Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (579)

Search Parameters:
Keywords = time-varying complex networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1669 KiB  
Article
Predefined-Time Adaptive Neural Control with Event-Triggering for Robust Trajectory Tracking of Underactuated Marine Vessels
by Hui An, Zhanyang Yu, Jianhua Zhang, Xinxin Wang and Cheng Siong Chin
Processes 2025, 13(8), 2443; https://doi.org/10.3390/pr13082443 (registering DOI) - 1 Aug 2025
Abstract
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues [...] Read more.
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues of traditional finite-time control (convergence time dependent on initial states) and fixed-time control (control chattering and parameter conservativeness), this paper proposes a predefined-time adaptive control framework that integrates an event-triggered mechanism and neural networks. By constructing a Lyapunov function with time-varying weights and designing non-periodic dynamically updated dual triggering conditions, the convergence process of tracking errors is strictly constrained within a user-prespecified time window without relying on initial states or introducing non-smooth terms. An adaptive approximator based on radial basis function neural networks (RBF-NNs) is employed to compensate for unknown nonlinear dynamics and external disturbances in real-time. Combined with the event-triggered mechanism, it dynamically adjusts the update instances of control inputs, ensuring prespecified tracking accuracy while significantly reducing computational resource consumption. Theoretical analysis shows that all signals in the closed-loop system are uniformly ultimately bounded, tracking errors converge to a neighborhood of the origin within the predefined-time, and the update frequency of control inputs exhibits a linear relationship with the predefined-time, avoiding Zeno behavior. Simulation results verify the effectiveness of the proposed method in complex marine environments. Compared with traditional control strategies, it achieves more accurate trajectory tracking, faster response, and a substantial reduction in control input update frequency, providing an efficient solution for the engineering implementation of embedded control systems in unmanned ships. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
31 pages, 17812 KiB  
Article
Deep Learning-Based Source Localization with Interference Striation of a Towed Horizontal Line Array
by Zhengchao Huang, Yanfa Deng, Peng Qian, Zhenglin Li and Peng Xiao
Electronics 2025, 14(15), 3053; https://doi.org/10.3390/electronics14153053 - 30 Jul 2025
Viewed by 113
Abstract
The aperture of the towed horizontal line array is limited and the received signal is unstable in a complex ocean environment, making it difficult to distinguish the location of the sound source. To address this challenge, this paper presents a MoELocNet (Mixture of [...] Read more.
The aperture of the towed horizontal line array is limited and the received signal is unstable in a complex ocean environment, making it difficult to distinguish the location of the sound source. To address this challenge, this paper presents a MoELocNet (Mixture of Experts Localization Network) for deep-sea sound source localization, leveraging interference structures in range-frequency domain signals from a towed horizontal line array. Unlike traditional correlation-based methods constrained by time-varying ocean environments and low signal-to-noise ratios, the model employs multi-expert and multi-task learning to extract interference periods from single-frame data, enabling robust estimation of source range and depth. Simulation results demonstrate its superior performance in the deep-sea shadow zone, achieving a range localization error of 0.029 km and a depth error of 0.072 m. The method exhibits strong noise robustness and delivers satisfactory results across diverse deep-sea zones, with optimal performance in shadow zones and secondary effectiveness in the direct arrival zone. Full article
(This article belongs to the Special Issue Low-Frequency Underwater Acoustic Signal Processing and Applications)
Show Figures

Figure 1

22 pages, 2875 KiB  
Article
Optimization of Test Mass Motion State for Enhancing Stiffness Identification Performance in Space Gravitational Wave Detection
by Ningbiao Tang, Ziruo Fang, Zhongguang Yang, Zhiming Cai, Haiying Hu and Huawang Li
Aerospace 2025, 12(8), 673; https://doi.org/10.3390/aerospace12080673 - 28 Jul 2025
Viewed by 121
Abstract
In space gravitational wave detection, various physical effects in the spacecraft, such as self-gravity, electricity, and magnetism, will introduce undesirable parasitic stiffness. The coupling noise between stiffness and the motion states of the test mass critically affects the performance of scientific detection, making [...] Read more.
In space gravitational wave detection, various physical effects in the spacecraft, such as self-gravity, electricity, and magnetism, will introduce undesirable parasitic stiffness. The coupling noise between stiffness and the motion states of the test mass critically affects the performance of scientific detection, making accurate stiffness identification crucial. In response to the question, this paper proposes a method to optimize the test mass motion state for enhancing stiffness identification performance. First, the dynamics of the test mass are studied and a recursive least squares algorithm is applied for the implementation of on-orbit stiffness identification. Then, the motion state of the test mass is parametrically characterized by multi-frequency sinusoidal signals as the variable to be optimized, with the optimization objectives and constraints of stiffness identification defined based on convergence time, convergence accuracy, and engineering requirements. To tackle the dual-objective, computationally expensive nature of the problem, a multigranularity surrogate-assisted evolutionary algorithm with individual progressive constraints (MGSAEA-IPC) is proposed. A fuzzy radial basis function neural network PID (FRBF-PID) controller is also designed to address complex control needs under varying motion states. Numerical simulations demonstrate that the convergence time after optimization is less than 2 min, and the convergence accuracy is less than 1.5 × 10−10 s−2. This study can provide ideas and design references for subsequent related identification and control missions. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

16 pages, 1145 KiB  
Article
A Hybrid Transformer–Mamba Model for Multivariate Metro Energy Consumption Forecasting
by Liheng Long, Zhiyao Chen, Junqian Wu, Qing Fu, Zirui Zhang, Fan Feng and Ronghui Zhang
Electronics 2025, 14(15), 2986; https://doi.org/10.3390/electronics14152986 - 26 Jul 2025
Viewed by 291
Abstract
With the rapid growth of urban populations and the expansion of metro networks, accurate energy consumption prediction has become a critical task for optimizing metro operations and supporting low-carbon city development. Traditional statistical and machine learning methods often struggle to model the complex, [...] Read more.
With the rapid growth of urban populations and the expansion of metro networks, accurate energy consumption prediction has become a critical task for optimizing metro operations and supporting low-carbon city development. Traditional statistical and machine learning methods often struggle to model the complex, nonlinear, and time-varying nature of metro energy data. To address these challenges, this paper proposes MTMM, a novel hybrid model that integrates the multi-head attention mechanism of the Transformer with the efficient, state-space-based Mamba architecture. The Transformer effectively captures long-range temporal dependencies, while Mamba enhances inference speed and reduces complexity. Additionally, the model incorporates multivariate energy features, leveraging the correlations among different energy consumption types to improve predictive performance. Experimental results on real-world data from the Guangzhou Metro demonstrate that MTMM significantly outperforms existing methods in terms of both MAE and MSE. The model also shows strong generalization ability across different prediction lengths and time step configurations, offering a promising solution for intelligent energy management in metro systems. Full article
(This article belongs to the Special Issue AI Applications for Smart Grid)
Show Figures

Figure 1

18 pages, 500 KiB  
Article
Hybrid Model-Based Traffic Network Control Using Population Games
by Sindy Paola Amaya, Pablo Andrés Ñañez, David Alejandro Martínez Vásquez, Juan Manuel Calderón Chávez and Armando Mateus Rojas
Appl. Syst. Innov. 2025, 8(4), 102; https://doi.org/10.3390/asi8040102 - 25 Jul 2025
Viewed by 183
Abstract
Modern traffic management requires sophisticated approaches to address the complexities of urban road networks, which continue to grow in complexity due to increasing urbanization and vehicle usage. Traditional methods often fall short in mitigating congestion and optimizing traffic flow, inducing the exploration of [...] Read more.
Modern traffic management requires sophisticated approaches to address the complexities of urban road networks, which continue to grow in complexity due to increasing urbanization and vehicle usage. Traditional methods often fall short in mitigating congestion and optimizing traffic flow, inducing the exploration of innovative traffic control strategies based on advanced theoretical frameworks. In this sense, we explore different game theory-based control strategies in an eight-intersection traffic network modeled by means of hybrid systems and graph theory, using a software simulator that combines the multi-modal traffic simulation software VISSIM and MATLAB to integrate traffic network parameters and population game criteria. Across five distinct network scenarios with varying saturation conditions, we explore a fixed-time scheme of signaling by means of fictitious play dynamics and adaptive schemes, using dynamics such as Smith, replicator, Logit and Brown–Von Neumann–Nash (BNN). Results show better performance for Smith and replicator dynamics in terms of traffic parameters both for fixed and variable signaling times, with an interesting outcome of fictitious play over BNN and Logit. Full article
Show Figures

Figure 1

24 pages, 9767 KiB  
Article
Improved Binary Classification of Underwater Images Using a Modified ResNet-18 Model
by Mehrunnisa, Mikolaj Leszczuk, Dawid Juszka and Yi Zhang
Electronics 2025, 14(15), 2954; https://doi.org/10.3390/electronics14152954 - 24 Jul 2025
Viewed by 263
Abstract
In recent years, the classification of underwater images has become one of the most remarkable areas of research in computer vision due to its useful applications in marine sciences, aquatic robotics, and sea exploration. Underwater imaging is pivotal for the evaluation of marine [...] Read more.
In recent years, the classification of underwater images has become one of the most remarkable areas of research in computer vision due to its useful applications in marine sciences, aquatic robotics, and sea exploration. Underwater imaging is pivotal for the evaluation of marine eco-systems, analysis of biological habitats, and monitoring underwater infrastructure. Extracting useful information from underwater images is highly challenging due to factors such as light distortion, scattering, poor contrast, and complex foreground patterns. These difficulties make traditional image processing and machine learning techniques struggle to analyze images accurately. As a result, these challenges and complexities make the classification difficult or poor to perform. Recently, deep learning techniques, especially convolutional neural network (CNN), have emerged as influential tools for underwater image classification, contributing noteworthy improvements in accuracy and performance in the presence of all these challenges. In this paper, we have proposed a modified ResNet-18 model for the binary classification of underwater images into raw and enhanced images. In the proposed modified ResNet-18 model, we have added new layers such as Linear, rectified linear unit (ReLU) and dropout layers, arranged in a block that was repeated three times to enhance feature extraction and improve learning. This enables our model to learn the complex patterns present in the image in more detail, which helps the model to perform the classification very well. Due to these newly added layers, our proposed model addresses various complexities such as noise, distortion, varying illumination conditions, and complex patterns by learning vigorous features from underwater image datasets. To handle the issue of class imbalance present in the dataset, we applied a data augmentation technique. The proposed model achieved outstanding performance, with 96% accuracy, 99% precision, 92% sensitivity, 99% specificity, 95% F1-score, and a 96% Area under the Receiver Operating Characteristic Curve (AUC-ROC) score. These results demonstrate the strength and reliability of our proposed model in handling the challenges posed by the underwater imagery and making it a favorable solution for advancing underwater image classification tasks. Full article
Show Figures

Figure 1

18 pages, 425 KiB  
Article
Stability of Stochastic Delayed Recurrent Neural Networks
by Hongying Xiao, Mingming Xu, Yuanyuan Zhang and Shengquan Weng
Mathematics 2025, 13(14), 2310; https://doi.org/10.3390/math13142310 - 19 Jul 2025
Viewed by 170
Abstract
This paper addresses the stability of stochastic delayed recurrent neural networks (SDRNNs), identifying challenges in existing scalar methods, which suffer from strong assumptions and limited applicability. Three key innovations are introduced: (1) weakening noise perturbation conditions by extending diagonal matrix assumptions to non-negative [...] Read more.
This paper addresses the stability of stochastic delayed recurrent neural networks (SDRNNs), identifying challenges in existing scalar methods, which suffer from strong assumptions and limited applicability. Three key innovations are introduced: (1) weakening noise perturbation conditions by extending diagonal matrix assumptions to non-negative definite matrices; (2) establishing criteria for both mean-square exponential stability and almost sure exponential stability in the absence of input; (3) directly handling complex structures like time-varying delays through matrix analysis. Compared with prior studies, this approach yields broader stability conclusions under weaker conditions, with numerical simulations validating the theoretical effectiveness. Full article
Show Figures

Figure 1

29 pages, 6397 KiB  
Article
A Hybrid GAS-ATT-LSTM Architecture for Predicting Non-Stationary Financial Time Series
by Kevin Astudillo, Miguel Flores, Mateo Soliz, Guillermo Ferreira and José Varela-Aldás
Mathematics 2025, 13(14), 2300; https://doi.org/10.3390/math13142300 - 18 Jul 2025
Viewed by 355
Abstract
This study proposes a hybrid approach to analyze and forecast non-stationary financial time series by combining statistical models with deep neural networks. A model is introduced that integrates three key components: the Generalized Autoregressive Score (GAS) model, which captures volatility dynamics; an attention [...] Read more.
This study proposes a hybrid approach to analyze and forecast non-stationary financial time series by combining statistical models with deep neural networks. A model is introduced that integrates three key components: the Generalized Autoregressive Score (GAS) model, which captures volatility dynamics; an attention mechanism (ATT), which identifies the most relevant features within the sequence; and a Long Short-Term Memory (LSTM) neural network, which receives the outputs of the previous modules to generate price forecasts. This architecture is referred to as GAS-ATT-LSTM. Both unidirectional and bidirectional variants were evaluated using real financial data from the Nasdaq Composite Index, Invesco QQQ Trust, ProShares UltraPro QQQ, Bitcoin, and gold and silver futures. The proposed model’s performance was compared against five benchmark architectures: LSTM Bidirectional, GARCH-LSTM Bidirectional, ATT-LSTM, GAS-LSTM, and GAS-LSTM Bidirectional, under sliding windows of 3, 5, and 7 days. The results show that GAS-ATT-LSTM, particularly in its bidirectional form, consistently outperforms the benchmark models across most assets and forecasting horizons. It stands out for its adaptability to varying volatility levels and temporal structures, achieving significant improvements in both accuracy and stability. These findings confirm the effectiveness of the proposed hybrid model as a robust tool for forecasting complex financial time series. Full article
Show Figures

Figure 1

35 pages, 2297 KiB  
Article
Secure Cooperative Dual-RIS-Aided V2V Communication: An Evolutionary Transformer–GRU Framework for Secrecy Rate Maximization in Vehicular Networks
by Elnaz Bashir, Francisco Hernando-Gallego, Diego Martín and Farzaneh Shoushtari
World Electr. Veh. J. 2025, 16(7), 396; https://doi.org/10.3390/wevj16070396 - 14 Jul 2025
Viewed by 221
Abstract
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the [...] Read more.
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the problem of secrecy rate maximization in a cooperative dual-RIS-aided V2V communication network, where two cascaded RISs are deployed to collaboratively assist with secure data transmission between mobile vehicular nodes in the presence of eavesdroppers. To address the inherent complexity of time-varying wireless channels, we propose a novel evolutionary transformer-gated recurrent unit (Evo-Transformer-GRU) framework that jointly learns temporal channel patterns and optimizes the RIS reflection coefficients, beam-forming vectors, and cooperative communication strategies. Our model integrates the sequence modeling strength of GRUs with the global attention mechanism of transformer encoders, enabling the efficient representation of time-series channel behavior and long-range dependencies. To further enhance convergence and secrecy performance, we incorporate an improved gray wolf optimizer (IGWO) to adaptively regulate the model’s hyper-parameters and fine-tune the RIS phase shifts, resulting in a more stable and optimized learning process. Extensive simulations demonstrate the superiority of the proposed framework compared to existing baselines, such as transformer, bidirectional encoder representations from transformers (BERT), deep reinforcement learning (DRL), long short-term memory (LSTM), and GRU models. Specifically, our method achieves an up to 32.6% improvement in average secrecy rate and a 28.4% lower convergence time under varying channel conditions and eavesdropper locations. In addition to secrecy rate improvements, the proposed model achieved a root mean square error (RMSE) of 0.05, coefficient of determination (R2) score of 0.96, and mean absolute percentage error (MAPE) of just 0.73%, outperforming all baseline methods in prediction accuracy and robustness. Furthermore, Evo-Transformer-GRU demonstrated rapid convergence within 100 epochs, the lowest variance across multiple runs. Full article
Show Figures

Figure 1

21 pages, 4101 KiB  
Article
A Physics-Informed Neural Network Solution for Rheological Modeling of Cement Slurries
by Huaixiao Yan, Jiannan Ding and Chengcheng Tao
Fluids 2025, 10(7), 184; https://doi.org/10.3390/fluids10070184 - 13 Jul 2025
Viewed by 331
Abstract
Understanding the rheological properties of fresh cement slurries is essential to maintain optimal pumpability, achieve dependable zonal isolation, and preserve long-term well integrity in oil and gas cementing operations and the 3D printing cement and concrete industry. However, accurately and efficiently modeling the [...] Read more.
Understanding the rheological properties of fresh cement slurries is essential to maintain optimal pumpability, achieve dependable zonal isolation, and preserve long-term well integrity in oil and gas cementing operations and the 3D printing cement and concrete industry. However, accurately and efficiently modeling the rheological behavior of cement slurries remains challenging due to the complex fluid properties of fresh cement slurries, which exhibit non-Newtonian and thixotropic behavior. Traditional numerical solvers typically require mesh generation and intensive computation, making them less practical for data-scarce, high-dimensional problems. In this study, a physics-informed neural network (PINN)-based framework is developed to solve the governing equations of steady-state cement slurry flow in a tilted channel. The slurry is modeled as a non-Newtonian fluid with viscosity dependent on both the shear rate and particle volume fraction. The PINN-based approach incorporates physical laws into the loss function, offering mesh-free solutions with strong generalization ability. The results show that PINNs accurately capture the trend of velocity and volume fraction profiles under varying material and flow parameters. Compared to conventional solvers, the PINN solution offers a more efficient and flexible alternative for modeling complex rheological behavior in data-limited scenarios. These findings demonstrate the potential of PINNs as a robust tool for cement slurry rheological modeling, particularly in scenarios where traditional solvers are impractical. Future work will focus on enhancing model precision through hybrid learning strategies that incorporate labeled data, potentially enabling real-time predictive modeling for field applications. Full article
(This article belongs to the Special Issue Advances in Computational Mechanics of Non-Newtonian Fluids)
Show Figures

Figure 1

18 pages, 1184 KiB  
Article
A Confidential Transmission Method for High-Speed Power Line Carrier Communications Based on Generalized Two-Dimensional Polynomial Chaotic Mapping
by Zihan Nie, Zhitao Guo and Jinli Yuan
Appl. Sci. 2025, 15(14), 7813; https://doi.org/10.3390/app15147813 - 11 Jul 2025
Viewed by 286
Abstract
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide [...] Read more.
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide coverage. However, the inherent characteristics of power line channels, such as strong noise, multipath fading, and time-varying properties, pose challenges to traditional encryption algorithms, including low key distribution efficiency and weak anti-interference capabilities. These issues become particularly pronounced in high-speed transmission scenarios, where the conflict between data security and communication reliability is more acute. To address this problem, a secure transmission method for high-speed power line carrier communication based on generalized two-dimensional polynomial chaotic mapping is proposed. A high-speed power line carrier communication network is established using a power line carrier routing algorithm based on the minimal connected dominating set. The autoregressive moving average model is employed to determine the degree of transmission fluctuation deviation in the high-speed power line carrier communication network. Leveraging the complex dynamic behavior and anti-decoding capability of generalized two-dimensional polynomial chaotic mapping, combined with the deviation, the communication key is generated. This process yields encrypted high-speed power line carrier communication ciphertext that can resist power line noise interference and signal attenuation, thereby enhancing communication confidentiality and stability. By applying reference modulation differential chaotic shift keying and integrating the ciphertext of high-speed power line carrier communication, a secure transmission scheme is designed to achieve secure transmission in high-speed power line carrier communication. The experimental results demonstrate that this method can effectively establish a high-speed power line carrier communication network and encrypt information. The maximum error rate obtained by this method is 0.051, and the minimum error rate is 0.010, confirming its ability to ensure secure transmission in high-speed power line carrier communication while improving communication confidentiality. Full article
Show Figures

Figure 1

18 pages, 12097 KiB  
Article
Adaptive Outdoor Cleaning Robot with Real-Time Terrain Perception and Fuzzy Control
by Raul Fernando Garcia Azcarate, Akhil Jayadeep, Aung Kyaw Zin, James Wei Shung Lee, M. A. Viraj J. Muthugala and Mohan Rajesh Elara
Mathematics 2025, 13(14), 2245; https://doi.org/10.3390/math13142245 - 10 Jul 2025
Viewed by 406
Abstract
Outdoor cleaning robots must operate reliably across diverse and unstructured surfaces, yet many existing systems lack the adaptability to handle terrain variability. This paper proposes a terrain-aware cleaning framework that dynamically adjusts robot behavior based on real-time surface classification and slope estimation. A [...] Read more.
Outdoor cleaning robots must operate reliably across diverse and unstructured surfaces, yet many existing systems lack the adaptability to handle terrain variability. This paper proposes a terrain-aware cleaning framework that dynamically adjusts robot behavior based on real-time surface classification and slope estimation. A 128-channel LiDAR sensor captures signal intensity images, which are processed by a ResNet-18 convolutional neural network to classify floor types as wood, smooth, or rough. Simultaneously, pitch angles from an onboard IMU detect terrain inclination. These inputs are transformed into fuzzy sets and evaluated using a Mamdani-type fuzzy inference system. The controller adjusts brush height, brush speed, and robot velocity through 81 rules derived from 48 structured cleaning experiments across varying terrain and slopes. Validation was conducted in low-light (night-time) conditions, leveraging LiDAR’s lighting-invariant capabilities. Field trials confirm that the robot responds effectively to environmental conditions, such as reducing speed on slopes or increasing brush pressure on rough surfaces. The integration of deep learning and fuzzy control enables safe, energy-efficient, and adaptive cleaning in complex outdoor environments. This work demonstrates the feasibility and real-world applicability for combining perception and inference-based control in terrain-adaptive robotic systems. Full article
(This article belongs to the Special Issue Research and Applications of Neural Networks and Fuzzy Logic)
Show Figures

Figure 1

23 pages, 8766 KiB  
Article
Robust Tracking Control of Underactuated UAVs Based on Zero-Sum Differential Games
by Yaning Guo, Qi Sun and Quan Pan
Drones 2025, 9(7), 477; https://doi.org/10.3390/drones9070477 - 5 Jul 2025
Viewed by 290
Abstract
This paper investigates the robust tracking control of unmanned aerial vehicles (UAVs) against external time-varying disturbances. First, by introducing a virtual position controller, we innovatively decouple the UAV dynamics into independent position and attitude error subsystems, transforming the robust tracking problem into two [...] Read more.
This paper investigates the robust tracking control of unmanned aerial vehicles (UAVs) against external time-varying disturbances. First, by introducing a virtual position controller, we innovatively decouple the UAV dynamics into independent position and attitude error subsystems, transforming the robust tracking problem into two zero-sum differential games. This approach contrasts with conventional methods by treating disturbances as strategic “players”, enabling a systematic framework to address both external disturbances and model uncertainties. Second, we develop an integral reinforcement learning (IRL) framework that approximates the optimal solution to the Hamilton–Jacobi–Isaacs (HJI) equations without relying on precise system models. This model-free strategy overcomes the limitation of traditional robust control methods that require known disturbance bounds or accurate dynamics, offering superior adaptability to complex environments. Third, the proposed recursive Ridge regression with a forgetting factor (R3F2 ) algorithm updates actor-critic-disturbance neural network (NN) weights in real time, ensuring both computational efficiency and convergence stability. Theoretical analyses rigorously prove the closed-loop system stability and algorithm convergence, which fills a gap in existing data-driven control studies lacking rigorous stability guarantees. Finally, numerical results validate that the method outperforms state-of-the-art model-based and model-free approaches in tracking accuracy and disturbance rejection, demonstrating its practical utility for engineering applications. Full article
Show Figures

Figure 1

17 pages, 563 KiB  
Article
Synchronization of Short-Memory Fractional Directed Higher-Order Networks
by Xiaoqin Wang, Weiyuan Ma and Jiayu Zou
Fractal Fract. 2025, 9(7), 440; https://doi.org/10.3390/fractalfract9070440 - 3 Jul 2025
Viewed by 244
Abstract
This paper addresses the synchronization problem in complex networks characterized by short-memory fractional dynamics and directed higher-order interactions. Sufficient conditions for global synchronization are rigorously derived using Lyapunov-based analysis and an effective pinning control strategy. To further enhance the adaptability and robustness of [...] Read more.
This paper addresses the synchronization problem in complex networks characterized by short-memory fractional dynamics and directed higher-order interactions. Sufficient conditions for global synchronization are rigorously derived using Lyapunov-based analysis and an effective pinning control strategy. To further enhance the adaptability and robustness of the network, an adaptive control law is constructed, accommodating uncertainties and time-varying coupling strengths. An improved predictor–corrector numerical algorithm is also proposed to efficiently solve the underlying short-memory systems. A numerical simulation is conducted to demonstrate the validity of the proposed theoretical results. This work deepens the theoretical understanding of synchronization in higher-order fractional networks and provides practical guidance for the design and control of complex systems with short-memory and higher-order effects. Full article
(This article belongs to the Special Issue Modeling and Dynamic Analysis of Fractional-Order Systems)
Show Figures

Figure 1

21 pages, 4238 KiB  
Article
Time-Varying Reliability Analysis of Integrated Power System Based on Dynamic Bayesian Network
by Jiacheng Wei, Tong Chen, Haolin Wen and Haobang Liu
Systems 2025, 13(7), 541; https://doi.org/10.3390/systems13070541 - 2 Jul 2025
Viewed by 248
Abstract
In response to the limitations of traditional static reliability analysis methods in characterizing the reliability changes of the Integrated Power System, this paper proposes a time-varying reliability analysis framework based on a Dynamic Bayesian Network. By embedding a multi-physics coupled degradation model into [...] Read more.
In response to the limitations of traditional static reliability analysis methods in characterizing the reliability changes of the Integrated Power System, this paper proposes a time-varying reliability analysis framework based on a Dynamic Bayesian Network. By embedding a multi-physics coupled degradation model into the conditional probability nodes of the Dynamic Bayesian Network, a joint stochastic differential equation for the degradation process was constructed, and the dynamic correlation between continuous degradation and discrete fault events throughout the entire life cycle was achieved. A modified method for modeling continuous degradation systems was proposed, which effectively solves the numerical stability problem of modeling complex degradation systems. Finally, the applicability and correctness of the model were verified through numerical examples, and the results showed that the analysis framework can be effectively applied to time-varying reliability assessment and dynamic health management of complex equipment systems such as the Integrated Power System. Full article
(This article belongs to the Special Issue Advances in Reliability Engineering for Complex Systems)
Show Figures

Figure 1

Back to TopTop