciate ligament (CrCL) rupture is a common orthopedic disorder in dogs, leading to stifle joint instability and progressive osteoarthritis. This study aimed to develop and biomechanically evaluate a novel intra-articular reconstruction system designed to mimic the natural ligament and restore joint stability following CrCL excision. The system consisted of a 3D-printed thermoplastic polyurethane (TPU) graft, cerclage wire, and H-button fixation. Fourteen pelvic limbs from mature mixed-breed cadaveric dogs were used. The inclination angle, dimensions, volume, tensile strength, and elongation of the native CrCL were measured. Seven CrCL-deficient stifles were reconstructed using the proposed system and tested biomechanically. The native CrCL showed a significantly higher tensile strength than the TPU graft; however, the TPU demonstrated a greater flexibility. The reconstruction system successfully stabilized the joint and provided repeatable fixation. Significant correlations were found between CrCL volume and both age and body weight. These findings support the mechanical suitability of the proposed system for ex vivo stifle stabilization and highlight the potential of 3D-printed TPU in ligament reconstruction. Further in vivo studies are recommended to assess long-term performance, including implant integration, tissue remodeling, and clinical outcomes. Full article
(This article belongs to the Section Veterinary Surgery)
Show Figures

Figure 1

12 pages, 1734 KiB  
Article
Lipid-Modulating Effects of Sargassum fulvellum Fermented by Lactococcus lactis KCCM12759P and Leuconostoc mesenteroides KCCM12756P in Ovariectomized Mice
by Hyun-Sol Jo, Young-Eun Cho and Sun-Mee Hong
Nutrients 2025, 17(15), 2527; https://doi.org/10.3390/nu17152527 - 31 Jul 2025
Viewed by 158
Abstract
Background/Objectives: Estrogen deficiency contributes to dyslipidemia and visceral adiposity, increasing cardiovascular risk in postmenopausal women. Sargassum fulvellum (Sf), a brown seaweed rich in bioactive compounds, possesses lipid-regulating properties that may be enhanced by lactic acid bacteria fermentation. This study aimed to evaluate [...] Read more.
Background/Objectives: Estrogen deficiency contributes to dyslipidemia and visceral adiposity, increasing cardiovascular risk in postmenopausal women. Sargassum fulvellum (Sf), a brown seaweed rich in bioactive compounds, possesses lipid-regulating properties that may be enhanced by lactic acid bacteria fermentation. This study aimed to evaluate the effects of fermented S. fulvellum (SfLlLm), prepared using Lactococcus lactis and Leuconostoc mesenteroides, on lipid metabolism and adipose tissue remodeling in an ovariectomized (OVX) mouse model of estrogen deficiency. Methods: Female C57BL/6 mice underwent ovariectomy and were fed an AIN-76A diet supplemented with either unfermented Sf or SfLlLm for eight weeks. Sham-operated and 17β-estradiol-treated OVX groups served as controls. Serum lipid levels—total cholesterol, triglycerides, LDL-C, and HDL-C—were assessed, and histological analysis of visceral adipose tissue was conducted to evaluate adipocyte morphology. Results: OVX-induced estrogen deficiency led to increased total cholesterol, triglycerides, and LDL-C, along with hypertrophic changes in visceral adipocytes. Supplementation with fermented Sargassum fulvellum (SfLlLm) markedly improved these parameters, reducing total cholesterol by 6.7%, triglycerides by 9.3%, and LDL-C by 52.9%, while increasing HDL-C by 17.5% compared to the OVX controls. SfLlLm also normalized visceral adipocyte size and distribution. These effects were comparable to or exceeded those of 17β-estradiol treatment. Conclusions: Fermented SfLlLm ameliorated dyslipidemia and visceral adiposity under estrogen-deficient conditions. These findings support its potential as a functional dietary intervention for managing postmenopausal lipid disorders and associated metabolic complications. Full article
(This article belongs to the Special Issue Diet and Nutrition: Metabolic Diseases---2nd Edition)
Show Figures

Figure 1

19 pages, 738 KiB  
Review
HMGB1 as a Key Modulator in Nasal Inflammatory Disorders: A Narrative Review
by Desiderio Passali, Luisa Maria Bellussi, Mariaconsiglia Santantonio and Giulio Cesare Passali
J. Clin. Med. 2025, 14(15), 5392; https://doi.org/10.3390/jcm14155392 - 31 Jul 2025
Viewed by 221
Abstract
Background: High Mobility Group Box 1 is a mediator in inflammation, acting as a damage-associated molecular pattern molecule in various diseases. This review examines its role in nasal inflammatory disorders, such as chronic rhinosinusitis and allergic rhinitis. Methods: A comprehensive review [...] Read more.
Background: High Mobility Group Box 1 is a mediator in inflammation, acting as a damage-associated molecular pattern molecule in various diseases. This review examines its role in nasal inflammatory disorders, such as chronic rhinosinusitis and allergic rhinitis. Methods: A comprehensive review of recent literature was conducted using a refined PubMed search strategy, focusing on studies published from 2015 onward and targeting HMGB1’s role in nasal inflammatory diseases. Results: HMGB1 emerges as a central factor in amplifying and modulating inflammatory responses through interactions with multiple receptors. It regulates cytokine production, epithelial–mesenchymal transition, and tissue remodeling, particularly in eosinophilic CRS. While discrepancies in the literature highlight its context-dependent activity, therapeutic strategies like glycyrrhetinic acid and PPAR-γ agonists demonstrate potential in modulating its effects. Conclusions: HMGB1 represents a promising diagnostic biomarker and therapeutic target in nasal inflammatory diseases. However, due to its intrinsic nature and multiple localizations, much remains to be understood. It is precisely by reflecting on its role as an “inflammatory crossroads” that we aim to underscore the need for targeted translational research to elucidate the molecular mechanisms and therapeutic applications of HMGB1. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

17 pages, 2886 KiB  
Article
The Intersection Between Schistosoma mansoni Infection and Dyslipidemia Modulates Inflammation in the Visceral Adipose Tissue of Swiss Webster Mice
by Thainá de Melo, Isadora do Monte Silveira Bruno, Luciana Brandão-Bezerra, Silvia Amaral Gonçalves da Silva, Christiane Leal Corrêa, Luciana Silva Rodrigues, José Roberto Machado-Silva and Renata Heisler Neves
Trop. Med. Infect. Dis. 2025, 10(8), 217; https://doi.org/10.3390/tropicalmed10080217 - 31 Jul 2025
Viewed by 167
Abstract
Background: Dyslipidemia and schistosomiasis are major public health challenges, particularly in endemic regions where their coexistence may influence host metabolism and immune responses. This study aimed to evaluate visceral adipose tissue (AT) remodeling in a murine model of acute Schistosoma mansoni infection combined [...] Read more.
Background: Dyslipidemia and schistosomiasis are major public health challenges, particularly in endemic regions where their coexistence may influence host metabolism and immune responses. This study aimed to evaluate visceral adipose tissue (AT) remodeling in a murine model of acute Schistosoma mansoni infection combined with diet-induced dyslipidemia. Methodology: Female Swiss Webster mice were fed either a standard or high-fat diet (HFD) for 29 weeks and infected with S. mansoni at week 20. Nine weeks after infection, biochemical, morphometric, histopathological, and immunological analyses were performed. Results: The HFD promoted weight gain and dyslipidemia, while S. mansoni infection alone did not alter lipid profiles but partially mitigated the metabolic effects of the HFD. Morphometric analysis revealed adipocyte hypertrophy and reduced cell number in HFD-fed animals. In HFD-fed infected mice, infection partially reversed hypertrophy, suggesting a modulatory effect on AT remodeling. Histopathological examinations showed that while a HFD induced mild inflammation, infection led to intense leukocyte infiltration, hyperemia, and plasma cell degeneration. Peritoneal lavage confirmed a proinflammatory immune profile. Conclusions: These findings indicate that the interaction between a HFD and S. mansoni infection exacerbates adipose tissue inflammation and metabolic alterations, highlighting the complex interplay between parasitic infection, diet, and immune-metabolic regulation. Full article
(This article belongs to the Section Neglected and Emerging Tropical Diseases)
Show Figures

Figure 1

Back to TopTop