Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (207)

Search Parameters:
Keywords = time-varying magnetic field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3229 KB  
Article
Influence of the Polarizing Magnetic Field and Volume Fraction of Nanoparticles in a Ferrofluid on the Specific Absorption Rate (SAR) in the Microwave Range
by Iosif Malaescu, Paul C. Fannin, Catalin N. Marin and Madalin O. Bunoiu
Magnetochemistry 2026, 12(1), 5; https://doi.org/10.3390/magnetochemistry12010005 - 30 Dec 2025
Viewed by 157
Abstract
For the study, we used four kerosene-based ferrofluid samples containing magnetite nanoparticles stabilized with oleic acid. Starting from the initial sample (A0), the other three samples were obtained by dilution with kerosene. The complex magnetic permeability measurements were performed in the microwave region [...] Read more.
For the study, we used four kerosene-based ferrofluid samples containing magnetite nanoparticles stabilized with oleic acid. Starting from the initial sample (A0), the other three samples were obtained by dilution with kerosene. The complex magnetic permeability measurements were performed in the microwave region (0.5–6) GHz, for different H values of the polarizing magnetic field, between (0–115) kA/m. These measurements revealed the ferromagnetic resonance phenomenon for each sample, allowing the determination of the anisotropy field (HA) and the effective anisotropy constant (Keff) of nanoparticles, depending on the volume fraction of particles (φ). At the same time, the measurements allowed the determination of the specific magnetic loss power (pm), effective heating rate (HReff), intrinsic loss power (ILP), and specific absorption rate (SAR) as functions of the frequency (f) and magnetic field (H), of all investigated samples, using newly proposed equations for their calculation. For the first time, this study evaluates the maximum limit of the applied polarizing magnetic field (Hmax ≈ 80 kA/m) and the minimum limit volume fraction of nanoparticles (φmin ≈ 3.5%) at which microwave heating of the ferrofluid remains efficient. At the same time, the results obtained show that the temperature increase of the ferrofluid samples, upon interaction with a microwave field, can be controlled by varying both H and φ, pointing to possible applications in magnetic hyperthermia. Full article
(This article belongs to the Special Issue 10th Anniversary of Magnetochemistry: Past, Present and Future)
Show Figures

Figure 1

13 pages, 3654 KB  
Article
Nonlinear Temperature and Pumped Liquid Dependence in Electromagnetic Diaphragm Pump
by Grazia Lo Sciuto, Rafał Brociek, Szymon Skupień, Paweł Kowol, Salvo Coco and Giacomo Capizzi
Fluids 2026, 11(1), 8; https://doi.org/10.3390/fluids11010008 - 28 Dec 2025
Viewed by 202
Abstract
Electromagnetic pumps are developed for industrial, medical and scientific applications, moving electrically conductive liquids and molten solder in electronics manufacturing using electromagnetism instead of mechanical parts. This study presents a comprehensive thermal analysis of an electromagnetic diaphragm pump, focusing on the influence of [...] Read more.
Electromagnetic pumps are developed for industrial, medical and scientific applications, moving electrically conductive liquids and molten solder in electronics manufacturing using electromagnetism instead of mechanical parts. This study presents a comprehensive thermal analysis of an electromagnetic diaphragm pump, focusing on the influence of operating current, permanent magnet switching speed, and cooling conditions on pumping performance. The pump utilizes a flexible diaphragm embedded with a permanent neodymium magnet, which interacts with time-varying magnetic fields generated by electromagnets to drive fluid motion. Temperature monitoring is conducted using a waterproof DS18B20 sensor and an uncooled FLIR A325sc infrared camera, allowing accurate mapping of thermal distribution across the pump surface. Experimental results demonstrate that higher current and increased magnet switching speed lead to faster temperature rise, impacting the volume of fluid pumped. Incorporation of an automatic cooling fan effectively reduces coil temperature and stabilizes pump performance. Polynomial regression models describe the relationship between temperature, pumped liquid volume, and magnet switching speed, providing information to optimize pump operation and cooling strategies. The novel relationship between temperature and the volume of the pumped liquid is considered as a fourth-degree polynomial. In particular the model describes a quantitative evaluation of the effect of heating on pumping efficiency. An initial increase in temperature correlates with a higher pumped volume, but excessive heating leads to efficiency saturation or even decline. Indeed, mathematical dependencies are crucial in mechanical pump engineering for analyzing physical phenomena; this is achieved by using a mathematical equation to define how different physical variables are related to each other, enabling engineers to calculate performance and optimize the pump design. Full article
Show Figures

Figure 1

14 pages, 6848 KB  
Article
Magnetic Field Simulation of Demagnetization Process in Complex Ferromagnetic Cavity Structures
by Tao Guo, Chengjin Lu and Meng Chen
Appl. Sci. 2026, 16(1), 176; https://doi.org/10.3390/app16010176 - 24 Dec 2025
Viewed by 348
Abstract
The time-varying magnetic field characteristics during the demagnetization process of complex ferromagnetic cavity structures were studied based on computational electromagnetic simulation. By establishing a simulation model of the complex ferromagnetic cavity structures and the magnetic field generation coil, the main factors affecting the [...] Read more.
The time-varying magnetic field characteristics during the demagnetization process of complex ferromagnetic cavity structures were studied based on computational electromagnetic simulation. By establishing a simulation model of the complex ferromagnetic cavity structures and the magnetic field generation coil, the main factors affecting the time-varying magnetic field characteristics were analyzed and explained, including eddy current effects, hysteresis effects, material properties of the complex ferromagnetic cavity structure, and structural gap connections. The magnetic field amplitude at typical locations was investigated, and the temporal variation of the internal magnetic field was analyzed. Additionally, the evolution motion of eddy currents during the dynamic demagnetization process was simulated. It was found that the aforementioned factors significantly affect the internal magnetic field of the complex ferromagnetic cavity structures during the demagnetization process, and their influences intertwine, resulting in complex time-varying characteristics. Through theoretical analysis and numerical simulation, the mechanisms and rules of these influences were revealed. The research findings provide important references for optimizing the demagnetization process, improving demagnetization effectiveness, and developing equipment-level magnetic field protection criteria and design. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

14 pages, 1593 KB  
Article
Combined Lensing in the Vicinity of Neutron Stars with Dipole–Quadrupole Magnetospheres: Nonlinear Electrodynamics with General-Relativistic Ray-Tracing and Observational Implications
by Kalamkas Astemessova, Medeu Abishev, Nurzada Beissen, Tursynbek Yernazarov, Daulet Berkimbayev, Sulukas Sarsenbayeva, Nurkamal Shynggyskhan, Bekzat Zhumabay and Gulzhan Turlybekova
Physics 2026, 8(1), 1; https://doi.org/10.3390/physics8010001 - 23 Dec 2025
Viewed by 249
Abstract
We consider a model problem of polarization-dependent light bending and time delays in the vicinity of neutron stars endowed with magnetar-strength magnetic fields (B1015G), combining an effective-metric formulation of Heisenberg–Euler nonlinear electrodynamics with general-relativistic ray tracing. The [...] Read more.
We consider a model problem of polarization-dependent light bending and time delays in the vicinity of neutron stars endowed with magnetar-strength magnetic fields (B1015G), combining an effective-metric formulation of Heisenberg–Euler nonlinear electrodynamics with general-relativistic ray tracing. The spacetime geometry is analyzed using both the Kerr metric and a quadrupole-deformed q-metric, characterized by a quadrupole parameter varying in the range q[103,0.5]. In addition, the impact of complex magnetic-field topologies is examined by introducing a magnetic quadrupole component alongside the dipole configuration. The simulations performed in this study demonstrate that the inclusion of the quadrupole deformation parameter significantly modifies photon trajectory deflections compared to the standard Kerr solution. We further quantify the geometric dilution of the photon beam, finding a cross-section expansion ratio of approximately 4.7×1013 for rays reaching Earth. This strong dilution imposes stringent constraints on the detectability of polarization-dependent signatures and time-delay echoes. Finally, characteristic illustrations are presented for trajectory distortions, bending-angle distributions, and intensity valleys produced by the combined gravitational and magnetic lensing effects. Full article
(This article belongs to the Section Gravitation and Cosmology)
Show Figures

Figure 1

22 pages, 2292 KB  
Article
Collapse Pressure Prediction for Marine Shale Wellbores Considering Drilling Fluid Invasion-Induced Strength Degradation: A Bedding Plane Slip Model
by Zhilei Zhang, Chunping Li, Yuan Geng, Baohua Yu, Sicong Meng and Lihui Wang
Eng 2025, 6(12), 353; https://doi.org/10.3390/eng6120353 - 5 Dec 2025
Viewed by 343
Abstract
The stability of deep marine shale wellbores is influenced by both bedding anisotropy and drilling fluid intrusion. Existing models fail to adequately account for the coupled effects of intrusion depth and strength degradation. This study, targeting Longmaxi Formation shale, established a collapse pressure [...] Read more.
The stability of deep marine shale wellbores is influenced by both bedding anisotropy and drilling fluid intrusion. Existing models fail to adequately account for the coupled effects of intrusion depth and strength degradation. This study, targeting Longmaxi Formation shale, established a collapse pressure prediction model incorporating drilling fluid intrusion depth through direct shear tests and nuclear magnetic resonance (NMR) techniques. Experimental results indicate that shear strength reaches its minimum at β = 45°, decreasing by approximately 60% compared to β = 0° or 90°. Intrusion causes exponential decay in bedding plane strength, with the cohesion degradation coefficient λc = 0.158 mm−1 significantly exceeding the internal friction angle degradation coefficient λφ = 0.089 mm−1. Sensitivity analysis indicates that bedding angle and invasion depth rank third (±3%) and fourth (±1.5%), respectively, in influencing collapse pressure. Field validation confirmed excellent model prediction accuracy (R2 = 0.956; RMSE = 0.55 MPa; MAPE = 1.05%), with all errors below 4%. This model accurately predicts the time-varying characteristics of collapse pressure, providing a theoretical basis for optimizing the design of drilling fluid density. Full article
Show Figures

Figure 1

34 pages, 385 KB  
Review
Machine Learning in MRI Brain Imaging: A Review of Methods, Challenges, and Future Directions
by Martyna Ottoni, Anna Kasperczuk and Luis M. N. Tavora
Diagnostics 2025, 15(21), 2692; https://doi.org/10.3390/diagnostics15212692 - 24 Oct 2025
Viewed by 3045
Abstract
In recent years, machine learning (ML) has been increasingly used in many fields, including medicine. Magnetic resonance imaging (MRI) is a non-invasive and effective diagnostic technique; however, manual image analysis is time-consuming and prone to human variability. In response, ML models have been [...] Read more.
In recent years, machine learning (ML) has been increasingly used in many fields, including medicine. Magnetic resonance imaging (MRI) is a non-invasive and effective diagnostic technique; however, manual image analysis is time-consuming and prone to human variability. In response, ML models have been developed to support MRI analysis, particularly in segmentation and classification tasks. This work presents an updated narrative review of ML applications in brain MRI, with a focus on tumor classification and segmentation. A literature search was conducted in PubMed and Scopus databases and Mendeley Catalog (MC)—a publicly accessible bibliographic catalog linked to Elsevier’s Scopus indexing system—covering the period from January 2020 to April 2025. The included studies focused on patients with primary or secondary brain neoplasms and applied machine learning techniques to MRI data for classification or segmentation purposes. Only original research articles written in English and reporting model validation were considered. Studies using animal models, non-imaging data, lacking proper validation, or without accessible full texts (e.g., abstract-only records or publications unavailable through institutional access) were excluded. In total, 108 studies met all inclusion criteria and were analyzed qualitatively. In general, models based on convolutional neural networks (CNNs) were found to dominate current research due to their ability to extract spatial features directly from imaging data. Reported classification accuracies ranged from 95% to 99%, while Dice coefficients for segmentation tasks varied between 0.83 and 0.94. Hybrid architectures (e.g., CNN-SVM, CNN-LSTM) achieved strong results in both classification and segmentation tasks, with accuracies above 95% and Dice scores around 0.90. Transformer-based models, such as the Swin Transformer, reached the highest performance, up to 99.9%. Despite high reported accuracy, challenges remain regarding overfitting, generalization to real-world clinical data, and lack of standardized evaluation protocols. Transfer learning and data augmentation were frequently applied to mitigate limited data availability, while radiomics-based models introduced new avenues for personalized diagnostics. ML has demonstrated substantial potential in enhancing brain MRI analysis and supporting clinical decision-making. Nevertheless, further progress requires rigorous clinical validation, methodological standardization, and comparative benchmarking to bridge the gap between research settings and practical deployment. Full article
(This article belongs to the Special Issue Brain/Neuroimaging 2025–2026)
16 pages, 63967 KB  
Article
Research on Eddy Current Probes for Sensitivity Improvement in Fatigue Crack Detection of Aluminum Materials
by Qing Zhang, Jiahuan Zheng, Shengping Wu, Yanchang Wang, Lijuan Li and Haitao Wang
Sensors 2025, 25(19), 6100; https://doi.org/10.3390/s25196100 - 3 Oct 2025
Viewed by 1232
Abstract
Aluminum alloys under long-term service or repetitive stress are prone to small fatigue cracks (FCs) with arbitrary orientations, necessitating eddy current probes with focused magnetic fields and directional selectivity for reliable detection. This study presents a flexible printed circuit board (FPCB) probe with [...] Read more.
Aluminum alloys under long-term service or repetitive stress are prone to small fatigue cracks (FCs) with arbitrary orientations, necessitating eddy current probes with focused magnetic fields and directional selectivity for reliable detection. This study presents a flexible printed circuit board (FPCB) probe with a double-layer planar excitation coil and a double-layer differential receiving coil. The excitation coil employs a reverse-wound design to enhance magnetic field directionality and focusing, while the differential receiving coil improves sensitivity and suppresses common-mode noise. The probe is optimized by adjusting the excitation coil overlap and the excitation–receiving coil angles to maximize eddy current concentration and detection signals. Finite element simulations and experiments confirm the system’s effectiveness in detecting surface cracks of varying sizes and orientations. To further characterize these defects, two time-domain features are extracted: the peak-to-peak value (ΔP), reflecting amplitude variations associated with defect size and orientation, and the signal width (ΔW), primarily correlated with defect angle. However, substantial overlap in their value ranges for defects with different parameters means that these features alone cannot identify which specific parameter has changed, making prior defect classification using a Transformer-based approach necessary for accurate quantitative analysis. The proposed method demonstrates reliable performance and clear interpretability for defect evaluation in aluminum components. Full article
(This article belongs to the Special Issue Electromagnetic Non-Destructive Testing and Evaluation)
Show Figures

Figure 1

22 pages, 864 KB  
Article
Modelling Magnetisation and Transport AC Loss of HTS Tapes near Ferromagnetic Materials Using an Integral Equation Method
by Calvin C. T. Chow, K. T. Chau and Francesco Grilli
Appl. Sci. 2025, 15(19), 10411; https://doi.org/10.3390/app151910411 - 25 Sep 2025
Viewed by 1445
Abstract
The integral equation formulation of Maxwell’s equations proposed by Brandt provides an alternative to the H and T-A formulations for modelling high-temperature superconducting (HTS) tapes. A modified version of Brandt’s method in the literature models ferromagnetic domains near the tapes by [...] Read more.
The integral equation formulation of Maxwell’s equations proposed by Brandt provides an alternative to the H and T-A formulations for modelling high-temperature superconducting (HTS) tapes. A modified version of Brandt’s method in the literature models ferromagnetic domains near the tapes by considering the ferromagnetic domains as equivalent surface current. This paper extends this method by including the effect of external magnetic field acting on the ferromagnetic and HTS domains. The proposed method is used on a benchmark problem, which considers an HTS tape with a ferromagnetic substrate under an external time-varying magnetic field. The results agree closely (error in average ac loss less than 3%) with the widely-used T-A formulation implemented in COMSOL down to 2 mT. In addition, the proposed method is also applied to HTS tapes carrying transport ac current in a slot of a machine’s stator iron core, and HTS tapes in a stator iron slot in a machine under working conditions. It is found that ac loss calculated by the proposed method increases as the discretization size of the ferromagnetic material’s boundary decreases, and overshoots the value calculated by the T-A formulation in COMSOL when using very fine discretization. Full article
(This article belongs to the Special Issue Applied Superconductivity: Material, Design, and Application)
Show Figures

Figure 1

23 pages, 1937 KB  
Article
Bio Meets Nano: Protein Exchange in Saline Biocoronae on Magnetic Nanoparticles
by Paula Fraga-García, Sandra Haßelt, Carlos Eduardo Díaz-Cano, Lucía Abarca-Cabrera, Yasmin Kaveh-Baghbaderani, Sebastian P. Schwaminger, Massimo Kube and Hendrik Dietz
Int. J. Mol. Sci. 2025, 26(18), 8995; https://doi.org/10.3390/ijms26188995 - 16 Sep 2025
Viewed by 930
Abstract
When iron oxide nanoparticles are incubated together with a biological broth, the biomolecules compete for the binding sites at the solid–liquid interface. At the same time, the biomass rearranges in suspension, building agglomerated structures. Despite general knowledge of the forces involved in bio–nano [...] Read more.
When iron oxide nanoparticles are incubated together with a biological broth, the biomolecules compete for the binding sites at the solid–liquid interface. At the same time, the biomass rearranges in suspension, building agglomerated structures. Despite general knowledge of the forces involved in bio–nano interactions, gaps remain in the understanding of how biomolecules organize themselves in solution and onto surfaces. This work examines biomolecule adsorption onto metal oxide surfaces with the goal of strengthening this understanding, essential in industrial and natural processes. We demonstrate nearly complete separation of proteins from a biotechnological suspension for non-oxidized and highly oxidized magnetic nanoparticles. Varying the nanoparticle-to-biomass ratio, we find, can lead to different separation patterns, i.e., that selectivity using bare, low-cost materials is possible. Furthermore, we explore how preliminary “passivation” with a biological corona only partially reduces the ability to separate total protein mass from a new suspension in subsequent incubation steps. The study underscores the crucial role of concentration gradients with regard to targets and binding sites as the primary determinant of separation capacity and of biomolecule behavior in solution, highlighting the potential for using bio–nano coronae as biomolecule carriers across diverse fields, including environmental, biomedical, pharmaceutical and nutritional applications. Full article
(This article belongs to the Special Issue Latest Advances in Nanoparticles for Modern Biomedicine (2nd Edition))
Show Figures

Figure 1

11 pages, 2289 KB  
Article
Reconfigurable High-Efficiency Power Dividers Using Waveguide Epsilon-Near-Zero Media for On-Demand Splitting
by Lin Jiang, Qi Hu and Yijun Feng
Photonics 2025, 12(9), 897; https://doi.org/10.3390/photonics12090897 - 6 Sep 2025
Cited by 1 | Viewed by 1210
Abstract
Although epsilon-near-zero (ENZ) media have emerged as a promising platform for power dividers, the majority of existing designs are confined to fixed power splitting. In this work, two dynamically tunable power dividers using waveguide ENZ media are proposed by precisely modulating the internal [...] Read more.
Although epsilon-near-zero (ENZ) media have emerged as a promising platform for power dividers, the majority of existing designs are confined to fixed power splitting. In this work, two dynamically tunable power dividers using waveguide ENZ media are proposed by precisely modulating the internal magnetic field and the widths of the output waveguides. The first approach features a mechanically reconfigurable ring-shaped ENZ waveguide. By continuously re-distributing the magnetic field within the ENZ tunneling channels utilizing rotatable copper plates, arbitrary power division among multiple output ports is constructed. The second design integrates a rectangular-loop ENZ cavity into a substrate-integrated waveguide, with four positive–intrinsic–negative diodes embedded to dynamically activate specific output ports. This configuration steers electromagnetic energy toward output ports with varying cross-sectional areas, enabling on-demand control over both the power division and the number of output ports. Both analytical and full-wave simulation results confirm dynamic power division, with transmission efficiencies exceeding 93%. Despite differences in structure and actuation mechanisms, both designs exhibit flexible field control, high reconfigurability, and excellent transmission performance, highlighting their potential in advanced applications such as real-time wireless communications, multi-input–multi-output systems, and reconfigurable antennas. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

17 pages, 4085 KB  
Article
Magneto-Tunable Surface Roughness and Hydrophobicity of Magnetoactive Elastomers Based on Polymer Networks with Different Architectures
by Sobit E. Kirgizov, Sergey A. Kostrov and Elena Yu. Kramarenko
Polymers 2025, 17(17), 2411; https://doi.org/10.3390/polym17172411 - 4 Sep 2025
Viewed by 1031
Abstract
In this study, we present experimental investigations of the surface structure and water contact angles of magnetoactive elastomers (MAEs), which are controlled by an external magnetic field. Specifically, we examine how the polymer matrix architecture affects the surface roughness and wettability of MAEs [...] Read more.
In this study, we present experimental investigations of the surface structure and water contact angles of magnetoactive elastomers (MAEs), which are controlled by an external magnetic field. Specifically, we examine how the polymer matrix architecture affects the surface roughness and wettability of MAEs in various magnetic fields. We performed a comparative analysis on MAEs based on a linear polysiloxane network and on a matrix of the same chemical nature containing side-grafted chains. We synthesized a series of magnetoactive elastomers containing 75 wt.% carbonyl iron and varying amounts of a low-molecular-weight plasticizer. Although the magnetorheological effect is higher for traditional linear MAEs, we found that the magnetic response in surface properties is higher for novel MAEs with side-grafted chains. The largest increase in water contact angle was observed in the side-chain MAEs with the highest 60 wt.% plasticizer content: rising from 112° in a zero field to 168° in a 490 mT magnetic field. Water contact angles exhibit greater stability over time for side-chain MAEs, and this stability further increases in the presence of a magnetic field. Our results demonstrate that the architecture of the polymer matrix serves as an effective tool for designing smart, magnetically responsive surfaces. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

22 pages, 5394 KB  
Article
Unveiling the Variability and Chemical Composition of AL Col
by Surath C. Ghosh, Santosh Joshi, Samrat Ghosh, Athul Dileep, Otto Trust, Mrinmoy Sarkar, Jaime Andrés Rosales Guzmán, Nicolás Esteban Castro-Toledo, Oleg Malkov, Harinder P. Singh, Kefeng Tan and Sarabjeet S. Bedi
Galaxies 2025, 13(4), 93; https://doi.org/10.3390/galaxies13040093 - 14 Aug 2025
Viewed by 933
Abstract
In this study, we present analysis of TESS photometry, spectral energy distribution (SED), high-resolution spectroscopy, and spot modeling of the α2 CVn-type star AL Col (HD 46462). The primary objective is to determine its fundamental physical parameters and investigate its surface activity [...] Read more.
In this study, we present analysis of TESS photometry, spectral energy distribution (SED), high-resolution spectroscopy, and spot modeling of the α2 CVn-type star AL Col (HD 46462). The primary objective is to determine its fundamental physical parameters and investigate its surface activity characteristics. Using TESS short-cadence (120 s) SAP flux, we identified a rotational frequency of 0.09655 d1 (Prot=10.35733 d). Wavelet analysis reveals that while the amplitudes of the harmonic components vary over time, the strength of the primary rotational frequency remains stable. A SED analysis of multi-band photometric data yields an effective temperature (Teff) of 11,750 K. High-resolution spectroscopic observations covering wavelengthrange 4500–7000 Å provide refined estimates of Teff = 13,814 ± 400 K, logg = 4.09 ± 0.08 dex, and υsini = 16 ± 1 km s−1. Abundance analysis shows solar-like composition of O ii, Mg ii, S ii, and Ca ii, while helium is under-abundant by 0.62 dex. Rare earth elements (REEs) exhibit over-abundances of up to 5.2 dex, classifying the star as an Ap/Bp-type star. AL Col has a radius of R=3.74±0.48R, with its H–R diagram position estimating a mass of M=4.2±0.2M and an age of 0.12±0.01 Gyr, indicating that the star has slightly evolved from the main sequence. The TESS light curves were modeled using a three-evolving-spot configuration, suggesting the presence of differential rotation. This star is a promising candidate for future investigations of magnetic field diagnostics and the vertical stratification of chemical elements in its atmosphere. Full article
(This article belongs to the Special Issue Stellar Spectroscopy, Molecular Astronomy and Atomic Astronomy)
Show Figures

Figure 1

55 pages, 3080 KB  
Review
Controlling Sedimentation in Magnetorheological Fluids Through Ultrasound–Magnetic Field Coupling: Multiscale Analysis and Applications
by Annunziata Palumbo and Mario Versaci
Mathematics 2025, 13(15), 2540; https://doi.org/10.3390/math13152540 - 7 Aug 2025
Viewed by 1625
Abstract
Magnetorheological fluids (MRFs) are multiphase materials whose viscosity can be controlled via magnetic fields. However, particle sedimentation undermines their long-term stability. This review examines stabilization strategies based on the interaction between ultrasonic waves and time-varying magnetic fields, analyzed through advanced mathematical models. The [...] Read more.
Magnetorheological fluids (MRFs) are multiphase materials whose viscosity can be controlled via magnetic fields. However, particle sedimentation undermines their long-term stability. This review examines stabilization strategies based on the interaction between ultrasonic waves and time-varying magnetic fields, analyzed through advanced mathematical models. The propagation of acoustic waves in spherical and cylindrical domains is studied, including effects such as cavitation, acoustic radiation forces, and viscous attenuation. The Biot–Stoll poroelastic model is employed to describe saturated granular media, while magnetic field modulation is investigated as a means to balance gravitational settling. The analysis highlights how acousto-magnetic coupling supports the design of programmable and self-stabilizing intelligent fluids for complex applications. Full article
(This article belongs to the Special Issue Engineering Thermodynamics and Fluid Mechanics)
Show Figures

Figure 1

18 pages, 5492 KB  
Article
A Novel Variable Stiffness Torque Sensor with Adjustable Resolution
by Zhongyuan Mao, Yuanchang Zhong, Xuehui Zhao, Tengfei He and Sike Duan
Micromachines 2025, 16(8), 868; https://doi.org/10.3390/mi16080868 - 27 Jul 2025
Viewed by 1057
Abstract
In rotating machinery, the demands for torque sensor resolution and range in various torque measurements are becoming increasingly stringent. This paper presents a novel variable stiffness torque sensor designed to meet the demands for high resolution or a large range under varying measurement [...] Read more.
In rotating machinery, the demands for torque sensor resolution and range in various torque measurements are becoming increasingly stringent. This paper presents a novel variable stiffness torque sensor designed to meet the demands for high resolution or a large range under varying measurement conditions. Unlike traditional strain gauge-based torque sensors, this sensor combines the advantages of torsion springs and magnetorheological fluid (MRF) to achieve dynamic adjustments in both resolution and range. Specifically, the stiffness of the elastic element is adjusted by altering the shear stress of the MRF via an applied magnetic field while simultaneously harnessing the high sensitivity of the torsion spring. The stiffness model is established and validated for accuracy through finite element analysis. A screw modulation-based angle measurement method is proposed for the first time, offering high non-contact angle measurement accuracy and resolving eccentricity issues. The performance of the sensor prototype is evaluated using a self-developed power-closed torque test bench. The experimental results demonstrate that the sensor exhibits excellent linearity, hysteresis, and repeatability while effectively achieving dynamic continuous adjustment of resolution and range. Full article
Show Figures

Figure 1

22 pages, 3549 KB  
Article
Hybrid Electrocoagulation with Al Electrodes Assisted by Magnet and Zeolite: How Effective Is It for Compost Wastewater Treatment?
by Nediljka Vukojević Medvidović, Ladislav Vrsalović, Sandra Svilović, Senka Gudić and Lucija Peran
Appl. Sci. 2025, 15(15), 8194; https://doi.org/10.3390/app15158194 - 23 Jul 2025
Cited by 1 | Viewed by 1502
Abstract
This study investigates an innovative hybrid treatment for compost-derived wastewater, combining aluminum-based electrocoagulation (EC), zeolite addition, and magnet assistance. Key experimental variables—presence/absence of magnet, stirring speed (250 and 350 rpm), and contact time (10–30 min)—were systematically varied to analyze process efficiency, electrode dissolution [...] Read more.
This study investigates an innovative hybrid treatment for compost-derived wastewater, combining aluminum-based electrocoagulation (EC), zeolite addition, and magnet assistance. Key experimental variables—presence/absence of magnet, stirring speed (250 and 350 rpm), and contact time (10–30 min)—were systematically varied to analyze process efficiency, electrode dissolution and mass loss, solid–liquid separation dynamics, and quantify energy input and Faraday efficiency (FE). Magnet-assisted processes achieved higher COD reduction at longer treatment times of 30 min and lower mixing speeds of 250 rpm, with up to 89.87%. The highest turbidity reduction of 98.59% is achieved after 20 min at 350 rpm. The magnetic field does not significantly affect the dissolution of Al electrodes, but over time, it helps reduce localized electrode damage, thereby supporting both process efficiency and electrode longevity. Magnetic fields improved sludge settling in shorter treatments by promoting faster aggregation. However, the energy input was generally higher with magnetic assistance. FE in the range of 50.89–65.82% indicates that the actual electrode loss is lower than theoretical. For the experiments conducted according to the L8 Taguchi experimental design, given the significance and contribution of factors to the process, the optimal combination is the absence of a magnet, 350 rpm, and 20 min. Full article
(This article belongs to the Special Issue Advances in Pollutant Removal from Water Environments)
Show Figures

Figure 1

Back to TopTop