Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = thorium determination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 780 KiB  
Article
Radiological Assessment of Coal Fly Ash from Polish Power and Cogeneration Plants: Implications for Energy Waste Management
by Krzysztof Isajenko, Barbara Piotrowska, Mirosław Szyłak-Szydłowski, Magdalena Reizer, Katarzyna Maciejewska and Małgorzata Kwestarz
Energies 2025, 18(12), 3010; https://doi.org/10.3390/en18123010 - 6 Jun 2025
Viewed by 587
Abstract
The combustion of hard coal and lignite in power and combined heat and power plants generates significant amounts of coal fly ash (CFA), a waste material with variable properties. CFA naturally contains radionuclides, specifically naturally occurring radioactive materials (NORMs), which pose potential radiological [...] Read more.
The combustion of hard coal and lignite in power and combined heat and power plants generates significant amounts of coal fly ash (CFA), a waste material with variable properties. CFA naturally contains radionuclides, specifically naturally occurring radioactive materials (NORMs), which pose potential radiological risks to the environment and human health during their storage and utilization, including their incorporation into building materials. Although global research on the radionuclide content in CFA is available, there is a clear gap in detailed and current data specific to Central and Eastern Europe and notably, a lack of a systematic analysis investigating the influence of installed power plant capacity on the concentration profile of these radionuclides in the generated ash. This study aimed to fill this gap and provide crucial data for the Polish energy and environmental context. The objective was to evaluate the concentrations of selected radionuclides (232Th, 226Ra, and 40K) in coal fly ash samples collected between 2020 and 2023 from 19 Polish power and combined heat and power plants with varying capacities (categorized into four groups: S1–S4) and to assess the associated radiological risk. Radionuclide concentrations were determined using gamma spectrometry, and differences between groups were analyzed using non-parametric statistical methods, including PERMANOVA. The results demonstrated that plant capacity has a statistically significant influence on the concentration profiles of thorium and potassium but not radium. Calculated radiological hazard assessment factors (Raeq, Hex, Hin, IAED) revealed that although most samples fall near regulatory limits (e.g., 370 Bq kg−1 for Raeq), some exceed these limits, particularly in groups S1 (plants with a capacity less than 300 MW) and S4 (plants with a capacity higher than 300 MW). It was also found that the frequency of exceeding the annual effective dose limits (IAEDs) showed an increasing trend with the increasing installed capacity of the facility. These findings underscore the importance of plant capacity as a key factor to consider in the radiological risk assessment associated with coal fly ash. This study’s outcomes are crucial for informing environmental risk management strategies, guiding safe waste processing practices, and shaping environmental policies within the energy sector in Central and Eastern European countries, including Poland. Full article
Show Figures

Figure 1

14 pages, 11803 KiB  
Article
An Acylhydrazone Fluorescent Sensor: Bifunctional Detection of Thorium (IV) and Vanadyl Ions over Uranyl and Lanthanide Ions
by Xin Lin, Hua Liang, Ke Dai, Jing Zhou, Qiang Tian, Yuge Xiang, Zhicheng Guo and László Almásy
Int. J. Mol. Sci. 2025, 26(7), 3231; https://doi.org/10.3390/ijms26073231 - 31 Mar 2025
Viewed by 470
Abstract
Thorium is a notable candidate for resolving uranium shortage caused by the global application of nuclear power generation. Uranium extraction from seawater is another attempt to handle its source deficiency, however, vanadium is one of the main competitive elements in that process. Exploration [...] Read more.
Thorium is a notable candidate for resolving uranium shortage caused by the global application of nuclear power generation. Uranium extraction from seawater is another attempt to handle its source deficiency, however, vanadium is one of the main competitive elements in that process. Exploration of probes which can discriminatively detect thorium and vanadium from uranium has primary significance for their further separation and for environmental protection. Herein, N′-(2,4-dihydroxybenzylidene)-4-hydroxylphenylhydrazide, AOH, is used as sensor for Th4+ and vanadyl (VO2+) determination. AOH demonstrates a specific “turn-on” fluorescence selectivity towards Th4+ over f-block and other foreign metal ions, with a detection limit (LOD) of 7.19 nM in acidic solution and a binding constant of 9.97 × 109 M−2. Meanwhile, it shows a “turn-off” fluorescence response towards VO2+ over other metal ions at the coexistence of Th4+, with a LOD of 0.386 μM in the same media and a binding constant of 4.54 × 104 M−1. The recognition mechanism, based on HRMS, 1H NMR, and FT-IR results, demonstrates that VO2+ causes the fluorescence quenching by replacing Th4+ to coordinate with AOH. In real water detection tests, Th4+ and VO2+ exhibited satisfying recoveries. These findings expand the application of sensors in nuclide pollution control. Full article
Show Figures

Figure 1

21 pages, 5421 KiB  
Article
Prediction Models for Radiological Characterization of Natural Aggregates Based on Chemical Composition and Mineralogy
by Andrés Caño, María del Mar Alonso, Alicia Pachón-Montaño, Queralt Marzal, Guillermo Hernáiz, Luís Sousa and José Antonio Suárez-Navarro
Materials 2025, 18(6), 1369; https://doi.org/10.3390/ma18061369 - 20 Mar 2025
Cited by 1 | Viewed by 440
Abstract
The radiological characterization of aggregates used in construction materials is essential to determine their suitability from a radiological protection perspective and to ensure their safety for health and the environment. While the activity concentrations of radionuclides present in construction materials are typically determined [...] Read more.
The radiological characterization of aggregates used in construction materials is essential to determine their suitability from a radiological protection perspective and to ensure their safety for health and the environment. While the activity concentrations of radionuclides present in construction materials are typically determined using gamma spectrometry, an alternative approach involves the development of statistical methods and predictive models derived from the chemical composition of the material. A total of 39 aggregates used in construction of various types (siliceous, carbonatic, volcanic, and granitic) have been analyzed, correlating their chemical compositions obtained through X-ray fluorescence (XRF) with the activity concentrations of natural radionuclides measured via gamma spectrometry using principal component analysis (PCA). The results obtained allowed for the observation of an inversely proportional relationship between the chemical composition of the grouping of siliceous and carbonatic aggregates and the content of radionuclides. However, the set of granitic aggregates showed a strong correlation with the natural radioactive series of uranium, thorium, and 40K. Conversely, the radionuclide content of volcanic aggregates was independent of their chemical composition. The results obtained from the PCA facilitated the development of different models using multiple regression analysis. The chemical parameters obtained in the proposed models were related to the typical mineralogy in each grouping, ranging from primary minerals such as feldspars to accessory minerals such as anatase, apatite, and pyrolusite. Finally, the models were validated using independent samples from those used to determine the models, achieving RSD (%) values ≤ 30% in 50% of the activity concentrations of 226Ra, 232Th(212Pb), and 40K, as well as the estimated ACI. Full article
(This article belongs to the Special Issue Characterization and Optimization of Cement-Based Materials)
Show Figures

Figure 1

18 pages, 7069 KiB  
Article
Mechanics and Heat Transfer Design of Thorium Metal Target Protection Thin Film in Isotope Production in Gansu Province
by Yuqi Liu, Jianrong Zhang, Weiming Liu, Lidong Ma, Mengke Wang, Yaling Zhang, Lei Yang and Yangyang Yang
Energies 2025, 18(4), 928; https://doi.org/10.3390/en18040928 - 14 Feb 2025
Viewed by 554
Abstract
Isotopes are important strategic materials, and are irreplaceable and central to the fields of national defence, energy security, medical health, and scientific research. With the demonstrated efficacy of targeted alpha therapy using 225Ac, there is a pressing need to explore radiopharmaceuticals capable [...] Read more.
Isotopes are important strategic materials, and are irreplaceable and central to the fields of national defence, energy security, medical health, and scientific research. With the demonstrated efficacy of targeted alpha therapy using 225Ac, there is a pressing need to explore radiopharmaceuticals capable of delivering consistent and ample quantities of 225Ac. Isotope production in Gansu Province has initiated the production of 225Ac via bombardment of thorium metal with 480 MeV protons. To ensure the stability and safety of thorium targets under high-power beam conditions, this study proposes a novel packaging design for the protective layer of thorium targets, accompanied by detailed mechanical and thermal analyses. The study employs an Inconel 718 alloy as the film material for vacuum welding packaging, and simulates local displacement variations in the Inconel 718 film under different thicknesses, lengths, gaps, and flange fillet conditions. The optimal parameter settings that meet the design requirements are then determined. Additionally, beam energy deposition is assessed using Monte Carlo N-Particle (MCNP 6) neutron calculation software, while the heat transfer process is simulated with Fluent software to optimize the cooling mechanism, ensuring the stability and safety of the target material. The final design provides a theoretical foundation for isotope production targets in Gansu Province. Full article
(This article belongs to the Special Issue Economic Analysis of Nuclear Energy)
Show Figures

Figure 1

21 pages, 9139 KiB  
Article
Thorium Recovery with Crown Ether–Polymer Composite Membranes
by Aurelia Cristina Nechifor, Paul Constantin Albu, Ludmila Motelica, Geani Teodor Man, Alexandra Raluca Grosu, Szidonia-Katalin Tanczos, Vlad-Alexandru Grosu, Virgil Emanuel Marinescu and Gheorghe Nechifor
Appl. Sci. 2024, 14(21), 9937; https://doi.org/10.3390/app14219937 - 30 Oct 2024
Viewed by 1158
Abstract
Thorium is a weak radioactive element, but the control of its concentration in natural aqueous systems is of great interest for health, because it is a toxic heavy metal. The present paper presents the recovery of thorium from diluted synthetic aqueous systems by [...] Read more.
Thorium is a weak radioactive element, but the control of its concentration in natural aqueous systems is of great interest for health, because it is a toxic heavy metal. The present paper presents the recovery of thorium from diluted synthetic aqueous systems by nanofiltration. The membranes used for the nanofiltration of systems containing thorium species are composites containing 4′-Aminobenzo-15-crown-5 ether (ABCE) and sulfonated poly–etherether–ketone (sPEEK). The composite membranes (ABCE–sPEEK) were characterized by scanning electron microscopy (SEM), energy-dispersive X–Ray spectroscopy (EDAX), thermal analysis (TG and DSC), and from the perspective of thorium removal performance. To determine the process performance, the variables were the following: the nature of the composite membrane, the concentration of thorium in the aqueous systems, the rotation speed of the stirrer, and the pressure and the pH of the thorium aqueous system. When using pure water, a permeate flux value of 12 L·m−2 h−1 was obtained for the sPEEK membrane, and a permeate flux value of up to 15 L·m−2 h−1 was obtained for the ABCE–sPEEK composite membrane. The use of mechanical stirring, with a propeller stirrer, lead to an increase in the permeate flux value of pure water by about 20% for each of the studied membranes. Depending on the concentration of thorium and the pH of the feed solution, retentions between 84.9% and 98.4% were obtained. An important observation was the retention jump at pH 2 for the ABCE–sPEEK composite membrane. In the paper, a thorium ion retention mechanism is proposed for the sPEEK membrane and the ABCE–sPEEK composite membrane. Full article
(This article belongs to the Special Issue Synthesis and Application of Advanced Polymeric Materials)
Show Figures

Figure 1

17 pages, 5111 KiB  
Article
Study of the Chemical Recovery and Selectivity against U in the Radiochemical Separation of Th with Tri-n-butyl Phosphate by Varying the Proportion of Xylene and HCl Concentration
by Víctor Manuel Expósito-Suárez, José Antonio Suárez-Navarro and José Francisco Benavente
Molecules 2024, 29(17), 4225; https://doi.org/10.3390/molecules29174225 - 5 Sep 2024
Viewed by 1033
Abstract
Thorium is a radionuclide used in various environmental studies such as dating, sediment movement, soil–plant transfer studies, and contamination of waste from the natural fuel cycle. The liquid–liquid extraction method using tri-n-butyl phosphate (TBP) allows for the separation of Th from the accompanying [...] Read more.
Thorium is a radionuclide used in various environmental studies such as dating, sediment movement, soil–plant transfer studies, and contamination of waste from the natural fuel cycle. The liquid–liquid extraction method using tri-n-butyl phosphate (TBP) allows for the separation of Th from the accompanying actinides. However, the separation of Th and U present in the same sample is not trivial. This separation is influenced by the starting acid (HCl or HNO3), the concentration of TBP in an organic solvent, and the concentration of the acid used for re-extracting Th, which is typically HCl. Therefore, it is necessary to study these factors to ensure that the method has sufficient chemical yield and selectivity in complex matrices. This study presents a systematic investigation of the aforementioned parameters, making the necessary variations to select an optimal method for the radiochemical separation of Th. The ideal conditions were obtained using 4 M HCl as the acid prior to extraction, a 1:4 solution of TBP in xylene, and 4 M HCl as the re-extracting agent. The accuracy and precision were studied in four intercomparison exercises conducted in quadruplicate, using the parameters Enumbers, RB(%), and RSD(%) for 232Th and 230Th. The sensitivity of the method was experimentally studied and the limit of detection (LoD) was determined according to ISO 11929:2005. Additionally, the linearity of the method showed that the experimental and theoretical activity concentrations of 232Th and 230Th had slopes of 1 with an intercept close to 0. Full article
(This article belongs to the Special Issue Applications of Solvent Extraction and Absorption for Metal Recovery)
Show Figures

Figure 1

13 pages, 2790 KiB  
Article
The Impact of Induced Industrial and Urban Toxic Elements on Sediment Quality
by Nehemiah Mukwevho, Napo Ntsasa, Andile Mkhohlakali, Mothepane Happy Mabowa, Luke Chimuka, James Tshilongo and Mokgehle Refiloe Letsoalo
Water 2024, 16(17), 2485; https://doi.org/10.3390/w16172485 - 1 Sep 2024
Cited by 5 | Viewed by 2046
Abstract
Abstract: The increasing population has subjected rivers and streams to high levels of both industrial and domestic pollution. Significant environmental challenges have been brought about by their effects, particularly with regard to biota, ecosystem processes, soil quality, and groundwater pollution. This study examined [...] Read more.
Abstract: The increasing population has subjected rivers and streams to high levels of both industrial and domestic pollution. Significant environmental challenges have been brought about by their effects, particularly with regard to biota, ecosystem processes, soil quality, and groundwater pollution. This study examined the effects of human activity by applying pollution index models to evaluate the input of toxic elements in river sediments. Prior to sediment quality analysis, the total amount of arsenic (As), lead (Pb), cadmium (Cd), mercury (Hg), thorium (Th), and uranium (U) was determined in the concentration range of 1.09–10.0 mg/kg, 8.53–475 mg/kg, 0.12–0.16 mg/kg, 4.85–77.5 mg/kg, 3.14–5.9 mg/kg and 0.93–2.86 mg/kg, respectively. The enrichment factor, contamination factor, pollution load index, and geo-accumulation index revealed alarmingly high levels of Pb and Hg contamination at some sampling points, which are related to possible human input, ranging from severe enrichment to considerable contamination. The low ranges of pollution indices of some toxic elements suggest enrichment through the natural weathering process and atmospheric deposition. The Pearson correlation coefficient revealed a significant correlation between Pb-Fe and As-Fe, suggesting the possibility of acid mine contamination. Continual monitoring of river sediment is essential to minimize the impact of toxic elements to sustain sediment health and quality. Full article
(This article belongs to the Special Issue Research and Methodology on New Contaminants in Water and Soil)
Show Figures

Figure 1

19 pages, 5326 KiB  
Article
Lunar High Alumina Basalts in Mare Imbrium
by Jingran Chen, Shengbo Chen, Ming Ma and Yijun Jiang
Remote Sens. 2024, 16(11), 2045; https://doi.org/10.3390/rs16112045 - 6 Jun 2024
Viewed by 1548
Abstract
High-alumina (HA) mare basalts play a critical role in lunar mantle differentiation. Although remote sensing methods have speculated their potential presence regions based on sample FeO and TiO2 compositions, the location and distribution characteristics of HA basalts have not been provided. In [...] Read more.
High-alumina (HA) mare basalts play a critical role in lunar mantle differentiation. Although remote sensing methods have speculated their potential presence regions based on sample FeO and TiO2 compositions, the location and distribution characteristics of HA basalts have not been provided. In this study, the compositions of exposed rocks in Mare Imbrium were determined using Lunar Reconnaissance Orbiter (LRO) Diviner oxides and Lunar Prospector Gamma-Ray Spectrometer (LP-GRS) Thorium (Th) products. The exposed HA basalts were identified based on laboratory lithology classification criteria and Al2O3 abundance. The HA basalt units were mapped based on lunar topographic data, and their morphological geological characteristics were calculated based on elevation data. The results show that there are 8406 HA basalt pixels and 17 original units formed by volcanic eruptions in Mare Imbrium. The statistics of their morphology characteristics show that the HA basalts are widely distributed in the northern part of Mare Imbrium, and their compositions have a large range of variation. These units have different area and volume, and the layers formed were discontinuous. The characteristic analysis shows that the aluminum-bearing volcanic activities in Mare Imbrium were irregular. The eruptions of four different source regions occurred in three phases, and the scale and extent of the eruptions were different. The results in this study provide reliable evidence for the heterogeneity of the lunar mantle and contribute valuable information to the formation process of early lunar mantle materials. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

14 pages, 6460 KiB  
Article
An Evaluation of the Radioactive Content of Ashes Obtained from the Use of Fuels from Recycled Materials by Co-Processing in the Cement Industry
by José Antonio Suarez-Navarro, Miguel Ángel Sanjuán, Pedro Mora and María del Mar Alonso
Materials 2024, 17(10), 2287; https://doi.org/10.3390/ma17102287 - 12 May 2024
Viewed by 1353
Abstract
The co-processing of different wastes as fuels in the manufacture of cement clinker not only meets the objectives of a circular economy but also contributes to the reduction in CO2 emissions in the manufacture of Portland cement. However, waste used as alternative [...] Read more.
The co-processing of different wastes as fuels in the manufacture of cement clinker not only meets the objectives of a circular economy but also contributes to the reduction in CO2 emissions in the manufacture of Portland cement. However, waste used as alternative fuels, such as sludge or organic-rich residues, may contain naturally occurring radionuclides that can be concentrated during the combustion process. In this study, the presence of natural radionuclides (radioactive series of uranium, thorium, and 40K) and anthropogenic radionuclides (137Cs) in these wastes has been investigated by gamma spectrometry. Possible relationships between the radioactive content and the obtained chemical composition, determined by X-ray fluorescence, have also been studied by applying a principal component analysis (PCA). The results showed that the wastes with the highest radioactive content were sewage sludge with activity concentrations of 238U and 210Pb of 321 ± 38 Bq kg−1 and 110 ± 14 Bq kg−1, respectively. A correlation between radioactive content and Fe2O3 concentration was also observed. The annual effective dose rates to workers for the ashes estimated from the ash content ranged from 0.0033 mSv to 0.092 mSv and therefore do not pose a risk to workers as they are lower than the 1 mSv per year limit for the general public (DIRECTIVE 2013/59/EURATOM). Full article
(This article belongs to the Special Issue Functional Cement-Based Composites for Civil Engineering (Volume II))
Show Figures

Figure 1

8 pages, 2820 KiB  
Proceeding Paper
Study of Some Thorium Isotopes near to the Closed Shell (82 and 126)
by Nibras Hayder Hammood Eatiah, Mohsin Kadhim Muttaleb Al-Jnaby and Ghaidaa A. Hafedh Jaber Hussien
Eng. Proc. 2023, 59(1), 229; https://doi.org/10.3390/engproc2023059229 - 7 Feb 2024
Viewed by 780
Abstract
Using the interacting bosons model-one (IBM-1), the nuclear structure of the thorium isotopes 224Th, 226Th, and 228Th were examined in this study, which are near from closed shell 82 and 126. By acquiring this element’s energy levels and comparing them [...] Read more.
Using the interacting bosons model-one (IBM-1), the nuclear structure of the thorium isotopes 224Th, 226Th, and 228Th were examined in this study, which are near from closed shell 82 and 126. By acquiring this element’s energy levels and comparing them to actual values, which provide an indication of these isotopes membership in a specific determination, it is possible to determine that 224Th and 226Th belong to transition region between SU(3) and O(6) but 228Th belong to the SU(3) limit. The ratio of the fourth to the second energy level E4+/E2+ with other ratios E6+/E2+ and E8+/E2+, the order of practical levels, are first exam to determine the limit that belong. Using IBM program to find theoretical energy level and compared with practical one, also the agreement between the theoretical probability of electric transitions B(E2) through IBMT program was investigated. The IBMP program was used to study the surface potential of the nucleus, which provides insight into the deformation that occurs in the nucleus and from the contour lines deviation. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

11 pages, 1930 KiB  
Article
Synthesis and Characterization of a Novel Non-Isolated-Pentagon-Rule Isomer of Th@C76:Th@C1(17418)-C76
by Yunpeng Xia, Yi Shen, Yang-Rong Yao, Qingyu Meng and Ning Chen
Inorganics 2023, 11(11), 422; https://doi.org/10.3390/inorganics11110422 - 25 Oct 2023
Cited by 4 | Viewed by 1902
Abstract
A novel Non-Isolated-Pentagon-Rule (non-IPR) isomer of thorium-based endohedral mono-metallofullerenes (mono-EMFs), Th@C1(17418)-C76, was successfully synthesized and characterized using MALDI-TOF mass spectroscopy, single-crystal X-ray diffraction, UV-vis-NIR spectroscopy, and Raman spectroscopy. The molecular structure of this non-IPR isomer was determined unambiguously [...] Read more.
A novel Non-Isolated-Pentagon-Rule (non-IPR) isomer of thorium-based endohedral mono-metallofullerenes (mono-EMFs), Th@C1(17418)-C76, was successfully synthesized and characterized using MALDI-TOF mass spectroscopy, single-crystal X-ray diffraction, UV-vis-NIR spectroscopy, and Raman spectroscopy. The molecular structure of this non-IPR isomer was determined unambiguously as Th@C1(17418)-C76 using a single-crystal X-ray diffraction analysis. The crystallographic results further revealed that the optimal Th site resided at the intersection of two adjacent pentagons, similar to that of U@C1(17418)-C76. Additionally, the UV-vis-NIR spectra of Th@C1(17418)-C76 exhibited distinct differences compared to the previously reported U@C1(17418)-C76, highlighting the distinctive electronic structure of actinium-based endohedral metallofullerenes (EMFs). The Raman spectrum of Th@C1(17418)-C76 exhibited similarities to that previously reported for thorium-based EMFs, indicating the analogous strong metal–cage interactions of thorium-based EMFs. Full article
(This article belongs to the Special Issue Research on Metallofullerenes)
Show Figures

Graphical abstract

4 pages, 471 KiB  
Proceeding Paper
Ion-Selective Electrode (ISE) Based on Polyvinyl Chloride Membrane Formed from Heterocyclic Quinazoline Compounds as Ionophore material
by Chandra Mohan, Jenifer Robinson and Arvind Negi
Eng. Proc. 2023, 48(1), 10; https://doi.org/10.3390/CSAC2023-14914 - 26 Sep 2023
Cited by 7 | Viewed by 1907
Abstract
A heterocyclic compound of S and N with cyclic structures, like Furans, thiophenes and related azole analogs, is important as a ligand because of it is readily available, stable and easily functionalized. Various types of heterocyclic molecules quinazolines and their derivatives contain important [...] Read more.
A heterocyclic compound of S and N with cyclic structures, like Furans, thiophenes and related azole analogs, is important as a ligand because of it is readily available, stable and easily functionalized. Various types of heterocyclic molecules quinazolines and their derivatives contain important chromophores with desirable electrochemical properties to be applied in the sensor field. Metal complexes of these compounds have demonstrated significant electrochemical properties as ionophore or electroactive materials for the fabrication of ISEs with different polymeric membranes. R. Selva Kumar et al. 2019 reported the use of dibutyl(8-hydroxyquinolin-2-yl)methylphosphonate as ionophore in a PVC matrix for the fabrication of a potentiometric thorium(IV) ion-selective electrode These quinazoline-based membranes with other additives and plasticizers are very useful for the development of a potential difference across the membrane at membrane-solution interface in the required proportions . Analytes, such as Butralin, Hydroxylamine, and Nitrite, and heavy metal ions, like Fe3+ and Th4+, have also been determined using quinazoline-based membrane sensors. ISE-based electrochemical sensors are very useful in the analysis of food products, drinking water, beverages, fertilizers, soil industrial effluents, etc. They also are applied in potentiometric titration as indicator electrodes. Full article
Show Figures

Figure 1

34 pages, 5773 KiB  
Review
Thorium Removal, Recovery and Recycling: A Membrane Challenge for Urban Mining
by Geani Teodor Man, Paul Constantin Albu, Aurelia Cristina Nechifor, Alexandra Raluca Grosu, Szidonia-Katalin Tanczos, Vlad-Alexandru Grosu, Mihail-Răzvan Ioan and Gheorghe Nechifor
Membranes 2023, 13(9), 765; https://doi.org/10.3390/membranes13090765 - 29 Aug 2023
Cited by 13 | Viewed by 5818
Abstract
Although only a slightly radioactive element, thorium is considered extremely toxic because its various species, which reach the environment, can constitute an important problem for the health of the population. The present paper aims to expand the possibilities of using membrane processes in [...] Read more.
Although only a slightly radioactive element, thorium is considered extremely toxic because its various species, which reach the environment, can constitute an important problem for the health of the population. The present paper aims to expand the possibilities of using membrane processes in the removal, recovery and recycling of thorium from industrial residues reaching municipal waste-processing platforms. The paper includes a short introduction on the interest shown in this element, a weak radioactive metal, followed by highlighting some common (domestic) uses. In a distinct but concise section, the bio-medical impact of thorium is presented. The classic technologies for obtaining thorium are concentrated in a single schema, and the speciation of thorium is presented with an emphasis on the formation of hydroxo-complexes and complexes with common organic reagents. The determination of thorium is highlighted on the basis of its radioactivity, but especially through methods that call for extraction followed by an established electrochemical, spectral or chromatographic method. Membrane processes are presented based on the electrochemical potential difference, including barro-membrane processes, electrodialysis, liquid membranes and hybrid processes. A separate sub-chapter is devoted to proposals and recommendations for the use of membranes in order to achieve some progress in urban mining for the valorization of thorium. Full article
(This article belongs to the Special Issue Preparation and Application of Advanced Functional Membranes)
Show Figures

Figure 1

26 pages, 34274 KiB  
Article
Could Airborne Geophysical Data Be Used to Improve Predictive Modeling of Agronomic Soil Properties in Tropical Hillslope Area?
by Blenda P. Bastos, Helena S. K. Pinheiro, Francisco J. F. Ferreira, Waldir de Carvalho Junior and Lúcia Helena C. dos Anjos
Remote Sens. 2023, 15(15), 3719; https://doi.org/10.3390/rs15153719 - 25 Jul 2023
Viewed by 1625
Abstract
Airborne geophysical data (AGD) have great potential to represent soil-forming factors. Because of that, the objective of this study was to evaluate the importance of AGD in predicting soil attributes such as aluminum saturation (ASat), base saturation (BS), cation exchange capacity (CEC), clay, [...] Read more.
Airborne geophysical data (AGD) have great potential to represent soil-forming factors. Because of that, the objective of this study was to evaluate the importance of AGD in predicting soil attributes such as aluminum saturation (ASat), base saturation (BS), cation exchange capacity (CEC), clay, and organic carbon (OC). The AGD predictor variables include total count (μR/h), K (potassium), eU (uranium equivalent), and eTh (thorium equivalent), ratios between these elements (eTh/K, eU/K, and eU/eTh), factor F or F-parameter, anomalous potassium (Kd), anomalous uranium (Ud), anomalous magnetic field (AMF), vertical derivative (GZ), horizontal derivatives (GX and GY), and mafic index (MI). The approach was based on applying predictive modeling techniques using (1) digital elevation model (DEM) covariates and Sentinel-2 images with AGD; and (2) DEM covariates and Sentinel-2 images without the AGD. The study was conducted in Bom Jardim, a county in Rio de Janeiro-Brazil with an area of 382,430 km², with a database of 208 soil samples to a predefined depth (0–30 cm). Non-explanatory covariates for the selected soil attributes were excluded. Through the selected covariables, the random forest (RF) and support vector machine (SVM) models were applied with separate samples for training (75%) and validation (25%). The model’s performance was evaluated through the R-squared (R2), root mean square error (RMSE), and mean absolute error (MAE), as well as null model values and coefficient of variation (CV%). The RF algorithm showed better performance with AGD (R2 values ranging from 0.15 to 0.23), as well as the SVM model (R2 values ranging from 0.08 to 0.23) when compared to RF (R2 values ranging from 0.10 to 0.20) and SVM (R2 values ranging from 0.04 to 0.10) models without AGD. Overall, the results suggest that AGD can be helpful for soil mapping. Nevertheless, it is crucial to acknowledge that the accuracy of AGD in predicting soil properties could vary depending on various common factors in DSM, such as the quality and resolution of the covariates and available soil data. Further research is needed to determine the optimal approach for using AGD in soil mapping. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

16 pages, 5924 KiB  
Article
Setup for the Ionic Lifetime Measurement of the 229mTh3+ Nuclear Clock Isomer
by Kevin Scharl, Shiqian Ding, Georg Holthoff, Mahmood Irtiza Hussain, Sandro Kraemer, Lilli Löbell, Daniel Moritz, Tamila Rozibakieva, Benedict Seiferle, Florian Zacherl and Peter G. Thirolf
Atoms 2023, 11(7), 108; https://doi.org/10.3390/atoms11070108 - 24 Jul 2023
Cited by 4 | Viewed by 2686
Abstract
For the realization of an optical nuclear clock, the first isomeric excited state of thorium-229 (229mTh) is currently the only candidate due to its exceptionally low-lying excitation energy (8.338±0.024 eV). Such a nuclear clock holds promise not only [...] Read more.
For the realization of an optical nuclear clock, the first isomeric excited state of thorium-229 (229mTh) is currently the only candidate due to its exceptionally low-lying excitation energy (8.338±0.024 eV). Such a nuclear clock holds promise not only to be a very precise metrological device but also to extend the knowledge of fundamental physics studies, such as dark matter research or variations in fundamental constants. Considerable progress was achieved in recent years in characterizing 229mTh from its first direct identification in 2016 to the only recent observation of the long-sought-after radiative decay channel. So far, nuclear resonance as the crucial parameter of a nuclear frequency standard has not yet been determined with laser-spectroscopic precision. To determine another yet unknown basic property of the thorium isomer and to further specify the linewidth of its ground-state transition, a measurement of the ionic lifetime of the isomer is in preparation. Theory and experimental investigations predict the lifetime to be 103–104 s. To precisely target this property using hyperfine structure spectroscopy, an experimental setup is currently being commissioned at LMU Munich. It is based on a cryogenic Paul trap providing long-enough storage times for 229mTh ions, that will be sympathetically cooled with 88Sr+. This article presents a concept for an ionic lifetime measurement and discusses the laser-optical part of a setup specifically developed for this purpose. Full article
(This article belongs to the Special Issue Over a Century of Nuclear Isomers: Challenges and Prospects)
Show Figures

Figure 1

Back to TopTop