Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (870)

Search Parameters:
Keywords = timeliness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 33884 KiB  
Article
Rapid Detection and Segmentation of Landslide Hazards in Loess Tableland Areas Using Deep Learning: A Case Study of the 2023 Jishishan Ms 6.2 Earthquake in Gansu, China
by Zhuoli Bai, Lingyun Ji, Hongtao Tang, Jiangtao Qiu, Shuai Kang, Chuanjin Liu and Zongpan Bian
Remote Sens. 2025, 17(15), 2667; https://doi.org/10.3390/rs17152667 (registering DOI) - 1 Aug 2025
Abstract
Addressing the technical demands for the rapid, precise detection of earthquake-triggered landslides in loess tablelands, this study proposes and validates an innovative methodology integrating enhanced deep learning architectures with large-tile processing strategies, featuring two core advances: (1) a critical enhancement of YOLOv8’s shallow [...] Read more.
Addressing the technical demands for the rapid, precise detection of earthquake-triggered landslides in loess tablelands, this study proposes and validates an innovative methodology integrating enhanced deep learning architectures with large-tile processing strategies, featuring two core advances: (1) a critical enhancement of YOLOv8’s shallow layers via a higher-resolution P2 detection head to boost small-target capture capabilities, and (2) the development of a large-tile segmentation–tile mosaicking workflow to overcome the technical bottlenecks in large-scale high-resolution image processing, ensuring both timeliness and accuracy in loess landslide detection. This study utilized 20 km2 of high-precision UAV imagery acquired after the 2023 Gansu Jishishan Ms 6.2 earthquake as foundational data, applying our methodology to achieve the rapid detection and precise segmentation of landslides in the study area. Validation was conducted through a comparative analysis of high-accuracy 3D models and field investigations. (1) The model achieved simultaneous convergence of all four loss functions within a 500-epoch progressive training strategy, with mAP50(M) = 0.747 and mAP50-95(M) = 0.46, thus validating the superior detection and segmentation capabilities for the Jishishan earthquake-triggered loess landslides. (2) The enhanced algorithm detected 417 landslides with 94.1% recognition accuracy. Landslide areas ranged from 7 × 10−4 km2 to 0.217 km2 (aggregate area: 1.3 km2), indicating small-scale landslide dominance. (3) Morphological characterization and the spatial distribution analysis revealed near-vertical scarps, diverse morphological configurations, and high spatial density clustering in loess tableland landslides. Full article
Show Figures

Figure 1

24 pages, 3110 KiB  
Article
Coupling Individual Psychological Security and Information for Modeling the Spread of Infectious Diseases
by Na Li, Jianlin Zhou, Haiyan Liu and Xikai Wang
Systems 2025, 13(8), 637; https://doi.org/10.3390/systems13080637 (registering DOI) - 1 Aug 2025
Abstract
Background: Faced with the profound impact of major infectious diseases on public life and economic development, humans have long sought to understand disease transmission and intervention strategies. To better explore the impact of individuals’ different coping behaviors—triggered by changes in their psychological [...] Read more.
Background: Faced with the profound impact of major infectious diseases on public life and economic development, humans have long sought to understand disease transmission and intervention strategies. To better explore the impact of individuals’ different coping behaviors—triggered by changes in their psychological security due to public information and external environmental changes—on the spread to infectious diseases, the model will place greater emphasis on quantifying psychological factors to make it more aligned with real-world situations. Methods: To better understand the interplay between information dissemination and disease transmission, we propose a two-layer network model that incorporates psychological safety factors. Results: Our model reveals key insights into disease transmission dynamics: (1) active defense behaviors help reduce both disease spread and information diffusion; (2) passive resistance behaviors expand disease transmission and may trigger recurrence but enhance information spread; (3) high-timeliness, low-fuzziness information reduces the peak of the initial infection but does not significantly curb overall disease spread, and the rapid dissemination of disease-related information is most effective in limiting the early stages of transmission; and (4) community structures in information networks can effectively curb the spread of infectious diseases. Conclusions: These findings offer valuable theoretical support for public health strategies and disease prevention after government information release. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

22 pages, 61181 KiB  
Article
Stepwise Building Damage Estimation Through Time-Scaled Multi-Sensor Integration: A Case Study of the 2024 Noto Peninsula Earthquake
by Satomi Kimijima, Chun Ping, Shono Fujita, Makoto Hanashima, Shingo Toride and Hitoshi Taguchi
Remote Sens. 2025, 17(15), 2638; https://doi.org/10.3390/rs17152638 - 30 Jul 2025
Viewed by 208
Abstract
Rapid and comprehensive assessment of building damage caused by earthquakes is essential for effective emergency response and rescue efforts in the immediate aftermath. Advanced technologies, including real-time simulations, remote sensing, and multi-sensor systems, can effectively enhance situational awareness and structural damage evaluations. However, [...] Read more.
Rapid and comprehensive assessment of building damage caused by earthquakes is essential for effective emergency response and rescue efforts in the immediate aftermath. Advanced technologies, including real-time simulations, remote sensing, and multi-sensor systems, can effectively enhance situational awareness and structural damage evaluations. However, most existing methods rely on isolated time snapshots, and few studies have systematically explored the continuous, time-scaled integration and update of building damage estimates from multiple data sources. This study proposes a stepwise framework that continuously updates time-scaled, single-damage estimation outputs using the best available multi-sensor data for estimating earthquake-induced building damage. We demonstrated the framework using the 2024 Noto Peninsula Earthquake as a case study and incorporated official damage reports from the Ishikawa Prefectural Government, real-time earthquake building damage estimation (REBDE) data, and satellite-based damage estimation data (ALOS-2-building damage estimation (BDE)). By integrating the REBDE and ALOS-2-BDE datasets, we created a composite damage estimation product (integrated-BDE). These datasets were statistically validated against official damage records. Our framework showed significant improvements in accuracy, as demonstrated by the mean absolute percentage error, when the datasets were integrated and updated over time: 177.2% for REBDE, 58.1% for ALOS-2-BDE, and 25.0% for integrated-BDE. Finally, for stepwise damage estimation, we proposed a methodological framework that incorporates social media content to further confirm the accuracy of damage assessments. Potential supplementary datasets, including data from Internet of Things-enabled home appliances, real-time traffic data, very-high-resolution optical imagery, and structural health monitoring systems, can also be integrated to improve accuracy. The proposed framework is expected to improve the timeliness and accuracy of building damage assessments, foster shared understanding of disaster impacts across stakeholders, and support more effective emergency response planning, resource allocation, and decision-making in the early stages of disaster management in the future, particularly when comprehensive official damage reports are unavailable. Full article
Show Figures

Figure 1

24 pages, 11697 KiB  
Article
Layered Production Allocation Method for Dual-Gas Co-Production Wells
by Guangai Wu, Zhun Li, Yanfeng Cao, Jifei Yu, Guoqing Han and Zhisheng Xing
Energies 2025, 18(15), 4039; https://doi.org/10.3390/en18154039 - 29 Jul 2025
Viewed by 136
Abstract
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones [...] Read more.
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones in their pore structure, permeability, water saturation, and pressure sensitivity, significant variations exist in their flow capacities and fluid production behaviors. To address the challenges of production allocation and main reservoir identification in the co-development of CBM and tight gas within deep gas-bearing basins, this study employs the transient multiphase flow simulation software OLGA to construct a representative dual-gas co-production well model. The regulatory mechanisms of the gas–liquid distribution, deliquification efficiency, and interlayer interference under two typical vertical stacking relationships—“coal over sand” and “sand over coal”—are systematically analyzed with respect to different tubing setting depths. A high-precision dynamic production allocation method is proposed, which couples the wellbore structure with real-time monitoring parameters. The results demonstrate that positioning the tubing near the bottom of both reservoirs significantly enhances the deliquification efficiency and bottomhole pressure differential, reduces the liquid holdup in the wellbore, and improves the synergistic productivity of the dual-reservoirs, achieving optimal drainage and production performance. Building upon this, a physically constrained model integrating real-time monitoring data—such as the gas and liquid production from tubing and casing, wellhead pressures, and other parameters—is established. Specifically, the model is built upon fundamental physical constraints, including mass conservation and the pressure equilibrium, to logically model the flow paths and phase distribution behaviors of the gas–liquid two-phase flow. This enables the accurate derivation of the respective contributions of each reservoir interval and dynamic production allocation without the need for downhole logging. Validation results show that the proposed method reliably reconstructs reservoir contribution rates under various operational conditions and wellbore configurations. Through a comparison of calculated and simulated results, the maximum relative error occurs during abrupt changes in the production capacity, approximately 6.37%, while for most time periods, the error remains within 1%, with an average error of 0.49% throughout the process. These results substantially improve the timeliness and accuracy of the reservoir identification. This study offers a novel approach for the co-optimization of complex multi-reservoir gas fields, enriching the theoretical framework of dual-gas co-production and providing technically adaptive solutions and engineering guidance for multilayer unconventional gas exploitation. Full article
Show Figures

Figure 1

36 pages, 3148 KiB  
Article
A Text-Mining-Based Evaluation of Data Element Policies in China: Integrating the LDA and PMC Models in the Context of Green Development
by Shuigen Hu and Xianbo Wang
Sustainability 2025, 17(15), 6758; https://doi.org/10.3390/su17156758 - 24 Jul 2025
Viewed by 343
Abstract
In the context of green development, promoting the development of data elements is crucial for advancing the green and low-carbon transition and achieving China’s “dual-carbon” targets. This study quantitatively evaluates China’s data element policies to identify their strengths and weaknesses and to assess [...] Read more.
In the context of green development, promoting the development of data elements is crucial for advancing the green and low-carbon transition and achieving China’s “dual-carbon” targets. This study quantitatively evaluates China’s data element policies to identify their strengths and weaknesses and to assess their alignment with green development objectives. In this study, we examine 15 representative data element policy texts, evaluating their quality by integrating the Latent Dirichlet Allocation (LDA) topic model with the PMC-Index model. The LDA analysis identifies five core themes within the policy texts: the data element industry, data resource management, data element trading systems, service platform construction, and e-governments. The evaluation results show an average PMC-Index score of 6.03 for the 15 policies, with 9 rated as “Good” and 6 as “Acceptable”. This indicates that while the overall design of the current policy system is acceptable, there remains substantial room for improvement. Based on the average scores for the primary indicators, the policies perform relatively poorly in terms of green development assessment, policy timeliness, policy nature, and policy guarantee. Drawing from these findings, we propose recommendations to enhance China’s data element policies, offering insights for policymakers. Full article
Show Figures

Figure 1

18 pages, 7406 KiB  
Article
Deep-Learning-Driven Technique for Accurate Location of Fire Source in Aircraft Cargo Compartment
by Yulong Zhu, Changzheng Li, Shupei Tang, Xuhong Jia, Xia Chen, Quanyi Liu and Wan Ki Chow
Fire 2025, 8(8), 287; https://doi.org/10.3390/fire8080287 - 23 Jul 2025
Viewed by 360
Abstract
Accurate fire source location in an aircraft cargo compartment cannot be determined by common design practices. This study proposes an advanced fire location inversion framework based on a Convolutional Long-Short-Term Memory (ConvLSTM) network. A self-designed interpolation preprocessing module is introduced to realize the [...] Read more.
Accurate fire source location in an aircraft cargo compartment cannot be determined by common design practices. This study proposes an advanced fire location inversion framework based on a Convolutional Long-Short-Term Memory (ConvLSTM) network. A self-designed interpolation preprocessing module is introduced to realize the integration of spatial and temporal sensor data. The model was trained and validated using a comprehensive database generated from large-scale fire dynamics simulations. Hyperparameter optimization, including a learning rate of 0.001 and a 5 × 5 convolution kernel size, can effectively avoid the systematic errors introduced by interpolation preprocessing, further enhancing model robustness. Validation in simplified scenarios demonstrated a mean squared error of 0.0042 m and a mean positional deviation of 0.095 m for the fire source location. Moreover, the present study assessed the model’s timeliness and reliability in full-scale cabin complex scenarios. The model maintained high performance across varying heights within cargo compartments, achieving a correlation coefficient of 0.99 and a mean absolute relative error of 1.9%. Noteworthily, reasonable location accuracy can be achieved with a minimum of three detectors, even in obstructed environments. These findings offer a robust tool for enhancing fire safety systems in aviation and other similar complex scenarios. Full article
Show Figures

Figure 1

21 pages, 1451 KiB  
Article
Analyzing Tractor Productivity and Efficiency Evolution: A Methodological and Parametric Assessment of the Impact of Variations in Propulsion System Design
by Ivan Herranz-Matey
Agriculture 2025, 15(15), 1577; https://doi.org/10.3390/agriculture15151577 - 23 Jul 2025
Viewed by 221
Abstract
This research aims to analyze the evolution of productivity and efficiency in tractors featuring varying propulsion system designs through the development of a parametric modeling approach. Recognizing that large row-crop tractors represent a significant capital investment—ranging from USD 0.4 to over 0.8 million [...] Read more.
This research aims to analyze the evolution of productivity and efficiency in tractors featuring varying propulsion system designs through the development of a parametric modeling approach. Recognizing that large row-crop tractors represent a significant capital investment—ranging from USD 0.4 to over 0.8 million for current-generation models—and that machinery costs constitute a substantial share of farm production expenses, this study addresses the urgent need for data-driven decision-making in agricultural enterprises. Utilizing consolidated OECD Code 2 tractor test data for all large row-crop John Deere tractors from the MFWD era to the latest generation, the study evaluates tractor performance across multiple productivity and efficiency indicators. The analysis culminates in the creation of a robust, user-friendly parametric model (R2 = 0.9337, RMSE = 1.0265), designed to assist stakeholders in making informed decisions regarding tractor replacement or upgrading. By enabling the optimization of productivity and efficiency while accounting for agronomic and timeliness constraints, this model supports sustainable and profitable management practices in modern agriculture. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

23 pages, 7457 KiB  
Article
An Efficient Ship Target Integrated Imaging and Detection Framework (ST-IIDF) for Space-Borne SAR Echo Data
by Can Su, Wei Yang, Yongchen Pan, Hongcheng Zeng, Yamin Wang, Jie Chen, Zhixiang Huang, Wei Xiong, Jie Chen and Chunsheng Li
Remote Sens. 2025, 17(15), 2545; https://doi.org/10.3390/rs17152545 - 22 Jul 2025
Viewed by 301
Abstract
Due to the sparse distribution of ship targets in wide-area offshore scenarios, the typical cascade mode of imaging and detection for space-borne Synthetic Aperture Radar (SAR) echo data would consume substantial computational time and resources, severely affecting the timeliness of ship target information [...] Read more.
Due to the sparse distribution of ship targets in wide-area offshore scenarios, the typical cascade mode of imaging and detection for space-borne Synthetic Aperture Radar (SAR) echo data would consume substantial computational time and resources, severely affecting the timeliness of ship target information acquisition tasks. Therefore, we propose a ship target integrated imaging and detection framework (ST-IIDF) for SAR oceanic region data. A two-step filtering structure is added in the SAR imaging process to extract the potential areas of ship targets, which can accelerate the whole process. First, an improved peak-valley detection method based on one-dimensional scattering characteristics is used to locate the range gate units for ship targets. Second, a dynamic quantization method is applied to the imaged range gate units to further determine the azimuth region. Finally, a lightweight YOLO neural network is used to eliminate false alarm areas and obtain accurate positions of the ship targets. Through experiments on Hisea-1 and Pujiang-2 data, within sparse target scenes, the framework maintains over 90% accuracy in ship target detection, with an average processing speed increase of 35.95 times. The framework can be applied to ship target detection tasks with high timeliness requirements and provides an effective solution for real-time onboard processing. Full article
(This article belongs to the Special Issue Efficient Object Detection Based on Remote Sensing Images)
Show Figures

Figure 1

23 pages, 4237 KiB  
Article
Debris-Flow Erosion Volume Estimation Using a Single High-Resolution Optical Satellite Image
by Peng Zhang, Shang Wang, Guangyao Zhou, Yueze Zheng, Kexin Li and Luyan Ji
Remote Sens. 2025, 17(14), 2413; https://doi.org/10.3390/rs17142413 - 12 Jul 2025
Viewed by 306
Abstract
Debris flows pose significant risks to mountainous regions, and quick, accurate volume estimation is crucial for hazard assessment and post-disaster response. Traditional volume estimation methods, such as ground surveys and aerial photogrammetry, are often limited by cost, accessibility, and timeliness. While remote sensing [...] Read more.
Debris flows pose significant risks to mountainous regions, and quick, accurate volume estimation is crucial for hazard assessment and post-disaster response. Traditional volume estimation methods, such as ground surveys and aerial photogrammetry, are often limited by cost, accessibility, and timeliness. While remote sensing offers wide coverage, existing optical and Synthetic Aperture Radar (SAR)-based techniques face challenges in direct volume estimation due to resolution constraints and rapid terrain changes. This study proposes a Super-Resolution Shape from Shading (SRSFS) approach enhanced by a Non-local Piecewise-smooth albedo Constraint (NPC), hereafter referred to as NPC SRSFS, to estimate debris-flow erosion volume using single high-resolution optical satellite imagery. By integrating publicly available global Digital Elevation Model (DEM) data as prior terrain reference, the method enables accurate post-disaster topography reconstruction from a single optical image, thereby reducing reliance on stereo imagery. The NPC constraint improves the robustness of albedo estimation under heterogeneous surface conditions, enhancing depth recovery accuracy. The methodology is evaluated using Gaofen-6 satellite imagery, with quantitative comparisons to aerial Light Detection and Ranging (LiDAR) data. Results show that the proposed method achieves reliable terrain reconstruction and erosion volume estimates, with accuracy comparable to airborne LiDAR. This study demonstrates the potential of NPC SRSFS as a rapid, cost-effective alternative for post-disaster debris-flow assessment. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

12 pages, 211 KiB  
Case Report
Acute Medical Events in Adults with Profound Autism: A Review and Illustrative Case Series
by Heli Patel, Anamika L. Shrimali, Christopher J. McDougle and Hannah M. Carroll
Brain Sci. 2025, 15(7), 740; https://doi.org/10.3390/brainsci15070740 - 10 Jul 2025
Viewed by 360
Abstract
Background: Autism spectrum disorder (ASD) is associated with social-communication challenges that can hinder timely diagnosis and treatment during acute medical events (AMEs). The purpose of this report is to review the literature on medical comorbidities and AMEs in adults with profound ASD [...] Read more.
Background: Autism spectrum disorder (ASD) is associated with social-communication challenges that can hinder timely diagnosis and treatment during acute medical events (AMEs). The purpose of this report is to review the literature on medical comorbidities and AMEs in adults with profound ASD and highlight how healthcare teams can better understand atypical presentations of acute pain and discomfort in adults with profound ASD to reduce delayed diagnoses, delays in treatment, and ultimately improve health outcomes. Methods: The literature on medical comorbidities and AMEs in adults with profound ASD was reviewed using the following databases: PubMed, PsycINFO, and Google Scholar. The histories of three adults with profound ASD who experienced AMEs—specifically, appendicitis, nephrolithiasis, and eosinophilic esophagitis (EoE)—are described. The clinical cases were selected to illustrate the challenges inherent in diagnosing and treating AMEs in adults with profound ASD in the context of the review. Results: In Case 1, a 31-year-old male with autism was diagnosed with perforated appendicitis after his family noticed behavioral changes. In Case 2, a 36-year-old male with autism experienced intermittent pain from nephrolithiasis and communicated his discomfort through irritability and pointing. In Case 3, a 34-year-old male with autism exhibited atypical behavior due to pain from undiagnosed EoE, identified after years of untreated pain and multiple unsuccessful clinical procedures. Conclusions: This review and the illustrative cases demonstrate the significant role that communication barriers play in delayed medical diagnoses for adults with profound ASD during AMEs. Integrating caregiver insights and recognizing atypical pain expressions are essential for improving the accuracy and timeliness of diagnosis and treatment in this population. Full article
16 pages, 1919 KiB  
Review
Review of Utilisation Methods of Multi-Source Precipitation Products for Flood Forecasting in Areas with Insufficient Rainfall Gauges
by Yanhong Dou, Ke Shi, Hongwei Cai, Min Xie and Ronghua Liu
Atmosphere 2025, 16(7), 835; https://doi.org/10.3390/atmos16070835 - 9 Jul 2025
Viewed by 228
Abstract
The continuous release of global precipitation products offers a stable data source for flood forecasting in areas without rainfall gauges. However, due to constraints of forecast timeliness, only no/short-lag precipitation products can be utilised for flood forecasting, but these products are prone to [...] Read more.
The continuous release of global precipitation products offers a stable data source for flood forecasting in areas without rainfall gauges. However, due to constraints of forecast timeliness, only no/short-lag precipitation products can be utilised for flood forecasting, but these products are prone to significant errors. Therefore, the keys of flood forecasting in areas lacking rainfall gauges are selecting appropriate precipitation products, improving the accuracy of precipitation products, and reducing the errors of precipitation products by combination with hydrology models. This paper first presents the current no/short-lag precipitation products that are continuously updated online and for which the download of long series historical data is supported. Based on this, this paper reviews the utilisation methods of multi-source precipitation products for flood forecasting in areas with insufficient rainfall gauges from three perspectives: methods for precipitation product performance evaluation, multi-source precipitation fusion methods, and methods for coupling precipitation products with hydrological models. Finally, future research priorities are summarized: (i) to construct a quantitative evaluation system that can take into account both the accuracy and complementarity of precipitation products; (ii) to focus on the improvement of the areal precipitation fields interpolated by gauge-based precipitation in multi-source precipitation fusion; (iii) to couple real-time correction of flood forecasts and multi-source precipitation; and (iv) to enhance global sharing and utilization of rain gauge–radar data for improving the accuracy of satellite-based precipitation products. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

24 pages, 3113 KiB  
Article
Optimization of Airflow Distribution in Mine Ventilation Networks Using the MOBWO Algorithm
by Qian Sun and Yi Wang
Processes 2025, 13(7), 2193; https://doi.org/10.3390/pr13072193 - 9 Jul 2025
Viewed by 322
Abstract
With the increasing complexity of mine ventilation networks, the difficulty of regulating ventilation systems has significantly increased. Lagging regulatory responses are prone to causing problems such as airflow turbulence and insufficient air supply in air-required areas, which seriously threaten the safety of underground [...] Read more.
With the increasing complexity of mine ventilation networks, the difficulty of regulating ventilation systems has significantly increased. Lagging regulatory responses are prone to causing problems such as airflow turbulence and insufficient air supply in air-required areas, which seriously threaten the safety of underground operations. To address this challenge, this paper introduces the MOBWO algorithm into the field of ventilation system air volume optimization and proposes a mine air volume optimization and regulation method based on MOBWO. This paper constructs a multi-objective air volume optimization model with the total power of ventilators and the complexity of air pressure regulation as the optimization objectives. Using indicators such as GD and IGD, it compares the performance of the MOBWO algorithm with mainstream optimization algorithms such as NSGA-II and MOPSO and verifies the practicality of the optimization method with the case of the Jinhua Palace Mine. The results show that the MOBWO algorithm has significant advantages over other algorithms in terms of convergence and distribution performance. When applied to the Jinhua Palace Mine, the air volume optimization and regulation using MOBWO can reduce the power of ventilators by 10.3–21.1% compared with that before optimization while reducing the complexity of air volume regulation and the time loss during air volume regulation. This method not only reduces the energy consumption of ventilators but also shortens the regulation timeliness of the ventilation system, which is of great significance for reducing the probability of accidents and ensuring the safety of personnel’s lives and property. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

25 pages, 24212 KiB  
Article
Spatial Prediction of Soil Organic Carbon Based on a Multivariate Feature Set and Stacking Ensemble Algorithm: A Case Study of Wei-Ku Oasis in China
by Zuming Cao, Xiaowei Luo, Xuemei Wang and Dun Li
Sustainability 2025, 17(13), 6168; https://doi.org/10.3390/su17136168 - 4 Jul 2025
Viewed by 289
Abstract
Accurate estimation of soil organic carbon (SOC) content is crucial for assessing terrestrial ecosystem carbon stocks. Although traditional methods offer relatively high estimation accuracy, they are limited by poor timeliness and high costs. Combining measured data, remote sensing technology, and machine learning (ML) [...] Read more.
Accurate estimation of soil organic carbon (SOC) content is crucial for assessing terrestrial ecosystem carbon stocks. Although traditional methods offer relatively high estimation accuracy, they are limited by poor timeliness and high costs. Combining measured data, remote sensing technology, and machine learning (ML) algorithms enables rapid, efficient, and accurate large-scale prediction. However, single ML models often face issues like high feature variable redundancy and weak generalization ability. Integrated models can effectively overcome these problems. This study focuses on the Weigan–Kuqa River oasis (Wei-Ku Oasis), a typical arid oasis in northwest China. It integrates Sentinel-2A multispectral imagery, a digital elevation model, ERA5 meteorological reanalysis data, soil attribute, and land use (LU) data to estimate SOC. The Boruta algorithm, Lasso regression, and its combination methods were used to screen feature variables, constructing a multidimensional feature space. Ensemble models like Random Forest (RF), Gradient Boosting Machine (GBM), and the Stacking model are built. Results show that the Stacking model, constructed by combining the screened variable sets, exhibited optimal prediction accuracy (test set R2 = 0.61, RMSE = 2.17 g∙kg−1, RPD = 1.61), which reduced the prediction error by 9% compared to single model prediction. Difference Vegetation Index (DVI), Bare Soil Evapotranspiration (BSE), and type of land use (TLU) have a substantial multidimensional synergistic influence on the spatial differentiation pattern of the SOC. The implementation of TLU has been demonstrated to exert a substantial influence on the model’s estimation performance, as evidenced by an augmentation of 24% in the R2 of the test set. The integration of Boruta–Lasso combination screening and Stacking has been shown to facilitate the construction of a high-precision SOC content estimation model. This model has the capacity to provide technical support for precision fertilization in oasis regions in arid zones and the management of regional carbon sinks. Full article
Show Figures

Figure 1

22 pages, 1330 KiB  
Article
Analysis of Age of Information in CSMA Network with Correlated Sources
by Long Liang and Siyuan Zhou
Electronics 2025, 14(13), 2688; https://doi.org/10.3390/electronics14132688 - 2 Jul 2025
Viewed by 286
Abstract
With the growing deployment of latency-sensitive applications, the Age of Information (AoI) has emerged as a key performance metric for the evaluation of data freshness in networked systems. While prior studies have extensively explored the AoI under centralized scheduling or random-access protocols such [...] Read more.
With the growing deployment of latency-sensitive applications, the Age of Information (AoI) has emerged as a key performance metric for the evaluation of data freshness in networked systems. While prior studies have extensively explored the AoI under centralized scheduling or random-access protocols such as carrier sense multiple access (CSMA) and ALOHA, most assume that sources generate independent information. However, in practical scenarios such as environmental monitoring and visual sensing, information correlation frequently exists among correlated sources, providing new opportunities to enhance network timeliness. In this paper, we propose a novel analytical framework that captures the interplay between CSMA channel contention and spatial information correlation among sources. By leveraging the stochastic hybrid systems (SHS) methodology, we jointly model random backoff behavior, medium access collisions, and correlated updates in a scalable and mathematically tractable manner. We derive closed-form expressions for the average AoI under general correlation structures and further propose a lightweight estimation approach for scenarios where the correlation matrix is partially known or unknown. To our knowledge, this is the first work that integrates correlation-aware modeling into AoI analysis under distributed CSMA protocols. Extensive simulations confirm the accuracy of the theoretical results and demonstrate that exploiting information redundancy can significantly reduce the AoI, particularly under high node densities and constrained sampling budgets. These findings offer practical guidance for the design of efficient and timely data acquisition strategies in dense or energy-constrained Internet of Things (IoT) networks. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

22 pages, 5161 KiB  
Article
AUV Trajectory Planning for Optimized Sensor Data Collection in Internet of Underwater Things
by Talal S. Almuzaini and Andrey V. Savkin
Future Internet 2025, 17(7), 293; https://doi.org/10.3390/fi17070293 - 30 Jun 2025
Viewed by 261
Abstract
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for [...] Read more.
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for a single Autonomous Underwater Vehicle (AUV) operating in coordination with an Unmanned Surface Vehicle (USV) to collect data from multiple Cluster Heads (CHs) deployed across an uneven seafloor. The proposed approach employs a VoI model that captures both the importance and timeliness of sensed data, guiding the AUV to collect and deliver critical information before its value significantly degrades. A forward Dynamic Programming (DP) algorithm is used to jointly optimize the AUV’s trajectory and the USV’s start and end positions, with the objective of maximizing the total residual VoI upon mission completion. The trajectory design incorporates the AUV’s kinematic constraints into travel time estimation, enabling accurate VoI evaluation throughout the mission. Simulation results show that the proposed strategy consistently outperforms conventional baselines in terms of residual VoI and overall system efficiency. These findings highlight the advantages of VoI-aware planning and AUV–USV collaboration for effective data collection in challenging underwater environments. Full article
Show Figures

Figure 1

Back to TopTop