Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = tin dioxide films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3115 KiB  
Article
Low Resistivity and High Carrier Concentration in SnO2 Thin Films: The Impact of Nitrogen–Hydrogen Annealing Treatments
by Qi-Zhen Chen, Zhi-Xuan Zhang, Wan-Qiang Fu, Jing-Ru Duan, Yu-Xin Yang, Chao-Nan Chen and Shui-Yang Lien
Nanomaterials 2025, 15(13), 986; https://doi.org/10.3390/nano15130986 - 25 Jun 2025
Viewed by 439
Abstract
The tin dioxide (SnO2) thin films in this work were prepared by using plasma-enhanced atomic layer deposition (PEALD), and a systematic analysis was conducted to evaluate the influence of post-deposition annealing at various temperatures in a nitrogen–hydrogen mixed atmosphere on their [...] Read more.
The tin dioxide (SnO2) thin films in this work were prepared by using plasma-enhanced atomic layer deposition (PEALD), and a systematic analysis was conducted to evaluate the influence of post-deposition annealing at various temperatures in a nitrogen–hydrogen mixed atmosphere on their surface morphology, optical behavior, and electrical performance. The SnO2 films were characterized by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Hall effect measurements. With increasing annealing temperatures, the SnO2 films exhibited enhanced crystallinity, a higher oxygen vacancy (OV) peak area ratio, and improved mobility and carrier concentration. These enhancements make the annealed SnO2 films highly suitable as electron transport layers (ETLs) in perovskite solar cells (PSCs), providing practical guidance for the design of high-performance PSCs. Full article
(This article belongs to the Special Issue Thin Films for Efficient Perovskite Solar Cells)
Show Figures

Graphical abstract

12 pages, 1611 KiB  
Article
Influence of Deposition Time on Properties of Se-Doped CdTe Thin Films for Solar Cells
by Ibrahim M. Beker, Francis B. Dejene, Lehlohonolo F. Koao, Jacobus J. Terblans and Habtamu F. Etefa
Crystals 2025, 15(7), 589; https://doi.org/10.3390/cryst15070589 - 22 Jun 2025
Viewed by 332
Abstract
Se-doped CdTe thin films were grown employing a simple two-electrode electrochemical deposition method using glass/tin-doped indium oxide (glass/ITO). Cadmium acetate dihydrate [Cd (CH3CO2)2. 2H2O], selenium dioxide (SeO2), and tellurium dioxide (TeO2) [...] Read more.
Se-doped CdTe thin films were grown employing a simple two-electrode electrochemical deposition method using glass/tin-doped indium oxide (glass/ITO). Cadmium acetate dihydrate [Cd (CH3CO2)2. 2H2O], selenium dioxide (SeO2), and tellurium dioxide (TeO2) were used as precursors. Instruments including X-ray diffraction for structural investigation, UV-Vis spectrophotometry for optical properties, and scanning probe microscopy for morphological properties were employed to investigate the physico-chemical characteristics of the resulting Se-doped CdTe thin-film. The films are polycrystalline with a cubic phase, according to X-ray diffraction (XRD) data. More ions are deposited on the substrate, which makes the material more crystalline and intensifies the characteristic peaks that are seen. It is observed from the acquired optical characterization that the film’s bandgap is greatly influenced by the deposition time. The bandgap dropped from 1.92 to 1.62 as the deposition period increased from 25 to 45 min, making the film more transparent and absorbing less light at shorter deposition durations. Images from scanning electron microscopy (SEM) show that the surface morphology is homogenous with closely packed grains and that the grain forms become less noticeable as the deposition time increases. This work is novel in that it investigates the influence of the deposition time on the structural, optical, and morphological properties of Se-doped CdTe thin films deposited using a cost-effective, simplified two-electrode electrochemical method—a fabrication route that remains largely unexplored for this material system. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

15 pages, 3612 KiB  
Article
The Effect of pH Solution in the Sol–Gel Process on the Process of Formation of Fractal Structures in Thin SnO2 Films
by Ekaterina Bondar, Igor Lebedev, Anastasia Fedosimova, Elena Dmitriyeva, Sayora Ibraimova, Anton Nikolaev, Aigul Shongalova, Ainagul Kemelbekova and Mikhail Begunov
Fractal Fract. 2025, 9(6), 353; https://doi.org/10.3390/fractalfract9060353 - 28 May 2025
Viewed by 457
Abstract
In this paper, we investigated fractal cluster structures of colloidal particles in tin dioxide films obtained from lyophilic film-forming systems SnCl4/EtOH/NH4OH with different pH levels. It was revealed that at the ratio Sn > Cl2 > O2 [...] Read more.
In this paper, we investigated fractal cluster structures of colloidal particles in tin dioxide films obtained from lyophilic film-forming systems SnCl4/EtOH/NH4OH with different pH levels. It was revealed that at the ratio Sn > Cl2 > O2, N2 = 0, and pH = 1.42, the growth of cross-shaped and flower-shaped structures of various sizes from several μm to tens of μm is observed. At the ratio Cl2 > Sn > O2 > N2 and pH = 1.44, triangular and hexagonal structures are observed, the sizes of which are on the order of several tens of micrometers. The growth of hexagonal structures is probably affected by the presence of nitrogen in the film, according to the elemental analysis data. At the ratio Sn > Cl2 > O2 > N2 and solution pH of 1.49, the growth of hexagonal and cross-shaped structures is observed, whereas flower-shaped structures are not observed. Hierarchical flower-like and cross-shaped structures are fractal. The shape of microstructures is directly related to the shape of the elementary cells of SnO2 and NH4Cl. A direct dependence of the formation of hierarchical structures on the volume of ammonium hydroxide additive was found. This allows for controlling the shape and size of the synthesized structures when changing the ratio of the initial precursors and influencing the final physicochemical characteristics of the obtained samples. Full article
Show Figures

Figure 1

19 pages, 6309 KiB  
Article
Coupled Resonance Fiber-Optic SPR Sensor Based on TRIZ
by Cuilan Zhu, Haodi Zhai, Yonghao Wang, Xiangru Suo, Tianyu Zhu and Shuowei Jin
Photonics 2025, 12(3), 244; https://doi.org/10.3390/photonics12030244 - 9 Mar 2025
Viewed by 739
Abstract
This paper aims to enhance the sensitivity of fiber-optic surface plasmon resonance (SPR) sensors by innovatively applying TRIZ (Theory of Inventive Problem Solving). To identify the key challenges faced by current SPR sensors, methods such as functional analysis, causal analysis, and the Nine-Window [...] Read more.
This paper aims to enhance the sensitivity of fiber-optic surface plasmon resonance (SPR) sensors by innovatively applying TRIZ (Theory of Inventive Problem Solving). To identify the key challenges faced by current SPR sensors, methods such as functional analysis, causal analysis, and the Nine-Window method are employed. Utilizing TRIZ tools, including Technical Contradiction, Physical Contradiction, the Smart Little Man method, and object–field analysis, innovative solutions are proposed, involving transparent indium tin oxide (ITO) thin films, an asymmetric photonic crystal fiber structure with elliptical pores, and titanium dioxide (TiO2) thin films. Experimental results reveal a significant improvement in sensitivity, with an average of 9961.90 nm/RIU and a peak of 12,503.56 nm/RIU within the refractive index range of 1.33061 to 1.40008, representing a 456% increase compared to the original gold-film fiber-optic SPR sensor. These findings have potential applications in biosensing, environmental monitoring, and food safety. Full article
Show Figures

Figure 1

16 pages, 5091 KiB  
Article
Novel Sequential Detection of NO2 and C2H5OH in SnO2 MEMS Arrays for Enhanced Selectivity in E-Nose Applications
by Mahaboobbatcha Aleem, Yilu Zhou, Swati Deswal, Bongmook Lee and Veena Misra
Chemosensors 2024, 12(12), 268; https://doi.org/10.3390/chemosensors12120268 - 19 Dec 2024
Viewed by 4861
Abstract
This study explores the surface chemistry and electrical responses of ultra-high-sensitivity SnO2 MEMS arrays to enable a novel sequential detection methodology for detecting nitrogen dioxide (NO2) and ethanol (C2H5OH) as a route to achieve selective gas [...] Read more.
This study explores the surface chemistry and electrical responses of ultra-high-sensitivity SnO2 MEMS arrays to enable a novel sequential detection methodology for detecting nitrogen dioxide (NO2) and ethanol (C2H5OH) as a route to achieve selective gas sensing in electronic nose (E-nose) applications. Utilizing tin oxide (SnO2) thin films deposited via atomic layer deposition (ALD), the array achieves the lowest reported detection limits of 8 parts per billion (ppb) for NO2. The research delves into the detection mechanisms of NO2 and C2H5OH, both individually and in subsequent exposures, assessing the sensor’s dynamic response across various operating temperatures. It demonstrates rapid response and recovery times, with averages of 48 s and 277 s for NO2 and 40 and 48 for C2H5OH. Understanding the role of individual gases on the SnO2 surface chemistry is paramount in discerning subsequent gas exposure behavior. The oxidizing behavior of C2H5OH following NO2 exposure is attributed to interactions between NO2 and oxygen vacancies on the SnO2 surface, which leads to the formation of nitrate or nitrite species. These species subsequently influence interactions with C2H5OH, inducing oxidizing properties, and need to be carefully considered. Principal component analysis (PCA) was used to further improve the sensor’s capability to precisely identify and quantify gas mixtures, improving its applicability for real-time monitoring in complex scenarios. Full article
(This article belongs to the Special Issue Electronic Nose and Electronic Tongue for Substance Analysis)
Show Figures

Figure 1

17 pages, 2885 KiB  
Article
Advanced SnO2 Thin Films: Stability and Sensitivity in CO Detection
by Nadezhda K. Maksimova, Tatiana D. Malinovskaya, Valentina V. Zhek, Nadezhda V. Sergeychenko, Evgeniy V. Chernikov, Denis V. Sokolov, Aleksandra V. Koroleva, Vitaly S. Sobolev and Petr M. Korusenko
Int. J. Mol. Sci. 2024, 25(23), 12818; https://doi.org/10.3390/ijms252312818 - 28 Nov 2024
Viewed by 882
Abstract
This paper presents the results of a study on the characteristics of semiconductor sensors based on thin SnO2 films modified with antimony, dysprosium, and silver impurities and dispersed double Pt/Pd catalysts deposited on the surface to detect carbon monoxide (CO). An original [...] Read more.
This paper presents the results of a study on the characteristics of semiconductor sensors based on thin SnO2 films modified with antimony, dysprosium, and silver impurities and dispersed double Pt/Pd catalysts deposited on the surface to detect carbon monoxide (CO). An original technology was developed, and ceramic targets were made from powders of Sn-Sb-O, Sn–Sb-Dy–O, and Sn–Sb-Dy-Ag–O systems synthesized by the sol–gel method. Films of complex composition were obtained by RF magnetron sputtering of the corresponding targets, followed by technological annealing at various temperatures. The morphology of the films, the elemental and chemical composition, and the electrical and gas-sensitive properties were studied. Special attention was paid to the effect of the film composition on the stability of sensor parameters during long-term tests under the influence of CO. It was found that different combinations of concentrations of antimony, dysprosium, and silver had a significant effect on the size and distribution of nanocrystallites, the porosity, and the defects of films. The mechanisms of degradation under prolonged exposure to CO were examined. It was established that Pt/Pd/SnO2:0.5 at.% Sb film with optimal crystallite sizes and reduced porosity provided increased stability of carbon monoxide sensor parameters, and the response to the action of 100 ppm carbon monoxide was G1/G0 = 2–2.5. Full article
Show Figures

Figure 1

9 pages, 3435 KiB  
Article
The Synthesis of Materials with a Hierarchical Structure Based on Tin Dioxide
by Ekaterina Bondar, Elena Dmitriyeva, Igor Lebedev, Anastasiya Fedosimova, Aigul Shongalova, Sayora Ibraimova, Ainagul Kemelbekova, Ulzhalgas Issayeva, Bagdat Rakymetov and Bedelbek Nurbaev
Nanomaterials 2024, 14(22), 1813; https://doi.org/10.3390/nano14221813 - 13 Nov 2024
Cited by 3 | Viewed by 1213
Abstract
This article presents the results of the formation of hierarchical micro–nano structures in nanostructured tin dioxide films obtained from the lyophilic film-forming system SnCl4/EtOH/NH4OH. The classification of the shape and size of the synthesized structures, in relation to the [...] Read more.
This article presents the results of the formation of hierarchical micro–nano structures in nanostructured tin dioxide films obtained from the lyophilic film-forming system SnCl4/EtOH/NH4OH. The classification of the shape and size of the synthesized structures, in relation to the pH of the solution, is presented. Measurements were carried out on an X-ray diffractometer to study the crystal structure of the samples analyzed. It was found that SnO2 and NH4Cl crystallites participate in the formation of the synthesized hierarchical structures. It is shown that the mechanism of the formation of hierarchical structures depends on the amount of ammonium hydroxide added. This makes it possible to control the shape and size of the synthesized structures by changing the ratio of precursors. Full article
(This article belongs to the Topic Advances in Functional Thin Films)
Show Figures

Graphical abstract

13 pages, 3052 KiB  
Article
Enhancing the Properties of Nanostructure TiO2 Thin Film via Calcination Temperature for Solar Cell Application
by Nurliyana Mohamad Arifin, Ervina Efzan Mhd Noor, Fariza Mohamad, Norhidayah Mohamad and Nur Haslinda Mohamed Muzni
Energies 2024, 17(14), 3415; https://doi.org/10.3390/en17143415 - 11 Jul 2024
Cited by 2 | Viewed by 1530
Abstract
In this study, titanium dioxide (TiO2) was deposited onto a fluorine-doped tin oxide (FTO) substrate using the sol–gel spin coating method. Through the implementation of calcination treatment on the thin film, enhancements were observed in terms of structural, optical, and morphological [...] Read more.
In this study, titanium dioxide (TiO2) was deposited onto a fluorine-doped tin oxide (FTO) substrate using the sol–gel spin coating method. Through the implementation of calcination treatment on the thin film, enhancements were observed in terms of structural, optical, and morphological properties. Various calcination temperatures were explored, with TiO2 annealed at 600 °C identified as the optimal sample. Analysis of the X-ray diffraction spectroscopy (XRD) pattern revealed the prominent orientation plane of (101), indicating the presence of anatase TiO2 with a tetragonal pattern at this temperature. Despite fluctuations in the optical spectrum, the highest transmittance of 80% was observed in the visible region within the wavelength range of 400 nm. The estimated band-gap value of 3.45 eV reaffirmed the characteristic of TiO2. Surface analysis indicated the homogeneous growth of TiO2, uniformly covering the FTO substrate. Cross-sectional examination revealed a thickness of 263 nm with dense and compact nature of TiO2 thin film. No presence of defects or pores reflects a well-organized structure and high-quality formation. Significant electrical rectification properties were observed, indicating the successful formation of a p–n junction. In summary, calcination treatment was found to be crucial for enhancing the properties of the thin film, highlighting its significance in the development of solar cell applications. Full article
(This article belongs to the Special Issue State-of-the-Art Materials toward Efficient Solar Energy Harvesting)
Show Figures

Figure 1

15 pages, 5612 KiB  
Article
Microstructure and Unusual Ferromagnetism of Epitaxial SnO2 Films Heavily Implanted with Co Ions
by Rustam I. Khaibullin, Amir I. Gumarov, Iskander R. Vakhitov, Andrey A. Sukhanov, Nikolay M. Lyadov, Airat G. Kiiamov, Dilyara M. Kuzina, Valery V. Bazarov and Almaz L. Zinnatullin
Condens. Matter 2024, 9(2), 27; https://doi.org/10.3390/condmat9020027 - 11 Jun 2024
Viewed by 1692
Abstract
In this work, we have studied the microstructure and unusual ferromagnetic behavior in epitaxial tin dioxide (SnO2) films implanted with 40 keV Co+ ions to a high fluence of 1.0 × 1017 ions/cm2 at room or elevated substrate [...] Read more.
In this work, we have studied the microstructure and unusual ferromagnetic behavior in epitaxial tin dioxide (SnO2) films implanted with 40 keV Co+ ions to a high fluence of 1.0 × 1017 ions/cm2 at room or elevated substrate temperatures. The aim was to comprehensively understand the interplay between cobalt implant distribution, crystal defects (such as oxygen vacancies), and magnetic properties of Co-implanted SnO2 films, which have potential applications in spintronics. We have utilized scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometry (VSM), differential thermomagnetic analysis (DTMA), and ferromagnetic resonance (FMR) to investigate Co-implanted epitaxial SnO2 films. The comprehensive experimental investigation shows that the Co ion implantation with high cobalt concentration induces significant changes in the microstructure of SnO2 films, leading to the appearance of ferromagnetism with the Curie temperature significantly above the room temperature. We also established a strong influence of implantation temperature and subsequent high-temperature annealing in air or under vacuum on the magnetic properties of Co-implanted SnO2 films. In addition, we report a strong chemical effect of ethanol on the FMR spectra. The obtained results are discussed within the model of two magnetic layers, with different concentrations and valence states of the implanted cobalt, and with a high content of oxygen vacancies. Full article
Show Figures

Figure 1

15 pages, 6460 KiB  
Article
Facile Synthesis and Characterization of TiO2/SnS Nanocomposites by Eco-Friendly Methods
by Asta Bronusiene, Ricardas Kleinauskas and Ingrida Ancutiene
Coatings 2024, 14(1), 88; https://doi.org/10.3390/coatings14010088 - 8 Jan 2024
Cited by 1 | Viewed by 1845
Abstract
The acid etching mechanism of FTO film using zinc powders has been explored, and sulfuric and hydrochloric acid solutions of different concentrations were tested as etching agents. Compact and mesoporous films of titanium dioxide were prepared by spin-coating and doctor blade techniques on [...] Read more.
The acid etching mechanism of FTO film using zinc powders has been explored, and sulfuric and hydrochloric acid solutions of different concentrations were tested as etching agents. Compact and mesoporous films of titanium dioxide were prepared by spin-coating and doctor blade techniques on FTO glass. Tin sulfide films were formed through a successive ionic layer adsorption and reaction (SILAR) process using different numbers of deposition cycles, and TiO2/SnS nanocomposites were synthesized. The thin films and the prepared composites were characterized using X-ray diffraction, UV-Vis spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses. In this study, the principal characteristics of deposited tin sulfide films on two different types of TiO2 films are shown. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

15 pages, 5089 KiB  
Article
Nitrogen-Doped Graphene Quantum Dot–Tin Dioxide Nanocomposite Ultrathin Films as Efficient Electron Transport Layers for Planar Perovskite Solar Cells
by Ha Chi Le, Nam Thang Pham, Duc Chinh Vu, Duy Long Pham, Si Hieu Nguyen, Thi Tu Oanh Nguyen and Chung Dong Nguyen
Crystals 2023, 13(6), 961; https://doi.org/10.3390/cryst13060961 - 16 Jun 2023
Cited by 8 | Viewed by 2580
Abstract
Tin dioxide (SnO2) has recently been recognized as an excellent electron transport layer (ETL) for perovskite solar cells (PSCs) due to its advantageous properties, such as its high electron mobility, suitable energy band alignment, simple low-temperature process, and good chemical stability. [...] Read more.
Tin dioxide (SnO2) has recently been recognized as an excellent electron transport layer (ETL) for perovskite solar cells (PSCs) due to its advantageous properties, such as its high electron mobility, suitable energy band alignment, simple low-temperature process, and good chemical stability. In this work, nitrogen-doped graphene quantum dots (N-GQDs) were prepared using a hydrothermal method and then used to fabricate N-GQD:SnO2 nanocomposite ultrathin films. N-GQD:SnO2 nanocomposite ultrathin films were investigated and applied as electron transport layers in planar PSCs. The presence of N-GQDs with an average size of 6.2 nm in the nanocomposite improved its morphology and reduced surface defects. The excitation–emission contour map indicated that the N-GQDs exhibited a remarkably enhanced light-harvesting capability due to the possibility of absorbing UV light and producing emissions in the visible range. The quenching of photoluminescence spectra showed that the N-GQDs in nanocomposite ultrathin films improved electron extraction and reduced charge recombination. As a result, the power conversion efficiency (PCE) of our planar PSCs fabricated with the optimized N-GQD:SnO2 nanocomposite electron transport layer was improved by 20.4% over pristine SnO2-based devices. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Nanomaterials)
Show Figures

Figure 1

11 pages, 5772 KiB  
Article
Infrared and Terahertz Spectra of Sn-Doped Vanadium Dioxide Films
by Alexander Grebenchukov, Olga Boytsova, Alexey Shakhmin, Artem Tatarenko, Olga Makarevich, Ilya Roslyakov, Grigory Kropotov and Mikhail Khodzitsky
Ceramics 2023, 6(2), 1291-1301; https://doi.org/10.3390/ceramics6020079 - 15 Jun 2023
Cited by 1 | Viewed by 2117
Abstract
This work reports the effect of tin (Sn) doping on the infrared (IR) and terahertz (THz) properties of vanadium dioxide (VO2) films. The films were grown by hydrothermal synthesis with a post-annealing process and then fully characterized by X-ray diffraction (XRD), [...] Read more.
This work reports the effect of tin (Sn) doping on the infrared (IR) and terahertz (THz) properties of vanadium dioxide (VO2) films. The films were grown by hydrothermal synthesis with a post-annealing process and then fully characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and temperature-controlled electrical resistivity as well as IR and THz spectroscopy techniques. Utilizing (NH4)2SnF6 as a Sn precursor allows the preparation of homogeneous Sn-doped VO2 films. Doping of VO2 films with Sn led to an increase in the thermal hysteresis width while conserving the high modulation depth in the mid-IR regime, which would be beneficial for the applications of VO2 films in IR memory devices. A further analysis shows that Sn doping of VO2 films significantly affects the temperature-dependent THz optical properties, in particular leading to the suppression of the temperature-driven THz transmission modulation. These results indicate Sn-doped VO2 films as a promising material for the development of switchable IR/THz dichroic components. Full article
(This article belongs to the Special Issue Advanced Glasses and Glass-Ceramics)
Show Figures

Figure 1

16 pages, 10973 KiB  
Article
Preparation of Nanostructured Sn/Ti Oxide Hybrid Films with Terpineol/PEG-Based Nanofluids: Perovskite Solar Cell Applications
by Saeid Vafaei, Vamsi Krishna Boddu, Stephen Jala, Pavan Kumar Bezawada, Nagisa Hattori, Seiho Higashi, Takashi Sugiura and Kazuhiro Manseki
Materials 2023, 16(8), 3136; https://doi.org/10.3390/ma16083136 - 16 Apr 2023
Cited by 5 | Viewed by 2066
Abstract
Tin oxide (SnO2) and titanium dioxide (TiO2) are recognized as attractive energy materials applicable for lead halide perovskite solar cells (PSCs). Sintering is one of the effective strategies for improving the carrier transport of semiconductor nanomaterials. Using the alternative [...] Read more.
Tin oxide (SnO2) and titanium dioxide (TiO2) are recognized as attractive energy materials applicable for lead halide perovskite solar cells (PSCs). Sintering is one of the effective strategies for improving the carrier transport of semiconductor nanomaterials. Using the alternative metal-oxide-based ETL, nanoparticles are often used in a way that they are dispersed in a precursor liquid prior to their thin-film deposition. Currently, the creation of PSCs using nanostructured Sn/Ti oxide thin-film ETL is one of the topical issues for the development of high-efficiency PSCs. Here, we demonstrate the preparation of terpineol/PEG-based fluid containing both tin and titanium compounds that can be utilized for the formation of a hybrid Sn/Ti oxide ETL on a conductive substrate (F-doped SnO2 glass substrate: FTO). We also pay attention to the structural analysis of the Sn/Ti metal oxide formation at the nanoscale using a high-resolution transmission electron microscope (HR-TEM). The variation of the nanofluid composition, i.e., the concentration of tin and titanium sources, was examined to obtain a uniform transparent thin film by spin-coating and sintering processes. The maximum power conversion efficiency was obtained for the concentration condition of [SnCl2·2H2O]/[titanium tetraisopropoxide (TTIP)] = 25:75 in the terpineol/PEG-based precursor solution. Our method for preparing the ETL nanomaterials provides useful guidance for the creation of high-performance PSCs using the sintering method. Full article
Show Figures

Figure 1

14 pages, 4787 KiB  
Article
Temperature and Ambient Band Structure Changes in SnO2 for the Optimization of Hydrogen Response
by Petros-Panagis Filippatos, Anastasia Soultati, Nikolaos Kelaidis, Dimitris Davazoglou, Maria Vasilopoulou, Charalampos Drivas, Stella Kennou and Alexander Chroneos
Inorganics 2023, 11(3), 96; https://doi.org/10.3390/inorganics11030096 - 27 Feb 2023
Cited by 3 | Viewed by 2959
Abstract
Tin dioxide (SnO2) is one of the most used materials for sensing applications operating at high temperatures. Commonly, “undoped SnO2” is made by precursors containing elements that can have a deleterious impact on the operation of SnO2 sensors. [...] Read more.
Tin dioxide (SnO2) is one of the most used materials for sensing applications operating at high temperatures. Commonly, “undoped SnO2” is made by precursors containing elements that can have a deleterious impact on the operation of SnO2 sensors. Here, we employ experimental and theoretical methods to investigate the structural properties and electronic structure of the rutile bulk and surface SnO2, focusing on unintentional doping due to precursors. Unintentional doping from precursors as well as intrinsic doping can play an important role not only on the performance of gas sensors, but also on the properties of SnO2 as a whole. The theoretical calculations were performed using density functional theory (DFT) with hybrid functionals. With DFT we examine the changes in the electronic properties of SnO2 due to intrinsic and unintentional defects and we then discuss how these changes affect the response of a SnO2-based gas sensor. From an experimental point of view, we synthesized low-cost SnO2 thin films via sol–gel and spin-coating processes. To further enhance the performance of SnO2, we coated the surface with a small amount of platinum (Pt). The crystalline structure of the films was analyzed using x-ray diffraction (XRD) and scanning electron microscopy (SEM), while for the determination of the elements contained in the sample, X-ray photoelectron spectroscopy (XPS) measurements were performed. Furthermore, we investigated the effect of temperature on the band structure of SnO2 in air, in a vacuum and in nitrogen and hydrogen chemical environments. To optimize the response, we used current–voltage characterization in varying environments. The aim is to associate the response of SnO2 to various environments with the changes in the band structure of the material in order to gain a better understanding of the response mechanism of metal oxides in different pressure and temperature environments. We found that the resistance of the semiconductor decreases with temperature, while it increases with increasing pressure. Furthermore, the activation energy is highly affected by the environment to which the thin film is exposed, which means that the thin film could respond with lower energy when exposed to an environment different from the air. Full article
(This article belongs to the Special Issue Optoelectronic Properties of Metal Oxide Semiconductors)
Show Figures

Figure 1

17 pages, 22639 KiB  
Article
Step-by-Step Modeling and Experimental Study on the Sol–Gel Porous Structure of Percolation Nanoclusters
by Irina Kononova, Pavel Kononov and Vyacheslav Moshnikov
Coatings 2023, 13(2), 449; https://doi.org/10.3390/coatings13020449 - 16 Feb 2023
Cited by 3 | Viewed by 2255
Abstract
Non-conventional crystallization techniques have been developed in recent years. Non-conventional crystallization techniques use primary structural elements (for example, clusters) rather than atoms and molecules. Modern nanomaterial science is going through great changes as an entirely new approach of non-conventional growth mechanisms is emerging [...] Read more.
Non-conventional crystallization techniques have been developed in recent years. Non-conventional crystallization techniques use primary structural elements (for example, clusters) rather than atoms and molecules. Modern nanomaterial science is going through great changes as an entirely new approach of non-conventional growth mechanisms is emerging due to cluster coupling, catalyzing interest in cluster physics. The formation of fractal and percolation clusters has increased. We carried out step-by-step modeling and an experimental study of the formation of fractal and percolation clusters based on tin dioxide and silicon dioxide and formed by sol–gel technology. In this paper, the growth of fractal aggregates (clusters) from sol particles SnO2 and SiO2 based on the modified models of diffusion-limited and cluster–cluster aggregation is discussed. A percolation model using simulated fractal clusters of SnO2 and SiO2 particles is proposed. Experimental data on the sol–gel percolation structure of porous nanocomposites are presented. The modeling of SnO2 and SiO2 particles, which also consist of clusters (the next step in the hierarchy), is shown. We propose a generalized hierarchical three-dimensional percolation cluster model that allows calculating the surface area, knowing the experimental sizes of macropores and taking into account the micro- and mesopores (sizes less than a few nanometers). Full article
(This article belongs to the Special Issue Investigation on Sol–Gel Based Coatings Application)
Show Figures

Figure 1

Back to TopTop