Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (687)

Search Parameters:
Keywords = tick species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2750 KiB  
Article
Combining Object Detection, Super-Resolution GANs and Transformers to Facilitate Tick Identification Workflow from Crowdsourced Images on the eTick Platform
by Étienne Clabaut, Jérémie Bouffard and Jade Savage
Insects 2025, 16(8), 813; https://doi.org/10.3390/insects16080813 - 6 Aug 2025
Abstract
Ongoing changes in the distribution and abundance of several tick species of medical relevance in Canada have prompted the development of the eTick platform—an image-based crowd-sourcing public surveillance tool for Canada enabling rapid tick species identification by trained personnel, and public health guidance [...] Read more.
Ongoing changes in the distribution and abundance of several tick species of medical relevance in Canada have prompted the development of the eTick platform—an image-based crowd-sourcing public surveillance tool for Canada enabling rapid tick species identification by trained personnel, and public health guidance based on tick species and province of residence of the submitter. Considering that more than 100,000 images from over 73,500 identified records representing 25 tick species have been submitted to eTick since the public launch in 2018, a partial automation of the image processing workflow could save substantial human resources, especially as submission numbers have been steadily increasing since 2021. In this study, we evaluate an end-to-end artificial intelligence (AI) pipeline to support tick identification from eTick user-submitted images, characterized by heterogeneous quality and uncontrolled acquisition conditions. Our framework integrates (i) tick localization using a fine-tuned YOLOv7 object detection model, (ii) resolution enhancement of cropped images via super-resolution Generative Adversarial Networks (RealESRGAN and SwinIR), and (iii) image classification using deep convolutional (ResNet-50) and transformer-based (ViT) architectures across three datasets (12, 6, and 3 classes) of decreasing granularities in terms of taxonomic resolution, tick life stage, and specimen viewing angle. ViT consistently outperformed ResNet-50, especially in complex classification settings. The configuration yielding the best performance—relying on object detection without incorporating super-resolution—achieved a macro-averaged F1-score exceeding 86% in the 3-class model (Dermacentor sp., other species, bad images), with minimal critical misclassifications (0.7% of “other species” misclassified as Dermacentor). Given that Dermacentor ticks represent more than 60% of tick volume submitted on the eTick platform, the integration of a low granularity model in the processing workflow could save significant time while maintaining very high standards of identification accuracy. Our findings highlight the potential of combining modern AI methods to facilitate efficient and accurate tick image processing in community science platforms, while emphasizing the need to adapt model complexity and class resolution to task-specific constraints. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Graphical abstract

14 pages, 4469 KiB  
Article
Molecular Characterization of Tick-Borne Pathogens in Jiangxi Province: A High Prevalence of Rickettsia, Anaplasma and Ehrlichia in Rhipicephalus microplus in Cattle from Ganzhou City, China
by Jia He, Meng Yang, Zhongqiu Teng, Peng Wang, Junrong Liang, Yusheng Zou, Wen Wang, Na Zhao and Tian Qin
Pathogens 2025, 14(8), 770; https://doi.org/10.3390/pathogens14080770 - 4 Aug 2025
Viewed by 146
Abstract
Rickettsia, Anaplasma, and Ehrlichia species are emerging tick-borne pathogens that cause zoonotic diseases, including rickettsiosis, anaplasmosis, and ehrlichiosis in both human and animal populations. This study aimed to investigate the prevalence of these pathogens in cattle-associated ticks from Ganzhou City, Jiangxi [...] Read more.
Rickettsia, Anaplasma, and Ehrlichia species are emerging tick-borne pathogens that cause zoonotic diseases, including rickettsiosis, anaplasmosis, and ehrlichiosis in both human and animal populations. This study aimed to investigate the prevalence of these pathogens in cattle-associated ticks from Ganzhou City, Jiangxi Province, China. Through molecular characterization using multilocus sequence analysis (16S rRNA, gltA, groEL, and ompA genes), we analyzed 392 Rhipicephalus microplus ticks collected from March to September in 2022. The PCR results showed that eight Rickettsiales bacteria were detected, including two species of Rickettsia (51/392, 13.0%), four species of Anaplasma (52/392, 13.3%), and two species of Ehrlichia (70/392, 17.9%). Notably, the circulation of multiple pathogen species within R. microplus populations demonstrates significant microbial diversity in this region. Further consideration and investigation should be given to the possible occurrence of rickettsiosis, ehrlichiosis, and anaplasmosis in humans and domestic animals. Our study provides critical baseline data for developing targeted surveillance strategies and informing public health interventions against tick-borne diseases in southeastern China. Full article
(This article belongs to the Special Issue Tick-Borne Pathogens and Their Impact on Human and Animal Health)
Show Figures

Figure 1

14 pages, 2882 KiB  
Article
Babesia bovis Enolase Is Expressed in Intracellular Merozoites and Contains B-Cell Epitopes That Induce Neutralizing Antibodies In Vitro
by Alma Cárdenas-Flores, Minerva Camacho-Nuez, Massaro W. Ueti, Mario Hidalgo-Ruiz, Angelina Rodríguez-Torres, Diego Josimar Hernández-Silva, José Guadalupe Gómez-Soto, Masahito Asada, Shin-ichiro Kawazu, Alma R. Tamayo-Sosa, Rocío Alejandra Ruiz-Manzano and Juan Mosqueda
Vaccines 2025, 13(8), 818; https://doi.org/10.3390/vaccines13080818 - 31 Jul 2025
Viewed by 229
Abstract
Background: Bovine babesiosis, caused by the tick-borne apicomplexan parasite Babesia spp., is an economically significant disease that threatens the cattle industry worldwide. Babesia bovis is the most pathogenic species, leading to high morbidity and mortality in infected animals. One promising approach to [...] Read more.
Background: Bovine babesiosis, caused by the tick-borne apicomplexan parasite Babesia spp., is an economically significant disease that threatens the cattle industry worldwide. Babesia bovis is the most pathogenic species, leading to high morbidity and mortality in infected animals. One promising approach to vaccination against bovine babesiosis involves the use of multiple protective antigens, offering advantages over traditional live-attenuated vaccines. Tools such as immunobioinformatics and reverse vaccinology have facilitated the identification of novel antigens. Enolase, a “moonlighting” enzyme of the glycolytic pathway with demonstrated vaccine potential in other pathogens, has not yet been studied in B. bovis. Methods: In this study, the enolase gene from two B. bovis isolates was successfully identified and sequenced. The gene, consisting of 1366 base pairs, encodes a predicted protein of 438 amino acids. Its expression in intraerythrocytic parasites was confirmed by RT-PCR. Two peptides containing predicted B-cell epitopes were synthesized and used to immunize rabbits. Hyperimmune sera were then analyzed by ELISA, confocal microscopy, Western blot, and an in vitro neutralization assay. Results: The hyperimmune sera showed high antibody titers, reaching up to 1:256,000. Specific antibodies recognized intraerythrocytic merozoites by confocal microscopy and bound to a ~47 kDa protein in erythrocytic cultures of B. bovis as detected by Western blot. In the neutralization assay, antibodies raised against peptide 1 had no observable effect, whereas those targeting peptide 2 significantly reduced parasitemia by 71.99%. Conclusions: These results suggest that B. bovis enolase contains B-cell epitopes capable of inducing neutralizing antibodies and may play a role in parasite–host interactions. Enolase is therefore a promising candidate for further exploration as a vaccine antigen. Nonetheless, additional experimental studies are needed to fully elucidate its biological function and validate its vaccine potential. Full article
(This article belongs to the Special Issue Vaccines against Arthropods and Arthropod-Borne Pathogens)
Show Figures

Figure 1

13 pages, 239 KiB  
Article
In Vitro Detection of Acaricide Resistance in Hyalomma Species Ticks with Emphasis on Farm Management Practices Associated with Acaricide Resistance in Abu Dhabi, United Arab Emirates
by Shameem Habeeba, Yasser Mahmmod, Hany Mohammed, Hashel Amer, Mohamed Moustafa, Assem Sobhi, Mohamed El-Sokary, Mahmoud Hussein, Ameer Tolba, Zulaikha Al Hammadi, Mohd Al Breiki and Asma Mohamed Shah
Vet. Sci. 2025, 12(8), 712; https://doi.org/10.3390/vetsci12080712 - 29 Jul 2025
Viewed by 311
Abstract
Acaricide usage has led to the growing problem of resistance in ticks. A heavy tick burden and the presence of ticks on animals throughout the year, despite the monthly application of acaricides, in farms in the United Arab Emirates formed the motivation for [...] Read more.
Acaricide usage has led to the growing problem of resistance in ticks. A heavy tick burden and the presence of ticks on animals throughout the year, despite the monthly application of acaricides, in farms in the United Arab Emirates formed the motivation for this study. The objectives of this research were as follows: (a) to assess the acaricide resistance status of the most prevalent tick Hyalomma spp. to widely used acaricides Cypermethrin and Deltamethrin; (b) to identify the association of farm management practices and farm-level risk factors with the failure of tick treatment (acaracide resistance). A total of 1600 ticks were collected from 20 farms located in three different regions of Abu Dhabi Emirate including Al Ain (n = 10), Al Dhafra (n = 5), and Abu Dhabi (n = 5). The ticks were subjected to an in vitro bioassay adult immersion test (AIT) modified with a discriminating dose (AIT-DD) against commercial preparations of Cypermethrin and Deltamethrin. A questionnaire was designed to collect metadata and information on farm management and the farm-level risk factors associated with routine farm practices relating to the treatment and control of tick and blood parasite infections in camels and small ruminant populations. Hyalomma anatolicum and Hyalomma dromedarii were identified among the collected ticks, with H. anatolicum being the most prevalent tick species (70%) in the present study. The test results of the in vitro bioassay revealed varied emerging resistance to both of the acaricides in the majority of the three regions; fully susceptible tick isolates with zero resistance to Deltamethrin were recorded in one farm at Al Ain and two farms in the Abu Dhabi region. A questionnaire analysis showed that the failure of tick treatment in farms varied with the presence or absence of vegetation areas, types of animal breeds, and management practices. This study reports the emergence of resistance in ticks to Cypermethrin and Deltamethrin across the Abu Dhabi Emirate, indicating a strict warning for the cautious use of acaricides. There is also a need to improve awareness about sound tick management and control practices among farm owners through a multidisciplinary approach adopting integrated pest management strategies that engage farmers, veterinarians, and policy makers. Full article
(This article belongs to the Topic Ticks and Tick-Borne Pathogens)
12 pages, 2204 KiB  
Article
Amblyomma mixtum (Acari: Ixodidae) Infestation in Humans in the Flooded Savanna Region of Colombia
by Arlex Rodríguez-Durán, Diana Peña-Navarro, Vinícius Andrade-Silva, Luís Fernando Parizi, Itabajara da Silva Vaz Junior and Jesús Alfredo Cortés-Vecino
Wild 2025, 2(3), 27; https://doi.org/10.3390/wild2030027 - 14 Jul 2025
Viewed by 340
Abstract
Ticks are arthropods responsible for transmitting microorganisms important to wild, domestic, and human animals. In ecosystems where they are distributed, interactions between hosts are a constant risk. This study analyzed voluntary case reports of tick infestations in humans and tick collections from wild [...] Read more.
Ticks are arthropods responsible for transmitting microorganisms important to wild, domestic, and human animals. In ecosystems where they are distributed, interactions between hosts are a constant risk. This study analyzed voluntary case reports of tick infestations in humans and tick collections from wild and domestic animals in six different locations in the flooded savanna region of the Colombian Orinoquia. Classical and molecular taxonomy were used to identify tick species. Individuals infested with ticks were monitored for clinical manifestations related to tick bites. A total of 22 ticks were found infesting five men and one woman, aged between 9 and 60 years. Both classical and molecular taxonomy confirmed that 100% of the ticks infesting humans and animals were Amblyomma mixtum. Two of the six individuals reported primary and secondary skin reactions during and after the tick bite, including mild-to-severe inflammatory reactions, pruritus, and erythematous papules that persisted up to 72 h. This study provides, for the first time, compiled information on clinical skin manifestations caused by A. mixtum in humans in the flooded savanna region and in Colombia as a whole. These findings serve as a theoretical basis for developing surveillance programs targeting infestations caused by this arthropod. Full article
Show Figures

Graphical abstract

14 pages, 2408 KiB  
Article
Prevalence and Abundance of Ixodid Ticks in Domestic Mammals in Villages at the Forest Fringes of the Western Ghats, India
by Hari Kishan Raju, Ayyanar Elango, Ranganathan Krishnamoorthi and Manju Rahi
Animals 2025, 15(14), 2005; https://doi.org/10.3390/ani15142005 - 8 Jul 2025
Viewed by 294
Abstract
Kyasanur Forest Disease (KFD), first reported in 1957 in the Shimoga district of Karnataka, India, has spread significantly over the past two decades, reaching both northern and southern states, with reports of monkey deaths. Haemaphysalis spp. ticks are the primary vectors, transmitting the [...] Read more.
Kyasanur Forest Disease (KFD), first reported in 1957 in the Shimoga district of Karnataka, India, has spread significantly over the past two decades, reaching both northern and southern states, with reports of monkey deaths. Haemaphysalis spp. ticks are the primary vectors, transmitting the disease to monkeys, humans, and other mammals. This study aimed to assess the prevalence, mean abundance, and mean intensity of Ixodidae ticks, including the KFD vector, in domestic animals across selected localities of the Western Ghats. A total of 2877 domestic animals were surveyed, revealing an overall tick prevalence of 44.91% (CI: 43.10–46.73), with sheep showing the highest prevalence at 47.92% (CI: 40.96–54.95). The most abundant tick species was Rhipicephalus (Boophilus) microplus, with a mean of 2.53 ± 0.66 ticks per host, which also represented the most proportionally dominant species, accounting for 39.63% of the total ticks collected. The highest mean intensity was recorded for Haemaphysalis intermedia (7.35 ± 2.03 ticks per infested animal). Regionally, Rh. (Bo.) microplus was found in 96.15% of buffaloes examined in Tamil Nadu, Haemaphysalis bispinosa in 85.19% of cattle in Maharashtra, and in 98.46% of goats in Goa. Ha. intermedia was common in 99.11% of sheep examined in Karnataka, while Ha. bispinosa was observed in 90.82% of goats in Kerala. The proportional representation of the KFD vector Haemaphysalis spinigera was 0.97%, with a mean intensity of 2.34 ± 0.04 ticks per infested animal and an overall mean abundance of 0.06 ± 0.01 ticks per host. Adult Ha. spinigera were recorded from cattle, buffaloes, sheep, goats, and dogs; however, no nymphs were detected. This study also reports the first documented occurrence of Ixodes ceylonensis in domestic animals. These findings suggest a notable presence of tick infestations in the region and emphasize the importance of continued surveillance and targeted control measures to better understand and manage potential KFD transmission risks in the Western Ghats. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

22 pages, 2922 KiB  
Review
Zoonotic Orthoflaviviruses Related to Birds: A Literature Review
by Vladimir Savić, Ljubo Barbić, Maja Bogdanić, Ivana Rončević, Ana Klobučar, Alan Medić and Tatjana Vilibić-Čavlek
Microorganisms 2025, 13(7), 1590; https://doi.org/10.3390/microorganisms13071590 - 6 Jul 2025
Viewed by 603
Abstract
Orthoflaviviruses (formerly flaviviruses) are known for their role in numerous diseases affecting both humans and animals. Despite the worldwide distribution of orthoflaviviruses, individual species are only found in endemic or epidemic regions. However, in recent decades, certain orthoflaviviruses have spread beyond their traditional [...] Read more.
Orthoflaviviruses (formerly flaviviruses) are known for their role in numerous diseases affecting both humans and animals. Despite the worldwide distribution of orthoflaviviruses, individual species are only found in endemic or epidemic regions. However, in recent decades, certain orthoflaviviruses have spread beyond their traditional geographic boundaries, even crossing continents. Given the long-distance movements of birds, the knowledge of zoonotic orthoflaviviruses associated with birds is essential because of their possible introduction into new regions, as was the case with West Nile virus and Usutu virus. A thorough literature review was conducted on zoonotic orthoflaviviruses related to birds, including lesser-known (re-)emerging and neglected orthoflaviviruses that are limited to specific regions and/or avian hosts but have the potential to spread to a wider geographical area and pose a higher risk of transmission to humans. Several of these viruses possess significant zoonotic potential and can cause a wide spectrum of diseases in humans, ranging from mild febrile illnesses (Zika virus) to severe neuroinvasive diseases (tick-borne encephalitis, West Nile, Japanese encephalitis virus) and hemorrhagic fevers (yellow fever, dengue virus). Geographic distribution, hosts, vectors, incidence of human infections, and impact on human and animal health of zoonotic flaviviruses related to birds are critically reviewed. The viruses have been categorized based on the role of birds as an orthoflavivirus host and the clinical presentation in human infections. Full article
(This article belongs to the Special Issue Emerging Viral Zoonoses, Second Edition)
Show Figures

Figure 1

56 pages, 750 KiB  
Review
The Role of Hematophagous Arthropods, Other than Mosquitoes and Ticks, in Arbovirus Transmission
by Bradley J. Blitvich
Viruses 2025, 17(7), 932; https://doi.org/10.3390/v17070932 - 30 Jun 2025
Viewed by 452
Abstract
Arthropod-borne viruses (arboviruses) significantly impact human, domestic animal, and wildlife health. While most arboviruses are transmitted to vertebrate hosts by blood-feeding mosquitoes and ticks, a growing body of evidence highlights the importance of other hematophagous arthropods in arboviral transmission. These lesser-known vectors, while [...] Read more.
Arthropod-borne viruses (arboviruses) significantly impact human, domestic animal, and wildlife health. While most arboviruses are transmitted to vertebrate hosts by blood-feeding mosquitoes and ticks, a growing body of evidence highlights the importance of other hematophagous arthropods in arboviral transmission. These lesser-known vectors, while often overlooked, can play crucial roles in the maintenance, amplification, and spread of arboviruses. This review summarizes our understanding of hematophagous arthropods, other than mosquitoes and ticks, in arboviral transmission, as well as their associations with non-arboviral viruses. Thirteen arthropod groups are discussed: bat flies, blackflies, cimicids (bat bugs, bed bugs, and bird bugs), Culicoides midges, fleas, hippoboscid flies, lice, mites, muscid flies (including horn flies and stable flies), phlebotomine sandflies, tabanids (including deer flies and horse flies), triatomines, and tsetse flies. Some of these arthropods are regarded as known or likely arboviral vectors, while others have no known role in arbovirus transmission. Particular attention is given to species associated with arboviruses of medical and veterinary significance. As the burden of arboviruses continues to grow, it is critical not to overlook the potential contribution of these lesser-known vectors. Full article
(This article belongs to the Section Invertebrate Viruses)
10 pages, 337 KiB  
Article
Molecular Surveillance of Neoehrlichia mikurensis and Anaplasma phagocytophilum in Ticks from Urbanized Areas of Lithuania
by Justina Snegiriovaitė, Indrė Lipatova, Miglė Razgūnaitė, Algimantas Paulauskas and Jana Radzijevskaja
Pathogens 2025, 14(7), 642; https://doi.org/10.3390/pathogens14070642 - 28 Jun 2025
Viewed by 376
Abstract
Neoehrlichia mikurensis and Anaplasma phagocytophilum, both members of the Anaplasmataceae family, are pathogens that can cause diseases in animals and humans. Ixodid ticks are the primary vectors for both species. While urban green spaces offer various ecological and social benefits, there is [...] Read more.
Neoehrlichia mikurensis and Anaplasma phagocytophilum, both members of the Anaplasmataceae family, are pathogens that can cause diseases in animals and humans. Ixodid ticks are the primary vectors for both species. While urban green spaces offer various ecological and social benefits, there is increasing evidence suggesting potential public health risks, particularly increased exposure to vector-borne diseases. The aim of the present study was to assess the prevalence and co-occurrence of A. phagocytophilum and N. mikurensis in ticks from urban environments in Lithuania. A total of 3599 Ixodes ricinus and 29 Dermacentor reticulatus were collected from 31 urban and 21 peri-urban areas. Ticks were examined for pathogens using duplex real-time PCR. Anaplasma phagocytophilum was detected in 4.47% of tested ticks, while N. mikurensis in 6.17%. Co-infection was found in 0.42% of I. ricinus specimens. Phylogenetic analysis of the groEl gene revealed low genetic variability of N. mikurensis and the circulation of two ecotypes (I and II) of A. phagocytophilum. Additionally, Ehrlichia muris was identified in I. ricinus ticks. This study is the first report of N. mikurensis detection in ticks from Lithuania. Our findings highlight the potential risk posed by tick-borne pathogens in urban and peri-urban areas of the country. Full article
Show Figures

Figure 1

17 pages, 1816 KiB  
Systematic Review
A Systematic Review on the Occurrence of Babesia spp. and Anaplasma spp. in Ticks and Wild Boar from Europe—A 15-Year Retrospective Study
by Ioan Cristian Dreghiciu, Diana Hoffman, Tiana Florea, Ion Oprescu, Simona Dumitru, Mirela Imre, Vlad Iorgoni, Anamaria Plesko, Sorin Morariu and Marius Stelian Ilie
Pathogens 2025, 14(7), 612; https://doi.org/10.3390/pathogens14070612 - 20 Jun 2025
Viewed by 599
Abstract
The wild boar (Sus scrofa) has experienced significant population growth as well as geographic expansion across Europe over the past 15 years, leading to increased concerns regarding its role in the transmission of zoonotic pathogens. Among these, Babesia spp. and Anaplasma [...] Read more.
The wild boar (Sus scrofa) has experienced significant population growth as well as geographic expansion across Europe over the past 15 years, leading to increased concerns regarding its role in the transmission of zoonotic pathogens. Among these, Babesia spp. and Anaplasma spp. are of particular importance due to their impact on both wildlife and domestic animals. This study systematically reviews the prevalence and distribution of Babesia and Anaplasma spp. in wild boars and associated tick vectors across multiple European countries, synthesizing data from literature published between 2010 and 2024. A comprehensive search of Scopus, Google Scholar, and PubMed databases was conducted using predefined keywords related to babesiosis, anaplasmosis, wild boars, Europe, and tick-borne diseases. A total of 281 studies were initially retrieved, of which 19 met the inclusion criteria following relevance assessment. Data extraction focused on pathogen identification, diagnostic methods, sample type, host species, and prevalence rates. Molecular detection methods, primarily PCR and sequencing, were the most used diagnostic tools. Results indicate substantial regional variations in the prevalence of Babesia and Anaplasma spp. A. phagocytophilum was detected in wild boar populations across multiple countries, with the highest prevalence rates observed in Slovakia (28.2%) and Poland (20.34%). Conversely, lower prevalence rates were recorded in France (2%) and Portugal (3.1%). Babesia spp. showed higher prevalence rates in Italy (6.2%), while its detection in other regions such as Romania and Spain was minimal or absent. Notably, spleen and multi-organ samples (spleen/liver/kidney) exhibited higher positivity rates compared to blood samples, suggesting an organotropic localization of these pathogens. The findings underscore the role of wild boars as reservoirs for tick-borne pathogens and highlight their potential to contribute to the epidemiological cycle of these infections. The increasing distribution of wild boars, coupled with climate-driven shifts in tick populations, may further facilitate pathogen transmission. Future studies should focus on integrating molecular, serological, and ecological approaches to improve surveillance and risk assessment. Standardized methodologies across different regions will be essential in enhancing comparative epidemiological insights and informing targeted disease management strategies. Full article
(This article belongs to the Special Issue Parasitic Diseases in Wild Animals)
Show Figures

Figure 1

9 pages, 1391 KiB  
Brief Report
Discovery of a Novel Parahenipavirus, Parahenipavirus_GH, in Shrews in South Korea, 2022
by Gyuri Sim, Chi-Hwan Choi, Minji Lee, Hak Seon Lee, Seong Yoon Kim, Seung Hun Lee, Hee Il Lee and Yoon-Seok Chung
Viruses 2025, 17(6), 867; https://doi.org/10.3390/v17060867 - 19 Jun 2025
Viewed by 812
Abstract
Highly pathogenic henipaviruses (Nipah and Hendra viruses) and parahenipaviruses (Langya virus) have demonstrated significant zoonotic potential. We aimed to identify Henipavirus or Parahenipavirus species in rodents and shrews in South Korea to underline the potential zoonotic transmission risk. Kidney and lung tissues from [...] Read more.
Highly pathogenic henipaviruses (Nipah and Hendra viruses) and parahenipaviruses (Langya virus) have demonstrated significant zoonotic potential. We aimed to identify Henipavirus or Parahenipavirus species in rodents and shrews in South Korea to underline the potential zoonotic transmission risk. Kidney and lung tissues from 285 rodents and shrews were screened for Henipavirus and Parahenipavirus using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) targeting the Gamak virus and Daeryong virus (DARV) sequences. Based on the qRT-PCR results, 75 out of the 285 individuals tested positive, with the highest viral loads in the kidneys of Apodemus agrarius, Crocidura lasiura, and Crocidura shantungensis. A kidney sample from C. shantungensis that exhibited the lowest Ct value was further analyzed using PCR, Sanger sequencing, and metagenomic analysis, yielding a near-complete genome of a novel Parahenipavirus, designated Parahenipavirus_GH (PHNV-GH), which is phylogenetically related to DARV and Jingmen virus but exhibits distinct genomic features. Ixodes granulatus ticks were also identified on the host shrew. The identification of PHNV-GH in southern South Korea expands the known geographical distribution range of parahenipaviruses and highlights the ongoing risk of zoonotic transmission. Given the uncertain transmission dynamics and pathogenic potential of parahenipaviruses, comprehensive environmental surveillance and characterization of emerging parahenipaviruses are essential for preventing future outbreaks. Full article
(This article belongs to the Special Issue Emerging Zoonotic Paramyxoviruses)
Show Figures

Figure 1

20 pages, 2180 KiB  
Article
Insights into the Regulatory Roles of miRNAs in the Salivary Glands of the Soft Ticks Ornithodoros moubata and Ornithodoros erraticus
by Ana Laura Cano-Argüelles, Ricardo Pérez-Sánchez, Cristian Gallardo-Escárate, Rocío Vizcaíno-Marín, María González-Sánchez and Ana Oleaga
Pathogens 2025, 14(6), 595; https://doi.org/10.3390/pathogens14060595 - 17 Jun 2025
Viewed by 432
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by inhibiting or degrading messenger RNAs (mRNAs). In ticks, salivary miRNAs are proposed to play key roles in modulating host–vector interactions during blood feeding. Previously, we identified salivary miRNAs in Ornithodoros moubata and [...] Read more.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by inhibiting or degrading messenger RNAs (mRNAs). In ticks, salivary miRNAs are proposed to play key roles in modulating host–vector interactions during blood feeding. Previously, we identified salivary miRNAs in Ornithodoros moubata and Ornithodoros erraticus, major vectors of African swine fever and tick-borne human relapsing fever. In this study, we investigated the regulatory roles of salivary miRNAs in tick biology. Salivary miRNA datasets were re-analysed to identify conserved miRNAs, and putative target genes were predicted using the sialotranscriptomes of both species. In silico predictions were validated through experimental inhibition of specific miRNAs using antagomirs. Knockdown of miR-375 and miR-1 significantly reduced blood intake, oviposition, and fertility, indicating their involvement in feeding and reproductive processes. Silencing miR-252b in O. moubata led to increased mortality, suggesting a critical role in survival. Notably, Metis1 was identified as a likely target of miR-252b, and its dysregulation may underlie the observed lethality in miR-252b-silenced ticks. These findings highlight the functional relevance of salivary miRNAs in tick physiology and host interaction, offering new perspectives for the development of innovative tick control strategies. Full article
(This article belongs to the Section Ticks)
Show Figures

Graphical abstract

14 pages, 2224 KiB  
Article
Comparative Analysis of Bacterial Tick-Borne Pathogens in Questing Ticks from Sambia Peninsula, Kaliningrad Oblast, Russia: Spring and Autumn Prevalence and Public Health Risks
by Alexey V. Rakov, Evgenii G. Volchev, Ketevan Petremgvdlishvili and Tatiana A. Chekanova
Microorganisms 2025, 13(6), 1403; https://doi.org/10.3390/microorganisms13061403 - 16 Jun 2025
Viewed by 774
Abstract
The Kaliningrad Oblast, located in the westernmost part of Russia and bordering European Union countries, is a popular tourist destination. However, limited research has been conducted on the bacteria found in ticks in this region. We, therefore, investigated the prevalence of certain bacteria, [...] Read more.
The Kaliningrad Oblast, located in the westernmost part of Russia and bordering European Union countries, is a popular tourist destination. However, limited research has been conducted on the bacteria found in ticks in this region. We, therefore, investigated the prevalence of certain bacteria, including Borrelia, Rickettsia, Anaplasma, and Ehrlichia, as well as the genospecies of the spotted fever group Rickettsia (SFGR) in Ixodes ricinus and Dermacentor reticulatus tick species. To accomplish this, we employed commercial qPCR for pathogen screening. We identified specific genospecies by sequencing the gltA and ompA gene fragments. In I. ricinus ticks, we found Borrelia burgdorferi sensu lato DNA in 35.6% of samples. We also found Rickettsia helvetica in 17.5% of ticks. Additionally, we detected Borrelia miyamotoi in 1.7% and Anaplasma phagocytophilum in 2.6%, while Ehrlichia chaffeensis/Ehrlichia muris were present in 0.6%. In D. reticulatus ticks, we detected only Rickettsia conorii subsp. raoultii DNA, with a prevalence of 6.1%. These findings demonstrate a substantial risk of Lyme disease and other tick-borne infections from early spring through late autumn, emphasizing the importance of ongoing monitoring for these pathogens in the region. Full article
(This article belongs to the Special Issue Ticks and Threats: Insights on Tick-Borne Diseases)
Show Figures

Figure 1

12 pages, 1675 KiB  
Article
Prevalence and Diversity of Gastrointestinal Parasites and Tick Species in Communal Feedlots Compared to Rural Free-Grazing Cattle in the Eastern Cape Province, South Africa
by Mhlangabezi Slayi and Zuko Mpisana
Parasitologia 2025, 5(2), 28; https://doi.org/10.3390/parasitologia5020028 - 13 Jun 2025
Viewed by 376
Abstract
Gastrointestinal parasites (GIPs) and tick infestations remain critical health challenges limiting cattle productivity in rural South Africa, particularly within communal farming systems. The Eastern Cape Province, characterized by high livestock densities and variable management practices, provides a unique context in which to examine [...] Read more.
Gastrointestinal parasites (GIPs) and tick infestations remain critical health challenges limiting cattle productivity in rural South Africa, particularly within communal farming systems. The Eastern Cape Province, characterized by high livestock densities and variable management practices, provides a unique context in which to examine parasitic burdens across systems. This study aimed to compare the prevalence, intensity, and diversity of GIPs and tick species in cattle raised under rural communal grazing versus communal feedlot systems in the Eastern Cape Province of South Africa. A total of 160 cattle (n = 80 per system) were randomly selected for fecal and tick examinations in community-based feedlots in Holela (Centane) and Gxwalibomvu (Tsomo), as well as from surrounding rural villages. Fecal samples were analyzed using the McMaster technique to determine fecal egg counts (FEC), while tick species were identified and counted from standardized body regions. Body condition scores (BCS) were recorded, and farmer practices related to parasite control were surveyed. Results showed significantly higher GI parasite prevalence and FEC in rural community cattle compared to feedlot cattle (p < 0.05), with Haemonchus contortus and Trichostrongylus spp. being the most prevalent. Similarly, rural cattle had significantly higher tick infestation rates, dominated by Rhipicephalus microplus and Amblyomma hebraeum. Logistic regression identified rural production system, poor body condition (BCS ≤ 2), and absence of recent deworming as significant risk factors for GI parasitism (p < 0.05). Strong negative correlations were found between BCS and both FEC (r = −0.63) and tick burden (r = −0.57). Additionally, rural farmers reported lower acaricide usage and greater reliance on traditional remedies. The study confirms that rural communal systems expose cattle to higher parasitic risks due to unmanaged grazing, limited veterinary support, and poor parasite control strategies. Communal feedlots, by contrast, offer more controlled conditions that reduce parasitic burden. Integrating strategic parasite management, farmer training, and expanded veterinary outreach is essential to improving cattle health and productivity in communal areas. Full article
Show Figures

Figure 1

19 pages, 9515 KiB  
Article
Survey of Piroplasmids in Wild Mammals, Unconventional Pets, and Ticks from Goiás State, Midwestern Brazil
by Raphaela Bueno Mendes Bittencourt, Ana Cláudia Calchi, Lucianne Cardoso Neves, Nicolas Jalowitzki de Lima, Gabriel Cândido dos Santos, Ennya Rafaella Neves Cardoso, Warley Vieira de Freitas Paula, Luciana Batalha de Miranda Araújo, Jessica Rocha Gonçalves, Elisângela de Albuquerque Sobreira, Luiz Alfredo Martins Lopes Baptista, Hermes Ribeiro Luz, Marcos Rogério André, Filipe Dantas-Torres and Felipe da Silva Krawczak
Pathogens 2025, 14(6), 585; https://doi.org/10.3390/pathogens14060585 - 12 Jun 2025
Viewed by 1087
Abstract
Tick-borne piroplasmids are apicomplexan protozoa that infect a wide range of vertebrate hosts, with significant implications for animal and human health. This study investigated the occurrence and genetic diversity of piroplasmids in wild mammals, unconventional pets, and associated ticks in Goiás state, midwestern [...] Read more.
Tick-borne piroplasmids are apicomplexan protozoa that infect a wide range of vertebrate hosts, with significant implications for animal and human health. This study investigated the occurrence and genetic diversity of piroplasmids in wild mammals, unconventional pets, and associated ticks in Goiás state, midwestern Brazil. Between April 2023 and January 2024, 105 blood samples, 22 tissue samples, and 300 ticks were collected from 21 mammalian species housed in wildlife screening centers, zoos, and veterinary clinics. Molecular screening targeting the 18S rRNA gene of piroplasmids detected a 25.7% (27/105) overall positivity, with gray brockets (Subulo gouazoubira) and South American tapirs (Tapirus terrestris) showing the highest infection rates. Three tick samples tested positive, including two Amblyomma sculptum nymphs and a male of Amblyomma dubitatum collected from a tapir and capybara (Hydrochoerus hydrochaeris). Cytauxzoon brasiliensis was reported, for the first time, in cougars (Puma concolor) from Goiás state, midwestern Brazil, indicating the role of this feline as a host of this parasite. Babesia goianiaensis was confirmed in a capybara, and Theileria terrestris in tapirs. Phylogenetic analyses clustered gray brockets-associated Theileria sequences with Theileria sp. previously detected in Neotropical deer from Brazil and Theileria cervi. While the phylogenetic analysis of amino acid sequences of the cytochrome c oxidase subunit III separated Theileria genotypes detected in S. gouazoubira from T. cervi, hsp70-based phylogenetic inferences clustered the genotypes detected in Tapirus terrestris with Theileria terrestris, suggesting host-specific evolutionary lineages. These findings contribute to the understanding of Piroplasmida diversity and circulation in South American wild mammals, emphasizing the need for enhanced molecular surveillance to elucidate transmission dynamics, assess potential health risks, and contribute to the establishment of wildlife conservation and One Health strategies. Full article
Show Figures

Figure 1

Back to TopTop