Low Resistivity and High Carrier Concentration in SnO2 Thin Films: The Impact of Nitrogen–Hydrogen Annealing Treatments
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yoo, J.J.; Shin, S.S.; Seo, J. Toward Efficient Perovskite Solar Cells: Progress, Strategies, and Perspectives. ACS Energy Lett. 2022, 7, 2084–2091. [Google Scholar] [CrossRef]
- Nazir, G.; Lee, S.; Lee, J.; Rehman, A.; Lee, J.; Seok, S.I.; Park, S. Stabilization of Perovskite Solar Cells: Recent Developments and Future Perspectives. Adv. Mater. 2022, 34, 2204380. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Savenije, T.J.; Mazzarella, L.; Isabella, O. Progress and Challenges on Scaling up of Perovskite Solar Cell Technology. Sustain. Energy Fuels 2022, 6, 243–266. [Google Scholar] [CrossRef]
- Roy, P.; Ghosh, A.; Barclay, F.; Khare, A.; Cuce, E. Perovskite Solar Cells: A Review of the Recent Advances. Coatings 2022, 12, 1089. [Google Scholar] [CrossRef]
- Yoo, J.J.; Seo, G.; Chua, M.R.; Park, T.G.; Lu, Y.; Rotermund, F.; Kim, Y.-K.; Moon, C.S.; Jeon, N.J.; Correa-Baena, J.-P.; et al. Efficient Perovskite Solar Cells via Improved Carrier Management. Nature 2021, 590, 587–593. [Google Scholar] [CrossRef]
- Uddin, A.; Yi, H. Progress and Challenges of SnO2 Electron Transport Layer for Perovskite Solar Cells: A Critical Review. Sol. RRL 2022, 6, 2100983. [Google Scholar] [CrossRef]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite Solar Cells with Atomically Coherent Interlayers on SnO2 Electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef]
- Xiong, Z.; Lan, L.; Wang, Y.; Lu, C.; Qin, S.; Chen, S.; Zhou, L.; Zhu, C.; Li, S.; Meng, L.; et al. Multifunctional Polymer Framework Modified SnO2 Enabling a Photostable α-FAPbI3 Perovskite Solar Cell with Efficiency Exceeding 23%. ACS Energy Lett. 2021, 6, 3824–3830. [Google Scholar] [CrossRef]
- Chen, Y.; Zuo, X.; He, Y.; Qian, F.; Zuo, S.; Zhang, Y.; Liang, L.; Chen, Z.; Zhao, K.; Liu, Z.; et al. Dual Passivation of Perovskite and SnO2 for High-Efficiency MAPbI3 Perovskite Solar Cells. Adv. Sci. 2021, 8, 2001466. [Google Scholar] [CrossRef]
- Kim, M.; Jeong, J.; Lu, H.; Lee, T.K.; Eickemeyer, F.T.; Liu, Y.; Choi, I.W.; Choi, S.J.; Jo, Y.; Kim, H.-B.; et al. Conformal Quantum Dot–SnO2 Layers as Electron Transporters for Efficient Perovskite Solar Cells. Science 2022, 375, 302–306. [Google Scholar] [CrossRef]
- Park, S.Y.; Zhu, K. Advances in SnO2 for Efficient and Stable n–i–p Perovskite Solar Cells. Adv. Mater. 2022, 34, 2110438. [Google Scholar] [CrossRef] [PubMed]
- Song, J.W.; Shin, Y.S.; Kim, M.; Lee, J.; Lee, D.; Seo, J.; Lee, Y.; Lee, W.; Kim, H.; Mo, S.; et al. Post-Treated Polycrystalline SnO2 in Perovskite Solar Cells for High Efficiency and Quasi-Steady-State-IV Stability. Adv. Energy Mater. 2024, 14, 2401753. [Google Scholar] [CrossRef]
- Pramitha, A.; Rao, S.G.; Raviprakash, Y. Modulating the Properties of SnO2 Thin Film by Post-Deposition UV-Ozone Treatment. J. Electron. Mater. 2023, 52, 8124–8131. [Google Scholar] [CrossRef]
- Wang, C.-M.; Huang, C.-C.; Kuo, J.-C.; Sahu, D.; Huang, J.-L. Effect of Annealing Temperature and Oxygen Flow in the Properties of Ion Beam Sputtered SnO—2x Thin Films. Materials 2015, 8, 5289–5297. [Google Scholar] [CrossRef]
- Mao, K.; Cai, F.; Zhu, Z.; Meng, H.; Li, T.; Yuan, S.; Zhang, J.; Peng, W.; Xu, J.; Feng, X.; et al. Unveiling and Balancing the Passivation-Transport Trade-Off in Perovskite Solar Cells with Double-Side Patterned Insulator Contacts. Adv. Energy Mater. 2023, 13, 2302132. [Google Scholar] [CrossRef]
- Chen, C.; Chen, J.; Han, H.; Chao, L.; Hu, J.; Niu, T.; Dong, H.; Yang, S.; Xia, Y.; Chen, Y.; et al. Perovskite Solar Cells Based on Screen-Printed Thin Films. Nature 2022, 612, 266–271. [Google Scholar] [CrossRef]
- Gil-Escrig, L.; Roß, M.; Sutter, J.; Al-Ashouri, A.; Becker, C.; Albrecht, S. Fully Vacuum-Processed Perovskite Solar Cells on Pyramidal Microtextures. Sol. RRL 2021, 5, 2000553. [Google Scholar] [CrossRef]
- Heffner, H.; Du, Y.; Shilovskikh, V.; Taretto, K.; Wrzesińska-Lashkova, A.; Soldera, M.; Lasagni, A.F.; Vaynzof, Y. Direct Laser Interference Patterning of Fluorine-Doped Tin Oxide as a Pathway to Higher Efficiency in Perovskite Solar Cells. Adv Funct Mater. 2025, 35, 2415126. [Google Scholar] [CrossRef]
- Castillo-Saenz, J.; Nedev, N.; Valdez-Salas, B.; Curiel-Alvarez, M.; Mendivil-Palma, M.I.; Hernandez-Como, N.; Martinez-Puente, M.; Mateos, D.; Perez-Landeros, O.; Martinez-Guerra, E. Properties of Al2O3 Thin Films Grown by PE-ALD at Low Temperature Using H2O and O2 Plasma Oxidants. Coatings 2021, 11, 1266. [Google Scholar] [CrossRef]
- Lee, D.-K.; Wan, Z.; Bae, J.-S.; Lee, H.-B.-R.; Ahn, J.-H.; Kim, S.-D.; Kim, J.; Kwon, S.-H. Plasma-Enhanced Atomic Layer Deposition of SnO2 Thin Films Using SnCl4 and O2 Plasma. Mater. Lett. 2016, 166, 163–166. [Google Scholar] [CrossRef]
- Chen, Q.-Z.; Shi, C.-Y.; Zhao, M.-J.; Gao, P.; Wu, W.-Y.; Wuu, D.-S.; Horng, R.-H.; Lien, S.-Y.; Zhu, W.-Z. Performance of Transparent Indium–Gallium–Zinc Oxide Thin Film Transistor Prepared by All Plasma Enhanced Atomic Layer Deposition. IEEE Electron Device Lett. 2023, 44, 448–451. [Google Scholar] [CrossRef]
- Yin, C.; Zhu, M.; Song, C.; Zeng, T.; Xu, N.; Wang, Y.; Zhao, Y.; Yi, K.; Shao, J. Influence of Deposition Temperature and Precursor Pulse Time on Properties of SiO2, HfO2 Monolayers Deposited by PEALD. In Proceedings of the Tenth International Conference on Thin Film Physics and Applications (TFPA 2019), Qingdao, China, 8 July 2019; SPIE: Qingdao, China, 2019; p. 39. [Google Scholar]
- Kim, W.-H.; Maeng, W.J.; Moon, K.-J.; Myoung, J.-M.; Kim, H. Growth Characteristics and Electrical Properties of La2O3 Gate Oxides Grown by Thermal and Plasma-Enhanced Atomic Layer Deposition. Thin Solid Film. 2010, 519, 362–366. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Z.; Yang, L.; Yang, J.; Wang, P.; Gao, G.; Sun, C.; Ralchenko, V.; Zhu, J. Comparison of Thermal, Plasma-Enhanced and Layer by Layer Ar Plasma Treatment Atomic Layer Deposition of Tin Oxide Thin Films. J. Cryst. Growth 2021, 572, 126264. [Google Scholar] [CrossRef]
- Bae, J.; Jeon, H. Effects of Deposition and Annealing Temperature on Atomic Layer-Deposited Tin Dioxide Thin Films. J. Korean Phys. Soc. 2025. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Tao, J.; Tang, R.; Zheng, X. Structural, Surface, and Optical Properties of AlN Thin Films Grown on Different Substrates by PEALD. Crystals 2023, 13, 910. [Google Scholar] [CrossRef]
- Blanco, E.; Domínguez, M.; González-Leal, J.M.; Márquez, E.; Outón, J.; Ramírez-del-Solar, M. Insights into the Annealing Process of Sol-Gel TiO2 Films Leading to Anatase Development: The Interrelationship between Microstructure and Optical Properties. Appl. Surf. Sci. 2018, 439, 736–748. [Google Scholar] [CrossRef]
- Chen, K.-T.; Hsu, C.-H.; Ren, F.-B.; Wang, C.; Gao, P.; Wu, W.-Y.; Lien, S.-Y.; Zhu, W.-Z. Influence of Annealing Temperature of Nickel Oxide as Hole Transport Layer Applied for Inverted Perovskite Solar Cells. J. Vac. Sci. Technol. A Vac. Surf. Film. 2021, 39, 062401. [Google Scholar] [CrossRef]
- Wu, S.; Li, C.; Lien, S.Y.; Gao, P. Temperature Matters: Enhancing Performance and Stability of Perovskite Solar Cells through Advanced Annealing Methods. Chemistry 2024, 6, 207–236. [Google Scholar] [CrossRef]
- Ling, P.S.V.; Hagfeldt, A.; Sanchez, S. Flash Infrared Annealing for Perovskite Solar Cell Processing. JoVE 2021, 61730. [Google Scholar] [CrossRef]
- Yıldırım, M.A.; Akaltun, Y.; Ateş, A. Characteristics of SnO2 Thin Films Prepared by SILAR. Solid State Sci. 2012, 14, 1282–1288. [Google Scholar] [CrossRef]
- Yang, Y.; Maeng, B.; Jung, D.G.; Lee, J.; Kim, Y.; Kwon, J.; An, H.K.; Jung, D. Annealing Effects on SnO2 Thin Film for H2 Gas Sensing. Nanomaterials 2022, 12, 3227. [Google Scholar] [CrossRef] [PubMed]
- Mehraj, S.; Ansari, M.S. Alimuddin Annealed SnO2 Thin Films: Structural, Electrical and Their Magnetic Properties. Thin Solid Films 2015, 589, 57–65. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, W.; Liu, W.; Cao, P.; Han, S.; Zhu, D.; Lu, Y. Structural, Chemical, Optical, and Electrical Evolution of Solution-Processed SnO2 Films and Their Applications in Thin-Film Transistors. J. Phys. D Appl. Phys. 2020, 53, 175106. [Google Scholar] [CrossRef]
- Mun, H.; Yang, H.; Park, J.; Ju, C.; Char, K. High Electron Mobility in Epitaxial SnO2−x in Semiconducting Regime. APL Mater. 2015, 3, 076107. [Google Scholar] [CrossRef]
- Lee, G.R.; Seong, M.; Kim, S.; Pyeon, K.; Chung, R.B. Conductive SnO2−x Thin Films Deposited by Thermal ALD with H2O Reactant. Vacuum 2022, 200, 111018. [Google Scholar] [CrossRef]
- Yu, S.; Li, L.; Sun, Z.; Zheng, H.; Dong, H.; Xu, D.; Zhang, W. Characteristics of Transparent Conducting W-Doped SnO2 Thin Films Prepared by Using the Magnetron Sputtering Method. J. Am. Ceram. Soc. 2015, 98, 1121–1127. [Google Scholar] [CrossRef]
- Brousseau, J.-L.; Bourque, H.; Tessier, A.; Leblanc, R.M. Electrical Properties and Topography of SnO2 Thin Films Prepared by Reactive Sputtering. Appl. Surf. Sci. 1997, 108, 351–358. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Bubbler temperature (°C) | 50 |
Substrate temperature (°C) | 200 |
TDMASn pulse time (s) | 1.6 |
TDMASn purge time (s) | 6 |
O2 pulse time (s) | 11 |
O2 purge time (s) | 5 |
Ar flow rate (sccm) | 80 |
O2 flow rate (sccm) | 150 |
O2 plasma power (W) | 2500 |
TDMASn carry gas flow rate (sccm) | 120 |
TDMASn dilute gas flow rate (sccm) | 400 |
Post-annealing temperature (°C) | 300–600 |
Post-annealing gas | N2 (95%) + H2 (5%) |
Post-annealing gas flow rate (L/min) | 3 |
Annealing Atmosphere | Carrier Concentration (cm−3) | Mobility (cm2/V·s) | Resistivity (Ω·cm) |
---|---|---|---|
N2:H2 | 3.37 × 1020 | 7.19 | 2.58 × 10−3 |
Argon | 1.03 × 1020 | 6.53 | 9.25 × 10−3 |
Vacuum | 2.58 × 1020 | 3.22 | 7.52 × 10−3 |
Oxygen | 3.15 × 1019 | 15.23 | 1.30 × 10−2 |
Ozone | 5.78 × 1018 | 19.46 | 5.60 × 10−2 |
Air | 1.03 × 1019 | 9.41 | 6.46 × 10−2 |
Deposition Method | Annealing Conditions | R (Ω·cm) | n (cm−3) | Mobility (cm2/V·s) | T (nm) | Ref. |
---|---|---|---|---|---|---|
sol–gel | Air, 700 °C, 2 h | 72.67 | 6.25 × 1015 | 13.7 | 30.8 | [34] |
PLD | O2, 600 °C | 1.97 × 10–2 | 3 × 1018 | 106 | 700 | [35] |
MS | None (600 °C substrate heating) | 1.75 × 10−3 | 1.6 × 1020 | 22.48 | 300 | [37] |
DC | None (150 °C substrate heating) | 4.5 × 10−3 | 8.9 × 1019 | 20.77 | 12.5 | [38] |
thermal ALD | N2, 400 °C, 1 h | ~8.8 × 10–3 | 3.3 × 1019 | 21.55 | 20 | [36] |
PEALD | N2/H2 (95:5), 600 °C, 1 h, | 2.58 × 10–3 | 3.37 × 1020 | 7.19 | 40 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.-Z.; Zhang, Z.-X.; Fu, W.-Q.; Duan, J.-R.; Yang, Y.-X.; Chen, C.-N.; Lien, S.-Y. Low Resistivity and High Carrier Concentration in SnO2 Thin Films: The Impact of Nitrogen–Hydrogen Annealing Treatments. Nanomaterials 2025, 15, 986. https://doi.org/10.3390/nano15130986
Chen Q-Z, Zhang Z-X, Fu W-Q, Duan J-R, Yang Y-X, Chen C-N, Lien S-Y. Low Resistivity and High Carrier Concentration in SnO2 Thin Films: The Impact of Nitrogen–Hydrogen Annealing Treatments. Nanomaterials. 2025; 15(13):986. https://doi.org/10.3390/nano15130986
Chicago/Turabian StyleChen, Qi-Zhen, Zhi-Xuan Zhang, Wan-Qiang Fu, Jing-Ru Duan, Yu-Xin Yang, Chao-Nan Chen, and Shui-Yang Lien. 2025. "Low Resistivity and High Carrier Concentration in SnO2 Thin Films: The Impact of Nitrogen–Hydrogen Annealing Treatments" Nanomaterials 15, no. 13: 986. https://doi.org/10.3390/nano15130986
APA StyleChen, Q.-Z., Zhang, Z.-X., Fu, W.-Q., Duan, J.-R., Yang, Y.-X., Chen, C.-N., & Lien, S.-Y. (2025). Low Resistivity and High Carrier Concentration in SnO2 Thin Films: The Impact of Nitrogen–Hydrogen Annealing Treatments. Nanomaterials, 15(13), 986. https://doi.org/10.3390/nano15130986