Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,364)

Search Parameters:
Keywords = time-dependent degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1365 KiB  
Article
Generation of Formates Following 20 kHz Sonication of DSPE-mPEG2000 PEGylated Phospholipid Micelles
by Perouza Parsamian and Paul Pantano
Pharmaceutics 2025, 17(8), 1008; https://doi.org/10.3390/pharmaceutics17081008 (registering DOI) - 1 Aug 2025
Abstract
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a [...] Read more.
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a PEGylated phospholipid micelle was undertaken to identify low-molecular-weight sonolytic degradation byproducts that could be cytotoxic. The concern here lies with the fact that sonication is a frequently employed step in drug delivery manufacturing processes, during which PEGylated phospholipids can be subjected to shear forces and other extreme oxidative and thermal conditions. Methods: Control and 20 kHz-sonicated micelles of DSPE-mPEG2000 were analyzed using dynamic light scattering (DLS) and zeta potential analyses to study colloidal properties, matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF) mass spectroscopy (MS) and proton nuclear magnetic resonance (1H-NMR) spectroscopy to study the structural integrity of DSPE-mPEG2000, and 1H-NMR spectroscopy and high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection to quantitate the formation of low-molecular-weight degradation byproducts. Results: MALDI-TOF-MS analyses of 20 kHz-sonicated DSPE-mPEG2000 revealed the loss of ethylene glycol moieties in accordance with depolymerization of the PEG chain; 1H-NMR spectroscopy showed the presence of formate, a known oxidative/thermal degradation product of PEG; and HPLC-UV showed that the generation of formate was dependent on 20 kHz probe sonication time between 5 and 60 min. Conclusions: It was found that 20 kHz sonication can degrade the PEG chain of DSPE-mPEG2000, altering the micelle’s PEG corona and generating formate, a known ocular toxicant. Full article
Show Figures

Figure 1

22 pages, 3440 KiB  
Article
Probabilistic Damage Modeling and Thermal Shock Risk Assessment of UHTCMC Thruster Under Transient Green Propulsion Operation
by Prakhar Jindal, Tamim Doozandeh and Jyoti Botchu
Materials 2025, 18(15), 3600; https://doi.org/10.3390/ma18153600 (registering DOI) - 31 Jul 2025
Abstract
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, [...] Read more.
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, and carbon fibers. Time-resolved thermal and structural simulations are conducted on a validated thruster geometry to characterize the severity of early-stage thermal shock, stress buildup, and potential degradation pathways. Unlike traditional fatigue studies that rely on empirical fatigue constants or Paris-law-based crack-growth models, this work introduces a simulation-derived stress-margin envelope methodology that incorporates ±20% variability in temperature-dependent material strength, offering a physically grounded yet conservative risk estimate. From this, a normalized risk index is derived to evaluate the likelihood of damage initiation in critical regions over the 0–10 s firing window. The results indicate that the convergent throat region experiences a peak thermal gradient rate of approximately 380 K/s, with the normalized thermal shock index exceeding 43. Stress margins in this region collapse by 2.3 s, while margin loss in the flange curvature appears near 8 s. These findings are mapped into green, yellow, and red risk bands to classify operational safety zones. All the results assume no active cooling, representing conservative operating limits. If regenerative or ablative cooling is implemented, these margins would improve significantly. The framework established here enables a transparent, reproducible methodology for evaluating lifetime safety in ceramic propulsion nozzles and serves as a foundational tool for fatigue-resilient component design in green space engines. Full article
Show Figures

Figure 1

15 pages, 3303 KiB  
Article
Effect of Ozone on Nonwoven Polylactide/Natural Rubber Fibers
by Yulia V. Tertyshnaya, Svetlana G. Karpova and Maria V. Podzorova
Polymers 2025, 17(15), 2102; https://doi.org/10.3390/polym17152102 - 31 Jul 2025
Viewed by 59
Abstract
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber [...] Read more.
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber contents of 5, 10, and 15 wt.% were obtained, which were then subjected to ozone oxidation for 800 min. The effect of ozone treatment was estimated using various methods of physicochemical analysis. The visual effect was manifested in the form of a change in the color of PLA/NR fibers. The method of differential scanning calorimetry revealed a change in the thermophysical characteristics. The glass transition and cold crystallization temperatures of polylactide shifted toward lower temperatures, and the degree of crystallinity increased. It was found that in PLA/NR fiber samples, the degradation process predominates over the crosslinking process, as an increase in the melt flow rate by 1.5–1.6 times and a decrease in the correlation time determined by the electron paramagnetic resonance method were observed. The IR Fourier method recorded a change in the chemical structure during ozone oxidation. The intensity of the ether bond bands changed, and new bands appeared at 1640 and 1537 cm−1, which corresponded to the formation of –C=C– bonds. Full article
(This article belongs to the Special Issue Natural Degradation of Polymers)
Show Figures

Graphical abstract

19 pages, 3737 KiB  
Article
Short-Term Morphological Response of Polypropylene Membranes to Hypersaline Lithium Fluoride Solutions: A Multiscale Modeling Approach
by Giuseppe Prenesti, Pierfrancesco Perri, Alessia Anoja, Agostino Lauria, Carmen Rizzuto, Alfredo Cassano, Elena Tocci and Alessio Caravella
Int. J. Mol. Sci. 2025, 26(15), 7380; https://doi.org/10.3390/ijms26157380 - 30 Jul 2025
Viewed by 136
Abstract
Understanding the early-stage physical interactions between polymeric membranes and supersaturated salt solutions is crucial for advancing membrane-assisted crystallization (MCr) processes. In this study, we employed molecular dynamics (MD) simulations to investigate the short-term morphological response of an isotactic polypropylene (PP) membrane in contact [...] Read more.
Understanding the early-stage physical interactions between polymeric membranes and supersaturated salt solutions is crucial for advancing membrane-assisted crystallization (MCr) processes. In this study, we employed molecular dynamics (MD) simulations to investigate the short-term morphological response of an isotactic polypropylene (PP) membrane in contact with LiF solutions at different concentrations (5.8 M and 8.9 M) and temperatures (300–353 K), across multiple time points (0, 150, and 300 ns). These data were used as input for computational fluid dynamics (CFD) analysis to evaluate structural descriptors of the membrane, including tortuosity, connectivity, void fraction, anisotropy, and deviatoric anisotropy, under varying thermodynamic conditions. The results show subtle but consistent rearrangements of polymer chains upon exposure to the hypersaline environment, with a marked reduction in anisotropy and connectivity, indicating a more compact and isotropic local structure. Surface charge density analyses further suggest a temperature- and concentration-dependent modulation of chain mobility and terminal group orientation at the membrane–solution interface. Despite localized rearrangements, the membrane consistently maintains a net negative surface charge. This electrostatic feature may influence ion–membrane interactions during the crystallization process. While these non-reactive, short-timescale simulations do not capture long-term degradation or fouling mechanisms, they provide mechanistic insight into the initial physical response of PP membranes under MCr-relevant conditions. This study lays a computational foundation for future investigations bridging atomistic modeling and membrane performance in real-world applications. Full article
Show Figures

Figure 1

17 pages, 2736 KiB  
Article
Controlled Formation of α- and β-Bi2O3 with Tunable Morphologies for Visible-Light-Driven Photocatalysis
by Thomas Cadenbach, María Isabel Loyola-Plúa, Freddy Quijano Carrasco, Maria J. Benitez, Alexis Debut and Karla Vizuete
Molecules 2025, 30(15), 3190; https://doi.org/10.3390/molecules30153190 - 30 Jul 2025
Viewed by 146
Abstract
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3 [...] Read more.
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3) there is still a limited understanding of how structural and morphological features influence photocatalytic performance. In this work, a straightforward hydrothermal synthesis method followed by controlled calcination was developed to produce phase-pure α- and β-Bi2O3 with tunable morphologies. By varying the hydrothermal temperature and reaction time, distinct structures were successfully obtained, including flower-like, broccoli-like, and fused morphologies. XRD analyses showed that the final crystal phase depends solely on the calcination temperature, with β-Bi2O3 forming at 350 °C and α-Bi2O3 at 500 °C. SEM and BET analyses confirmed that morphology and surface area are strongly influenced by the hydrothermal conditions, with the flower-like β-Bi2O3 exhibiting the highest surface area. UV–Vis spectroscopy revealed that β-Bi2O3 also has a lower bandgap than its α counterpart, making it more responsive to visible light. Photocatalytic tests using Rhodamine B showed that the flower-like β-Bi2O3 achieved the highest degradation efficiency (81% in 4 h). Kinetic analysis followed pseudo-first-order behavior, and radical scavenging experiments identified hydroxyl radicals, superoxide radicals, and holes as key active species. The catalyst also demonstrated excellent stability and reusability. Additionally, Methyl Orange (MO), a more stable and persistent azo dye, was selected as a second model pollutant. The flower-like β-Bi2O3 catalyst achieved 73% degradation of MO at pH = 7 and complete removal under acidic conditions (pH = 2) in less than 3 h. These findings underscore the importance of both phase and morphology in designing high-performance Bi2O3 photocatalysts for environmental remediation. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

14 pages, 1015 KiB  
Article
Integrating Dimensional Analysis and Machine Learning for Predictive Maintenance of Francis Turbines in Sediment-Laden Flow
by Álvaro Ospina, Ever Herrera Ríos, Jaime Jaramillo, Camilo A. Franco, Esteban A. Taborda and Farid B. Cortes
Energies 2025, 18(15), 4023; https://doi.org/10.3390/en18154023 - 29 Jul 2025
Viewed by 223
Abstract
The efficiency decline of Francis turbines, a key component of hydroelectric power generation, presents a multifaceted challenge influenced by interconnected factors such as water quality, incidence angle, erosion, and runner wear. This paper is structured into two main sections to address these issues. [...] Read more.
The efficiency decline of Francis turbines, a key component of hydroelectric power generation, presents a multifaceted challenge influenced by interconnected factors such as water quality, incidence angle, erosion, and runner wear. This paper is structured into two main sections to address these issues. The first section applies the Buckingham π theorem to establish a dimensional analysis (DA) framework, providing insights into the relationships among the operational variables and their impact on turbine wear and efficiency loss. Dimensional analysis offers a theoretical basis for understanding the relationships among operational variables and efficiency within the scope of this study. This understanding, in turn, informs the selection and interpretation of features for machine learning (ML) models aimed at the predictive maintenance of the target variable and important features for the next stage. The second section analyzes an extensive dataset collected from a Francis turbine in Colombia, a country that is heavily reliant on hydroelectric power. The dataset consisted of 60,501 samples recorded over 15 days, offering a robust basis for assessing turbine behavior under real-world operating conditions. An exploratory data analysis (EDA) was conducted by integrating linear regression and a time-series analysis to investigate efficiency dynamics. Key variables, including power output, water flow rate, and operational time, were extracted and analyzed to identify patterns and correlations affecting turbine performance. This study seeks to develop a comprehensive understanding of the factors driving Francis turbine efficiency loss and to propose strategies for mitigating wear-induced performance degradation. The synergy lies in DA’s ability to reduce dimensionality and identify meaningful features, which enhances the ML models’ interpretability, while ML leverages these features to model non-linear and time-dependent patterns that DA alone cannot address. This integrated approach results in a linear regression model with a performance (R2-Test = 0.994) and a time series using ARIMA with a performance (R2-Test = 0.999) that allows for the identification of better generalization, demonstrating the power of combining physical principles with advanced data analysis. The preliminary findings provide valuable insights into the dynamic interplay of operational parameters, contributing to the optimization of turbine operation, efficiency enhancement, and lifespan extension. Ultimately, this study supports the sustainability and economic viability of hydroelectric power generation by advancing tools for predictive maintenance and performance optimization. Full article
Show Figures

Figure 1

16 pages, 14336 KiB  
Article
Three-Dimensional Binary Marker: A Novel Underwater Marker Applicable for Long-Term Deployment Scenarios
by Alaaeddine Chaarani, Patryk Cieslak, Joan Esteba, Ivan Eichhardt and Pere Ridao
J. Mar. Sci. Eng. 2025, 13(8), 1442; https://doi.org/10.3390/jmse13081442 - 28 Jul 2025
Viewed by 236
Abstract
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the [...] Read more.
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the 2D-markers limitation through a 3D design that enhances resilience and maintains contrast for computer vision detection over extended periods. The proposed solution has been validated through simulation, water tank testing, and long-term sea trials for 5 months. In each stage, the marker was compared based on detection per visible frame and the detection distance. In conclusion, the design demonstrated superior performance compared to standard 2D markers. The proposed Three-Dimensional Binary Marker provides compatibility with widely used fiducial markers, such as ArUco and AprilTag, allowing quick adaptation for users. In terms of fabrication, the Three-Dimensional Binary Marker uses additive manufacturing, offering a low-cost and scalable solution for underwater localization tasks. The proposed marker improved the deployment time of fiducial markers from a couple of days to sixty days and with a range up to seven meters, providing robustness and reliability. As the marker survivability and detection range depend on its size, it is still a valuable innovation for Autonomous Underwater Vehicles, as well as for inspection, maintenance, and monitoring tasks in marine robotics and offshore infrastructure applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 1734 KiB  
Article
Design and Implementation of a Cost-Effective Failover Mechanism for Containerized UPF
by Kiem Nguyen Trung and Younghan Kim
Electronics 2025, 14(15), 2991; https://doi.org/10.3390/electronics14152991 - 27 Jul 2025
Viewed by 231
Abstract
Private 5G networks offer exclusive, secure wireless communication with full control deployments for many clients, such as enterprises and campuses. In these networks, edge computing plays a critical role by hosting both application services and the User Plane Functions (UPFs) as containerized workloads [...] Read more.
Private 5G networks offer exclusive, secure wireless communication with full control deployments for many clients, such as enterprises and campuses. In these networks, edge computing plays a critical role by hosting both application services and the User Plane Functions (UPFs) as containerized workloads close to end devices, reducing latency and ensuring stringent Quality of Service (QoS). However, edge environments often face resource constraints and unpredictable failures such as network disruptions or hardware malfunctions, which can severely affect the reliability of the network. In addition, existing redundancy-based UPF resilience strategies, which maintain standby instances, incur substantial overheads and degrade resource efficiency and scalability for the applications. To address this issue, this study introduces a novel design that enables quick detection of UPF failures and two failover mechanisms to restore failed UPF instances either within the cluster hosting the failed UPF or across multiple clusters, depending on that cluster’s resource availability and health. We implemented and evaluated our proposed approach on a Kubernetes-based testbed, and the results demonstrate that our approach reduces UPF redeployment time by up to 37% compared to baseline methods and lowers system cost by up to 50% under high-reliability requirements compared to traditional redundancy-based failover methods. These findings demonstrate that our design can serve as a complementary solution alongside traditional resilience strategies, offering a particularly cost-effective and resource-efficient alternative for edge computing and other constrained environments. Full article
(This article belongs to the Special Issue Advances in Intelligent Systems and Networks, 2nd Edition)
Show Figures

Figure 1

32 pages, 4418 KiB  
Article
The Use of Chitosan/Perlite Material for Microbial Support in Anaerobic Digestion of Food Waste
by Agnieszka A. Pilarska, Anna Marzec-Grządziel, Małgorzata Makowska, Alicja Kolasa-Więcek, Ranjitha Jambulingam, Tomasz Kałuża and Krzysztof Pilarski
Materials 2025, 18(15), 3504; https://doi.org/10.3390/ma18153504 - 26 Jul 2025
Viewed by 324
Abstract
This study aims to evaluate the effect of adding a chitosan/perlite (Ch/P) carrier to anaerobic digestion (AD) on the efficiency and kinetics of the process, as well as the directional changes in the bacterial microbiome. A carrier with this composition was applied in [...] Read more.
This study aims to evaluate the effect of adding a chitosan/perlite (Ch/P) carrier to anaerobic digestion (AD) on the efficiency and kinetics of the process, as well as the directional changes in the bacterial microbiome. A carrier with this composition was applied in the AD process for the first time. A laboratory experiment using wafer waste (WF) and cheese (CE) waste was conducted under mesophilic conditions. The analysis of physico-chemical properties confirmed the suitability of the tested carrier material for anaerobic digestion. Both components influenced the microstructural characteristics of the carrier: perlite contributed to the development of specific surface area, while chitosan determined the porosity of the system. Using next-generation sequencing (NGS), the study examined how the additive affected the genetic diversity of bacterial communities. Fourier-transform infrared spectroscopy (FTIR) revealed that the degradation rate depended on both the carrier and the substrate type. Consequently, the presence of the carrier led to an increase in the volume of biogas and methane produced. The volume of methane for the wafer waste (WF–control) increased from 351.72 m3 Mg−1 (VS) to 410.74 m3 Mg−1 (VS), while for the cosubstrate sample (wafer and cheese, WFC–control), it increased from 476.84 m3 Mg−1 (VS) to 588.55 m3 Mg−1 (VS). Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

19 pages, 2784 KiB  
Article
Principal Connection Between Typical Heart Rate Variability Parameters as Revealed by a Comparative Analysis of Their Heart Rate and Age Dependence
by András Búzás, Balázs Sonkodi and András Dér
Entropy 2025, 27(8), 792; https://doi.org/10.3390/e27080792 - 25 Jul 2025
Viewed by 241
Abstract
Heart rate (HR) is strongly affected by the autonomic nervous system (ANS), while its spontaneous fluctuations, called heart rate variability (HRV), report about the dynamics of the complex, vegetative regulation of the heart rhythm. Hence, HRV is widely considered an important marker of [...] Read more.
Heart rate (HR) is strongly affected by the autonomic nervous system (ANS), while its spontaneous fluctuations, called heart rate variability (HRV), report about the dynamics of the complex, vegetative regulation of the heart rhythm. Hence, HRV is widely considered an important marker of the ANS effects on the cardiac system, and as such, a crucial diagnostic tool in cardiology. In order to obtain nontrivial results from HRV analysis, it would be desirable to establish exact, universal interrelations between the typical HRV parameters and HR itself. That, however, has not yet been fully accomplished. Hence, our aim was to perform a comparative statistical analysis of ECG recordings from a public database, with a focus on the HR dependence of typical HRV parameters. We revealed their fundamental connections, which were substantiated by basic mathematical considerations, and were experimentally demonstrated via the analysis of 24 h of ECG recordings of more than 200 healthy individuals. The large database allowed us to perform unique age-cohort analyses. We confirmed the HR dependence of typical time-domain parameters, such as RMSSD and SDNN, frequency-domain parameters such as the VLF, LF, and HF components, and nonlinear indices such as sample entropy and DFA exponents. In addition to shedding light on their relationship, we are the first, to our knowledge, to identify a new, diffuse structure in the VHF regime as an important indicator of SNS activity. In addition, the demonstrated age dependence of the HRV parameters gives important new insight into the long-term changes in the ANS regulation of the cardiac system. As a possible molecular physiological mechanism underlying our new findings, we suggest that they are associated with Piezo2 channel function and its age-related degradation. We expect our results to be utilized in HRV analysis related to both medical research and practice. Full article
Show Figures

Figure 1

15 pages, 2830 KiB  
Article
Predictive Framework for Lithium Plating Risk in Fast-Charging Lithium-Ion Batteries: Linking Kinetics, Thermal Activation, and Energy Loss
by Junais Habeeb Mokkath
Batteries 2025, 11(8), 281; https://doi.org/10.3390/batteries11080281 - 22 Jul 2025
Viewed by 267
Abstract
Fast charging accelerates lithium-ion battery operation but increases the risk of lithium (Li) plating—a process that undermines efficiency, longevity, and safety. Here, we introduce a predictive modeling framework that captures the onset and severity of Li plating under practical fast-charging conditions. By integrating [...] Read more.
Fast charging accelerates lithium-ion battery operation but increases the risk of lithium (Li) plating—a process that undermines efficiency, longevity, and safety. Here, we introduce a predictive modeling framework that captures the onset and severity of Li plating under practical fast-charging conditions. By integrating an empirically parameterized SOC threshold model with time-dependent kinetic simulations and Arrhenius based thermal analysis, we delineate operating regimes prone to irreversible Li accumulation. The framework distinguishes reversible and irreversible plating fractions, quantifies energy losses, and identifies a critical activation energy (0.25 eV) associated with surface-limited deposition. Visualizations in the form of severity maps and voltage-zone risk classifications enable direct application to battery management systems. This approach bridges electrochemical degradation modeling with real-time charge protocol design, offering a practical tool for safe, high-performance battery operation. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

26 pages, 7439 KiB  
Review
A Review of Marine Dual-Fuel Engine New Combustion Technology: Turbulent Jet-Controlled Premixed-Diffusion Multi-Mode Combustion
by Jianlin Cao, Zebang Liu, Hao Shi, Dongsheng Dong, Shuping Kang and Lingxu Bu
Energies 2025, 18(15), 3903; https://doi.org/10.3390/en18153903 - 22 Jul 2025
Viewed by 271
Abstract
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC [...] Read more.
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC mode, the TJCDC mode exhibits a significantly higher swirl ratio and turbulence kinetic energy in the main chamber during initial combustion. This promotes natural gas jet development and combustion acceleration, leading to shorter ignition delay, reduced combustion duration, and a combustion center (CA50) positioned closer to the Top Dead Center (TDC), alongside higher peak cylinder pressure and a faster early heat release rate. Energetically, while TJCDC incurs higher heat transfer losses, it benefits from lower exhaust energy and irreversible exergy loss, indicating greater potential for useful work extraction, albeit with slightly higher indicated specific NOx emissions. (2) In the high-compression ratio TJCPC mode, the Liquid Pressurized Natural Gas (LPNG) injection parameters critically impact performance. Delaying the start of injection (SOI) or extending the injection duration degrades premixing uniformity and increases unburned methane (CH4) slip, with the duration effects showing a load dependency. Optimizing both the injection timing and duration is, therefore, essential for emission control. (3) Increasing the excess air ratio delays the combustion phasing in TJCPC (longer ignition delay, extended combustion duration, and retarded CA50). However, this shift positions the heat release more optimally relative to the TDC, resulting in significantly improved indicated thermal efficiency. This work provides a theoretical foundation for optimizing high-efficiency, low-emission combustion strategies in marine dual-fuel engines. Full article
(This article belongs to the Special Issue Towards Cleaner and More Efficient Combustion)
Show Figures

Figure 1

18 pages, 1465 KiB  
Article
Enhancing Functional and Visual Properties of Paulownia Wood Through Thermal Modification in a Steam Atmosphere
by Beata Doczekalska, Agata Stachowiak-Wencek, Krzysztof Bujnowicz and Maciej Sydor
Polymers 2025, 17(15), 2000; https://doi.org/10.3390/polym17152000 - 22 Jul 2025
Viewed by 318
Abstract
Paulownia elongata wood is characterized by rapid mass gain, but its limited mechanical strength hinders engineering applications. This study aimed to determine the effect of thermal modification in a steam atmosphere (at temperatures of 180 °C and 190 °C for 12 or 6 [...] Read more.
Paulownia elongata wood is characterized by rapid mass gain, but its limited mechanical strength hinders engineering applications. This study aimed to determine the effect of thermal modification in a steam atmosphere (at temperatures of 180 °C and 190 °C for 12 or 6 h with 3 or 6 h of steam dosing) on wood’s selected physicochemical and aesthetic properties. Color changes (CIELAB), chemical composition (FTIR), density, and compressive strength parallel to the grain were evaluated. The results showed a clear darkening of the wood, a shift in hues towards red and yellow, and an increase in color saturation depending on the treatment parameters. FTIR spectroscopy confirmed a reduction in hydroxyl and carbonyl groups, indicating thermal degradation of hemicelluloses and extractives. Wood density remained relatively stable, despite observed mass losses and reduced swelling. The most significant increase in compressive strength, reaching 27%, was achieved after 6 h of modification at 180 °C with a concurrent 6 h steam dosing time. The obtained results confirm that thermal treatment can effectively improve the functional and visual properties of paulownia wood, favoring its broader application in the furniture and construction industries. Full article
(This article belongs to the Special Issue Eco-Friendly Wood-Based Composites—Challenges and Prospects)
Show Figures

Figure 1

25 pages, 689 KiB  
Article
Bioactive Properties and Phenolic Profile of Bioaccessible and Bioavailable Fractions of Red Radish Microgreens After In Vitro Digestion
by Dorota Sosnowska, Małgorzata Zakłos-Szyda, Dominika Kajszczak and Anna Podsędek
Molecules 2025, 30(14), 2976; https://doi.org/10.3390/molecules30142976 - 15 Jul 2025
Viewed by 206
Abstract
The health-promoting activity of radish microgreens after consumption depends on their bioaccessibility and bioavailability. In this study, we compared the composition of phenolic compounds, their cytoprotective and anti-inflammatory activities in cell lines, and antioxidant properties of the undigested radish microgreens with their fractions [...] Read more.
The health-promoting activity of radish microgreens after consumption depends on their bioaccessibility and bioavailability. In this study, we compared the composition of phenolic compounds, their cytoprotective and anti-inflammatory activities in cell lines, and antioxidant properties of the undigested radish microgreens with their fractions obtained after simulated in vitro digestion in the stomach, as well as in the small and large intestine. The results have demonstrated higher levels of total phenolics (by 70.35%) and total hydroxycinnamic acids (3.5 times increase), an increase in scavenging efficiency toward ABTS•+ and superoxide anion radicals, and an increase in the reduction potential (FRAP method) in the gastric bioaccessible fraction. In contrast, small intestinal digestion negatively affected phenolic content (a reduction of 53.30–75.63%), except for total hydroxycinnamic acids (3-fold increase). Incubation of the non-bioavailable fraction with bacterial enzymes led to further degradation. Undigested microgreens had no negative impact on Caco-2, HT-29, and SH-SY5Y cells’ metabolism at 0.05–2 mg/mL, while all digested samples at 1 mg/mL revealed their cytotoxic potential. All samples used at a non-cytotoxic concentration showed protective activity against H2O2 and corticosterone-induced oxidative stress generation as well as reduced proinflammatory cytokines production. Overall, radish microgreens may exhibit a broad spectrum of biological activities when consumed. Full article
Show Figures

Graphical abstract

18 pages, 4067 KiB  
Article
Oxidative Degradation of Anthocyanins in Red Wine: Kinetic Characterization Under Accelerated Aging Conditions
by Khulood Fahad Saud Alabbosh, Violeta Jevtovic, Jelena Mitić, Zoran Pržić, Vesna Stankov Jovanović, Reem Ali Alyami, Maha Raghyan Alshammari, Badriah Alshammari and Milan Mitić
Processes 2025, 13(7), 2245; https://doi.org/10.3390/pr13072245 - 14 Jul 2025
Viewed by 309
Abstract
The oxidative degradation of anthocyanins in red wine was investigated under controlled conditions using hydroxyl radicals generated in the presence of Cu (II) as a catalyst. A full factorial experimental design with 23 replicates was used to evaluate the effects of hydrogen peroxide [...] Read more.
The oxidative degradation of anthocyanins in red wine was investigated under controlled conditions using hydroxyl radicals generated in the presence of Cu (II) as a catalyst. A full factorial experimental design with 23 replicates was used to evaluate the effects of hydrogen peroxide concentration, catalyst dosage, and reaction temperature on anthocyanin degradation over a fixed time. Statistical analysis (ANOVA and multiple regression) showed that all three variables and the main interactions significantly affected anthocyanin loss, with temperature identified as the most influential factor. The combined effects were described by a first-order polynomial model. The activation energies for degradation ranged from 56.62 kJ/mol (cyanidin-3-O-glucoside) to 40.58 kJ/mol (peonidin-3-O-glucoside acetate). Increasing the temperature from 30 °C to 40 °C accelerated the degradation kinetics, almost doubled the rate constants and shortened the half-life of the pigments. At 40 °C, the half-lives ranged from 62.3 min to 154.0 min, depending on the anthocyanin structure. These results contribute to a deeper understanding of the stability of anthocyanins in red wine under oxidative stress and provide insights into the chemical behavior of derived pigments. The results are of practical importance for both oenology and viticulture and support efforts to improve the color stability of wine and extend the shelf life of grape-based products. Full article
(This article belongs to the Special Issue Processes in Agri-Food Technology)
Show Figures

Figure 1

Back to TopTop