Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (265)

Search Parameters:
Keywords = tight core

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4472 KiB  
Article
Exploring Scientific Collaboration Patterns from the Perspective of Disciplinary Difference: Evidence from Scientific Literature Data
by Jun Zhang, Shengbo Liu and Yifei Wang
Big Data Cogn. Comput. 2025, 9(8), 201; https://doi.org/10.3390/bdcc9080201 (registering DOI) - 1 Aug 2025
Viewed by 36
Abstract
With the accelerating globalization and rapid development of science and technology, scientific collaboration has become a key driver of knowledge production, yet its patterns vary significantly across disciplines. This study aims to explore the disciplinary differences in scholars’ scientific collaboration patterns and their [...] Read more.
With the accelerating globalization and rapid development of science and technology, scientific collaboration has become a key driver of knowledge production, yet its patterns vary significantly across disciplines. This study aims to explore the disciplinary differences in scholars’ scientific collaboration patterns and their underlying mechanisms. Data were collected from the China National Knowledge Infrastructure (CNKI) database, covering papers from four disciplines: mathematics, mechanical engineering, philosophy, and sociology. Using social network analysis, we examined core network metrics (degree centrality, neighbor connectivity, clustering coefficient) in collaboration networks, analyzed collaboration patterns across scholars of different academic ages, and compared the academic age distribution of collaborators and network characteristics across career stages. Key findings include the following. (1) Mechanical engineering exhibits the highest and most stable clustering coefficient (mean 0.62) across all academic ages, reflecting tight team collaboration, with degree centrality increasing fastest with academic age (3.2 times higher for senior vs. beginner scholars), driven by its reliance on experimental resources and skill division. (2) Philosophy shows high degree centrality in early career stages (mean 0.38 for beginners) but a sharp decline in clustering coefficient in senior stages (from 0.42 to 0.17), indicating broad early collaboration but loose later ties due to individualized knowledge production. (3) Mathematics scholars prefer collaborating with high-centrality peers (higher neighbor connectivity, mean 0.51), while sociology shows more inclusive collaboration with dispersed partner centrality. Full article
Show Figures

Figure 1

24 pages, 6281 KiB  
Article
Bioactive Polysaccharides Prevent Lipopolysaccharide-Induced Intestinal Inflammation via Immunomodulation, Antioxidant Activity, and Microbiota Regulation
by Mingyang Gao, Wanqing Zhang, Yan Ma, Tingting Liu, Sijia Wang, Shuaihu Chen, Zhengli Wang and Hong Shen
Foods 2025, 14(15), 2575; https://doi.org/10.3390/foods14152575 - 23 Jul 2025
Viewed by 314
Abstract
Intestinal inflammation involves barrier impairment, immune hyperactivation, and oxidative stress imbalance. Bioactive polysaccharides universally alleviate inflammation via anti-inflammatory, antioxidant, and microbiota-modulating effects, yet exhibit distinct core mechanisms. Elucidating these differences is vital for targeted polysaccharide applications. This research examines distinct regulatory pathways through [...] Read more.
Intestinal inflammation involves barrier impairment, immune hyperactivation, and oxidative stress imbalance. Bioactive polysaccharides universally alleviate inflammation via anti-inflammatory, antioxidant, and microbiota-modulating effects, yet exhibit distinct core mechanisms. Elucidating these differences is vital for targeted polysaccharide applications. This research examines distinct regulatory pathways through which diverse bioactive polysaccharides mitigate lipopolysaccharide-triggered intestinal inflammation in male Kunming (KM) mice. This experiment employed Lentinula edodes polysaccharide (LNT), Auricularia auricula polysaccharide (AAP), Cordyceps militaris polysaccharide (CMP), Lycium barbarum polysaccharide (LBP), and Brassica rapa polysaccharide (BRP). The expression levels of biomarkers associated with the TLR4 signaling pathway, oxidative stress, and intestinal barrier function were quantified, along with comprehensive gut microbiota profiling. The results showed that all five polysaccharides alleviated inflammatory responses in mice by inhibiting inflammatory cytokine release, reducing oxidative damage, and modulating gut microbiota, but their modes of action differed: LBP significantly suppressed the TLR-4/MyD88 signaling pathway and its downstream pro-inflammatory cytokine expression, thereby blocking inflammatory signal transduction and reducing oxidative damage; LNT and CMP enhanced the body’s antioxidant capacity by increasing antioxidant enzyme activities and decreasing malondialdehyde (MDA) levels; AAP and BRP enriched Akkermansia (Akk.) within the Verrucomicrobia (Ver.) phylum, upregulating tight junction protein expression to strengthen the intestinal mucosal barrier and indirectly reduce oxidative damage. This research demonstrates that different polysaccharides alleviate inflammation through multi-target synergistic mechanisms: LBP primarily inhibits inflammatory pathways; AAP and BRP focus on intestinal barrier protection and microbiota modulation; and LNT and CMP exert effects via antioxidant enzyme activation. These data support designing polysaccharide blends that leverage complementary inflammatory modulation mechanisms. Full article
Show Figures

Figure 1

14 pages, 2616 KiB  
Article
Evaluation Model of Water Production in Tight Gas Reservoirs Considering Bound Water Saturation
by Wenwen Wang, Bin Zhang, Yunan Liang, Sinan Fang, Zhansong Zhang, Guilan Lin and Yue Yang
Processes 2025, 13(7), 2317; https://doi.org/10.3390/pr13072317 - 21 Jul 2025
Viewed by 245
Abstract
Tight gas is an unconventional resource abundantly found in low-porosity, low-permeability sandstone reservoirs. Production can be significantly reduced due to water production during the development process. Therefore, it is necessary to predict water production during the logging phase to formulate development strategies for [...] Read more.
Tight gas is an unconventional resource abundantly found in low-porosity, low-permeability sandstone reservoirs. Production can be significantly reduced due to water production during the development process. Therefore, it is necessary to predict water production during the logging phase to formulate development strategies for tight gas wells. This study analyzes the water production mechanism in tight sandstone reservoirs and identifies that the core of water production evaluation in the Shihezi Formation of the Linxing block is to clarify the pore permeability structure of tight sandstone and the type of intra-layer water. The primary challenge lies in the accurate characterization of bound water saturation. By integrating logging data with core experiments, a bound water saturation evaluation model based on grain size diameter and pore structure index was established, achieving a calculation accuracy of 92% for the multi-parameter-fitted bound water saturation. Then, based on the high-precision bound water saturation, a gas–water ratio prediction model for the first month of production, considering water saturation, grain size diameter, and fluid type, was established, improving the prediction accuracy to 87.7%. The bound water saturation evaluation and water production evaluation models in this study can achieve effective water production prediction in the early stage of production, providing theoretical support for the scientific development of tight gas in the Linxing block. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

20 pages, 4067 KiB  
Article
Research and Application of Low-Velocity Nonlinear Seepage Model for Unconventional Mixed Tight Reservoir
by Li Ma, Cong Lu, Jianchun Guo, Bo Zeng and Shiqian Xu
Energies 2025, 18(14), 3789; https://doi.org/10.3390/en18143789 - 17 Jul 2025
Viewed by 221
Abstract
Due to factors such as low porosity and permeability, thin sand body thickness, and strong interlayer heterogeneity, the fluid flow in the tight reservoir (beach-bar sandstone reservoir) exhibits obvious nonlinear seepage characteristics. Considering the time-varying physical parameters of different types of sand bodies, [...] Read more.
Due to factors such as low porosity and permeability, thin sand body thickness, and strong interlayer heterogeneity, the fluid flow in the tight reservoir (beach-bar sandstone reservoir) exhibits obvious nonlinear seepage characteristics. Considering the time-varying physical parameters of different types of sand bodies, a nonlinear seepage coefficient is derived based on permeability and capillary force, and a low-velocity nonlinear seepage model for beach bar sand reservoirs is established. Based on core displacement experiments of different types of sand bodies, the low-velocity nonlinear seepage coefficient was fitted and numerical simulation of low-velocity nonlinear seepage in beach-bar sandstone reservoirs was carried out. The research results show that the displacement pressure and flow rate of low-permeability tight reservoirs exhibit a significant nonlinear relationship. The lower the permeability and the smaller the displacement pressure, the more significant the nonlinear seepage characteristics. Compared to the bar sand reservoir, the water injection pressure in the tight reservoir of the beach sand is higher. In the nonlinear seepage model, the bottom hole pressure of the water injection well increases by 10.56% compared to the linear model, indicating that water injection is more difficult in the beach sand reservoir. Compared to matrix type beach sand reservoirs, natural fractures can effectively reduce the impact of fluid nonlinear seepage characteristics on the injection and production process of beach sand reservoirs. Based on the nonlinear seepage characteristics, the beach-bar sandstone reservoir can be divided into four flow zones during the injection production process, including linear seepage zone, nonlinear seepage zone, non-flow zone affected by pressure, and non-flow zone not affected by pressure. The research results can effectively guide the development of beach-bar sandstone reservoirs, reduce the impact of low-speed nonlinear seepage, and enhance oil recovery. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

33 pages, 8851 KiB  
Article
Advanced Research on Stimulating Ultra-Tight Reservoirs: Combining Nanoscale Wettability, High-Performance Acidizing, and Field Validation
by Charbel Ramy, Razvan George Ripeanu, Salim Nassreddine, Maria Tănase, Elias Youssef Zouein, Alin Diniță, Constantin Cristian Muresan and Ayham Mhanna
Processes 2025, 13(7), 2153; https://doi.org/10.3390/pr13072153 - 7 Jul 2025
Viewed by 402
Abstract
Unconventional hydrocarbon reservoirs with low matrix permeability (<0.3 mD), high temperatures, and sour conditions present significant challenges for stimulation and production enhancement. This study examines field trials for a large oil and gas operator in the UAE, focusing on tight carbonate deposits with [...] Read more.
Unconventional hydrocarbon reservoirs with low matrix permeability (<0.3 mD), high temperatures, and sour conditions present significant challenges for stimulation and production enhancement. This study examines field trials for a large oil and gas operator in the UAE, focusing on tight carbonate deposits with reservoir temperatures above 93 °C and high sour gas content. A novel multi-stage chemical stimulation workflow was created, beginning with a pre-flush phase that alters rock wettability and reduces interfacial tension at the micro-scale. This was followed by a second phase that increased near-wellbore permeability and ensured proper acid placement. The treatment’s core used a thermally stable, corrosion-resistant retarded acid system designed to slow reaction rates, allow deeper acid penetration, and build prolonged conductive wormholes. Simulations revealed considerable acid penetration of the formation beyond the near-wellbore zone. The post-treatment field data showed a tenfold improvement in injectivity, which corresponded closely to the acid penetration profiles predicted by modeling. Furthermore, oil production demonstrated sustained, high oil production of 515 bpd on average for several months after the treatment, in contrast to the previously unstable and low-rate production. Finally, the findings support a reproducible and technologically advanced stimulation technique for boosting recovery in ultra-tight carbonate reservoirs using the acid retardation effect where traditional stimulation fails. Full article
Show Figures

Figure 1

23 pages, 5067 KiB  
Article
Heterogeneity of Deep Tight Sandstone Reservoirs Using Fractal and Multifractal Analysis Based on Well Logs and Its Correlation with Gas Production
by Peiqiang Zhao, Qiran Lv, Yi Xin and Ning Wu
Fractal Fract. 2025, 9(7), 431; https://doi.org/10.3390/fractalfract9070431 - 30 Jun 2025
Viewed by 256
Abstract
Deep tight sandstone reservoirs are characterized by low porosity and permeability, complex pore structure, and strong heterogeneity. Conducting research on the heterogeneity characteristics of reservoirs could lay a foundation for evaluating their effectiveness and accurately identifying advantageous reservoirs, which is of great significance [...] Read more.
Deep tight sandstone reservoirs are characterized by low porosity and permeability, complex pore structure, and strong heterogeneity. Conducting research on the heterogeneity characteristics of reservoirs could lay a foundation for evaluating their effectiveness and accurately identifying advantageous reservoirs, which is of great significance for searching for “sweet spot” oil and gas reservoirs in tight reservoirs. In this study, the deep tight sandstone reservoir in the Dibei area, northern Kuqa depression, Tarim Basin, China, is taken as the research object. Firstly, statistical methods are used to calculate the coefficient of variation (CV) and coefficient of heterogeneity (TK) of core permeability, and the heterogeneity within the reservoir is evaluated by analyzing the variations in the reservoir permeability. Then, based on fractal theory, the fractal and multifractal parameters of the GR and acoustic logs are calculated using the box dimension, correlation dimension, and the wavelet leader methods. The results show that the heterogeneity revealed by the box dimension, correlation dimension, and multifractal singular spectrum calculated based on well logs is consistent and in good agreement with the parameters calculated based on core permeability. The heterogeneity of gas layers is comparatively weaker, while that of dry layers is stronger. In addition, the fractal parameters of GR and the acoustic logs of three wells with the oil test in the study area were analyzed, and the relationship between reservoir heterogeneity and production was determined: As reservoir heterogeneity decreases, production increases. Therefore, reservoir heterogeneity can be used as an indicator of production; specifically, reservoirs with weak heterogeneity have high production. Full article
Show Figures

Figure 1

17 pages, 23135 KiB  
Article
The Pore Evolution and Pattern of Sweet-Spot Reservoir Development of the Ultra-Tight Sandstone in the Second Member of the Xujiahe Formation in the Eastern Slope of the Western Sichuan Depression
by Bingjie Cheng, Xin Luo, Zhiqiang Qiu, Cheng Xie, Yuanhua Qing, Zhengxiang Lv, Zheyuan Liao, Yanjun Liu and Feng Li
Minerals 2025, 15(7), 681; https://doi.org/10.3390/min15070681 - 25 Jun 2025
Viewed by 244
Abstract
In order to clarify the pore evolution and coupling characteristics with hydrocarbon charging in the deep-buried ultra-tight sandstone reservoirs of the second member of Xujiahe Formation (hereinafter referred to as the Xu 2 Member) on the eastern slope of the Western Sichuan Depression, [...] Read more.
In order to clarify the pore evolution and coupling characteristics with hydrocarbon charging in the deep-buried ultra-tight sandstone reservoirs of the second member of Xujiahe Formation (hereinafter referred to as the Xu 2 Member) on the eastern slope of the Western Sichuan Depression, this study integrates burial history and thermal history with analytical methods including core observation, cast thin section analysis, scanning electron microscopy, carbon-oxygen isotope analysis, and fluid inclusion homogenization temperature measurements. The Xu 2 Member reservoirs are predominantly composed of lithic sandstones and quartz-rich sandstones, with authigenic quartz and carbonates as the main cementing materials. The reservoir spaces are dominated by intragranular dissolution pores. The timing of reservoir densification varies among different submembers. The upper submember underwent compaction during the Middle-Late Jurassic period due to the high ductility of mudstone clasts and other compaction-resistant components. The middle-lower submembers experienced densification in the Late Jurassic period. Late Cretaceous tectonic uplift induced fracture development, which enhanced dissolution in the middle-lower submembers, increasing reservoir porosity to approximately 5%. Two distinct phases of hydrocarbon charging are identified in the Xu 2 Member. The earlier densification of the upper submember created unfavorable conditions for hydrocarbon accumulation. In contrast, the middle-lower submembers received hydrocarbon charging prior to reservoir densification, providing favorable conditions for natural gas enrichment and reservoir formation. Three sweet-spot reservoir development patterns are recognized: paleo-structural trap + (internal source rock) + source-connected fracture assemblage type, paleo-structural trap + internal source rock + late-stage fracture assemblage type, and paleo-structural trap + (internal source rock) + source-connected fracture + late-stage fracture assemblage type. Full article
(This article belongs to the Special Issue Deep Sandstone Reservoirs Characterization)
Show Figures

Figure 1

28 pages, 1016 KiB  
Review
Brain Endothelial Cells in Blood–Brain Barrier Regulation and Neurological Therapy
by Yuqing Xiang, Qiuxiang Gu and Dong Liu
Int. J. Mol. Sci. 2025, 26(12), 5843; https://doi.org/10.3390/ijms26125843 - 18 Jun 2025
Viewed by 1138
Abstract
Brain endothelial cells (BECs) constitute the core component of the blood–brain barrier (BBB), regulating substance exchange between blood and the brain parenchyma to maintain central nervous system homeostasis. In pathological states, the BBB exhibits the disruption of tight junctions, endothelial cell (EC) damage, [...] Read more.
Brain endothelial cells (BECs) constitute the core component of the blood–brain barrier (BBB), regulating substance exchange between blood and the brain parenchyma to maintain central nervous system homeostasis. In pathological states, the BBB exhibits the disruption of tight junctions, endothelial cell (EC) damage, and increased permeability, accompanied by neuroinflammation, oxidative stress, and abnormal molecular signaling pathways, leading to neurotoxic effects in the brain parenchyma and exacerbating neurodegeneration and disease progression. This review systematically summarizes the developmental origin, structural characteristics, and pathological mechanisms of BECs in diseases such as Alzheimer’s disease, multiple sclerosis, stroke, and glioblastoma with a particular focus on the regulatory mechanisms of the Wnt/β-catenin and VEGF signaling pathways. By integrating the latest research advances, this review aims to provide a comprehensive perspective for understanding the role of BECs in physiological and pathological states and to provide a theoretical basis for the development of BBB-based therapeutic approaches for neurological diseases. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Emerging Therapies in Neurovascular Disease)
Show Figures

Figure 1

18 pages, 4627 KiB  
Article
Study of the Brittle–Ductile Characteristics and Fracture Propagation Laws of Ultra-Deep Tight Sandy Conglomerate Reservoirs
by Xianbo Meng, Zixi Jiao, Haiyan Zhu, Peng Zhao, Shijie Chen, Jun Zhou, Hongyu Xian and Yong Wang
Processes 2025, 13(6), 1880; https://doi.org/10.3390/pr13061880 - 13 Jun 2025
Viewed by 352
Abstract
Ultra-deep tight sandy conglomerate reservoirs in the Junggar Basin are characterized by vertically alternating lithologies that include mudstone, sandy conglomerate, and sandstone. High in situ stresses and formation temperatures contribute to a brittle–ductile transition process in the reservoir rocks. However, the brittle behavior [...] Read more.
Ultra-deep tight sandy conglomerate reservoirs in the Junggar Basin are characterized by vertically alternating lithologies that include mudstone, sandy conglomerate, and sandstone. High in situ stresses and formation temperatures contribute to a brittle–ductile transition process in the reservoir rocks. However, the brittle behavior and ductile hydraulic fracture propagation mechanisms under in situ conditions remain inadequately understood. In this study, ultra-deep core samples were subjected to triaxial compression tests under varying confining pressures and temperatures to simulate different burial depths and evaluate their brittleness. A three-dimensional hydraulic fracture propagation model was developed in ABAQUS 2023 finite element software, incorporating a cohesive zone ductile constitutive model. Numerical simulations were conducted, considering interlayer horizontal stress differences, injection rate, and fracturing fluid viscosity, to systematically analyze the influence of geological and engineering factors on ductile fracture propagation. A fracture length–height competition diagram was constructed to illustrate the propagation mechanisms. The results reveal that high temperatures significantly accelerate the brittle–ductile transition, which occurs at confining pressures between 55 and 65 MPa. Following this transition, failure modes shift from single-shear failure to a multi-localized fracture with bulging deformation. Interlayer horizontal stress differences were found to strongly influence fracture penetration, with larger stress differences hindering vertical growth. Increasing injection rates promoted the uniform distribution of lateral fractures and fracture tip development, while medium- to high-viscosity fracturing fluids enhanced fracture width and vertical stimulation uniformity. These findings provide important insights for optimizing fracturing strategies and expanding the effective stimulation volume in the ultra-deep tight sandy conglomerate reservoirs of the Junggar Basin. Full article
(This article belongs to the Special Issue Advanced Fracturing Technology for Oil and Gas Reservoir Stimulation)
Show Figures

Figure 1

36 pages, 23546 KiB  
Article
Tight Sandstone Gas Reservoir Types and Formation Mechanisms in the Second Member of the Xujiahe Formation in the Anyue Area, Sichuan Basin
by Lin Jiang, Xuezhen Sun, Dongxia Chen, Wenzhi Lei, Hanxuan Yang, Yani Deng, Zhenhua Wang, Chenghai Li, Tian Liu, Chao Geng, Tian Gao and Zhipeng Ou
Energies 2025, 18(12), 3009; https://doi.org/10.3390/en18123009 - 6 Jun 2025
Viewed by 477
Abstract
With the advancement of oil and gas exploration and development, tight sandstone gas has become a major current exploration field. However, the effective development of tight sandstone gas faces significant challenges due to the strong heterogeneity of tight sandstone reservoirs, diverse reservoir types, [...] Read more.
With the advancement of oil and gas exploration and development, tight sandstone gas has become a major current exploration field. However, the effective development of tight sandstone gas faces significant challenges due to the strong heterogeneity of tight sandstone reservoirs, diverse reservoir types, complex pore structures, and unclear understanding of reservoir formation mechanisms, which brings great difficulties. Clarifying the types and formation mechanisms of tight sandstone reservoirs is vital for guiding oil and gas exploration and development. This study investigates the characteristics, types, and formation mechanisms of tight sandstone gas reservoirs in the Xujiahe Formation (T3X2) of the Anyue area using core observation, cast thin-section identification, scanning electron microscopy, high pressure mercury intrusion, nuclear magnetic resonance, and other experimental methods. It defines the physical property lower limit of T3X2 reservoirs in Anyue, classifies reservoir types, elaborates on the basic characteristics of each type, and analyzes their genetic mechanisms. The results show that T3X2 reservoirs in the Anyue area can be divided into four types. Sedimentary, diagenetic, and tectonic processes are identified as the primary factors controlling reservoir quality, governing the formation mechanisms of different reservoir types. Based on these findings, a reservoir formation mechanism model for T3X2 reservoirs in the Anyue area is established, providing an important basis for subsequent oil and gas exploration and development in the region. Full article
Show Figures

Figure 1

20 pages, 3859 KiB  
Article
Symmetric and Asymmetric Semi-Metallic Gasket Cores and Their Effect on the Tightness Level of the Bolted Flange Joint
by Przemysław Jaszak and Rafał Grzejda
Materials 2025, 18(11), 2624; https://doi.org/10.3390/ma18112624 - 4 Jun 2025
Viewed by 459
Abstract
The paper presents the effect of the symmetric and asymmetric semi-metallic gasket core shape on the tightness level in bolted flange joints. Experimental tests, as well as numerical calculations based on the finite element method, revealed that the asymmetric gasket core provides a [...] Read more.
The paper presents the effect of the symmetric and asymmetric semi-metallic gasket core shape on the tightness level in bolted flange joints. Experimental tests, as well as numerical calculations based on the finite element method, revealed that the asymmetric gasket core provides a higher strain on the sealing graphite layer and leads to a more uniform distribution of strain on the particular ridges of the core. Furthermore, the leakage rate of the asymmetric gasket was reduced by approximately 60% compared to the symmetric gasket. It was also observed that the uniformity of pressure and strain distribution in a gasket with an asymmetric core occurs over about 80% of the gasket width. The leakage reduction effect in a flange joint sealed with a gasket with an asymmetric core was theoretically explained. As shown, the main leakage flows through the porous structure of the graphite layer, while the leakage path at the interface between the metal rough profile and the graphite layer is several orders of magnitude smaller. Full article
Show Figures

Figure 1

19 pages, 4932 KiB  
Article
Deep Learning-Based Fluid Identification with Residual Vision Transformer Network (ResViTNet)
by Yunan Liang, Bin Zhang, Wenwen Wang, Sinan Fang, Zhansong Zhang, Liang Peng and Zhiyang Zhang
Processes 2025, 13(6), 1707; https://doi.org/10.3390/pr13061707 - 29 May 2025
Cited by 1 | Viewed by 418
Abstract
The tight sandstone gas reservoirs in the LX area of the Ordos Basin are characterized by low porosity, poor permeability, and strong heterogeneity, which significantly complicate fluid type identification. Conventional methods based on petrophysical logging and core analysis have shown limited effectiveness in [...] Read more.
The tight sandstone gas reservoirs in the LX area of the Ordos Basin are characterized by low porosity, poor permeability, and strong heterogeneity, which significantly complicate fluid type identification. Conventional methods based on petrophysical logging and core analysis have shown limited effectiveness in this region, often resulting in low accuracy of fluid identification. To improve the precision of fluid property identification in such complex tight gas reservoirs, this study proposes a hybrid deep learning model named ResViTNet, which integrates ResNet (residual neural network) with ViT (vision transformer). The proposed method transforms multi-dimensional logging data into thermal maps and utilizes a sliding window sampling strategy combined with data augmentation techniques to generate high-dimensional image inputs. This enables automatic classification of different reservoir fluid types, including water zones, gas zones, and gas–water coexisting zones. Application of the method to a logging dataset from 80 wells in the LX block demonstrates a fluid identification accuracy of 97.4%, outperforming conventional statistical methods and standalone machine learning algorithms. The ResViTNet model exhibits strong robustness and generalization capability, providing technical support for fluid identification and productivity evaluation in the exploration and development of tight gas reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 16179 KiB  
Article
Source-Reservoir Characteristics and Pore Evolution Model of the Lower Paleozoic Shales in the Neijiang–Rongchang Area, Sichuan Basin
by Shizhen Chen, Zhidian Xi, Fei Huo and Bingcheng Jiang
Minerals 2025, 15(5), 499; https://doi.org/10.3390/min15050499 - 8 May 2025
Viewed by 387
Abstract
The Wufeng–Longmaxi formations in the Sichuan Basin have emerged as China’s principal shale gas exploration target, with drilling results confirming substantial resource potential. Although the Neijiang–Rongchang Block demonstrates promising production, significant performance variations among lithofacies and reservoir types highlight the need for enhanced [...] Read more.
The Wufeng–Longmaxi formations in the Sichuan Basin have emerged as China’s principal shale gas exploration target, with drilling results confirming substantial resource potential. Although the Neijiang–Rongchang Block demonstrates promising production, significant performance variations among lithofacies and reservoir types highlight the need for enhanced understanding of reservoir evolution. This study integrates petrological analyses, SEM imaging, XRD characterization, seismic interpretation, and production data from multiple wells targeting the Wufeng–Long 1-1 Sub-member. Key insights reveal the following: (1) reservoir lithology consists predominantly of siliceous shale (68% occurrence), characterized by high quartz content (48% avg), low carbonates (<15%), and low clay (<30%); (2) organic-rich intervals contain Type I kerogen derived from planktonic algae, with thermal maturity indicating post-mature evolution; (3) premium reservoirs develop multi-scale pore networks combining organic-hosted pores, interparticle pores, and micro-fractures. Despite high brittle mineral content, mechanical competence decreases stratigraphically from the Wufeng Formation (78%) to Long 1-17 (63%); (4) depositional redox conditions facilitated exceptional organic preservation. Core analyses reveal low porosity (5.5% avg) and ultra-low permeability (0.27 × 10⁻3 μm2 avg), classifying reservoirs as multiple tight unconventional systems in the study area. The proposed lithofacies-controlled pore evolution model elucidates reservoir heterogeneity mechanisms, providing critical geological criteria for optimized shale gas development. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

17 pages, 8752 KiB  
Article
Normalization of Relative-Permeability Curves of Cores in High-Water-Content Tight Sandstone Gas Reservoir
by Bo Hu, Jingang Fu, Wenxin Yan, Kui Chen and Jingchen Ding
Energies 2025, 18(9), 2335; https://doi.org/10.3390/en18092335 - 3 May 2025
Viewed by 544
Abstract
The gas–water relative-permeability relationship in tight gas is complex due to interactions between the gas and water phases within the porous media in the reservoir. To clarify the fluid occurrence and the gas–water relative-permeability behavior in such reservoirs, the Dongsheng tight water-bearing reservoir [...] Read more.
The gas–water relative-permeability relationship in tight gas is complex due to interactions between the gas and water phases within the porous media in the reservoir. To clarify the fluid occurrence and the gas–water relative-permeability behavior in such reservoirs, the Dongsheng tight water-bearing reservoir from the Ordos Basin of China is taken as the research object. A non-steady state method is employed to explore the co-permeability of gas and water phases under dynamic conditions. The irreducible water saturation of different core samples is analyzed using nuclear magnetic resonance (NMR) centrifugation. The Simplified Stone equation is applied for phase permeability normalization. The results indicate that with the decrease in core permeability, the irreducible water saturation increases, and the gas and water permeability decreases. When the displacement pressure difference increases, the gas phase permeability decreases, and the water phase permeability increases. The centrifugal method is effective in reducing the saturation of bound water in rock cores. The displacement method forms channels using gas, which effectively removes free water, particularly in larger or smaller pores. In contrast, centrifugation further displaces water from smaller or capillary pores, where flow is more restricted. Based on these experimental findings, a relationship between displacement pressure difference, critical irreducible water saturation, and residual gas saturation is established. The Stone equation is further refined, and a phase permeability normalization curve is proposed, accounting for the true irreducible water saturation of rock. This provides a more accurate theoretical framework for understanding and managing the gas–water interaction in tight gas reservoirs with a high water content, ultimately aiding in the optimization of reservoir development strategies. Full article
Show Figures

Figure 1

21 pages, 7700 KiB  
Article
Reservoir Characteristics and Diagenetic Evolution of Lower Cretaceous in Baibei Sag, Erlian Basin, Northern China
by Hongwei Tian, Zhanli Ren, Kai Qi, Jian Liu, Sasa Guo, Zhuo Han, Juwen Yao and Lijun Zhu
Processes 2025, 13(5), 1391; https://doi.org/10.3390/pr13051391 - 2 May 2025
Viewed by 416
Abstract
In recent years, the exploration of the Baibei Sag, located in the west of the Erlian Basin, has remained relatively underdeveloped. The Lower Cretaceous of the Baibei Sag hosts multiple tight sandstone reservoirs; however, research on the macro- and micro-characteristics, as well as [...] Read more.
In recent years, the exploration of the Baibei Sag, located in the west of the Erlian Basin, has remained relatively underdeveloped. The Lower Cretaceous of the Baibei Sag hosts multiple tight sandstone reservoirs; however, research on the macro- and micro-characteristics, as well as the controlling factors of these reservoirs, is relatively limited. This study selected 105 Lower Cretaceous sandstone samples from the Baibei Sag for core observation, casting thin sections, scanning electron microscopy, X-ray diffraction, and high-pressure mercury intrusion analysis. The reservoir’s physical properties, pore throat structure, and diagenesis process were studied. The results indicate that the reservoir lithology is mainly composed of feldspar lithic sandstone, with an average composition of 44.3% lithic, 34.6% quartz, and 21.2% feldspar. The clay minerals in the interstitial material are primarily illite (69.3%) and illite–smectite mixed layers (12.7%), with smaller amounts of chlorite (10.9%) and kaolinite (7.2%), while smectite content is very low. The physical property analysis results indicate that the average effective porosity of the Tengger Formation sandstone is 3.3%. The average permeability is 0.01 × 10−3 μm2. The average effective porosity of the Aershan Formation sandstone is 0.86%, and the average permeability is 0.05 × 10−3 μm2. The Tengger Formation and Aershan Formation are both tight sandstone reservoirs. The analysis of pore throat structure shows that the reservoir space is mainly composed of dissolution pores. Three types of pore throat structures were identified, and corresponding pore models were established. Based on burial history and organic matter evolution characteristics, this study establishes a diagenetic evolution sequence of the Lower Cretaceous sandstone reservoir. Analysis suggests that the pore throat structure of different reservoir types is mainly controlled by material composition. In the process of diagenetic evolution, the Tengger Formation and Aershan Formation are in the Middle diagenetic stage A. Compaction and cementation are the main reasons for low porosity, while the dissolution improves reservoir performance. The intergranular and intragranular dissolution pores formed by dissolution are the main storage spaces of the reservoir. The early tectonic fractures are filled with calcite, and the residual small-scale fractures play a role in improving permeability. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

Back to TopTop