Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,685)

Search Parameters:
Keywords = thin-film electronics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3861 KB  
Article
Substrate Temperature-Induced Crystalline Phase Evolution and Surface Morphology in Zirconium Thin Films Deposited by Pulsed Laser Ablation
by Berdimyrat Annamuradov, Zikrulloh Khuzhakulov, Mikhail Khenner, Jasminka Terzic, Danielle Gurgew and Ali Oguz Er
Coatings 2025, 15(10), 1198; https://doi.org/10.3390/coatings15101198 - 11 Oct 2025
Viewed by 2
Abstract
Zirconium (Zr) thin films were deposited on silicon (Si) substrates via pulsed laser deposition (PLD) using a 248 nm excimer laser. The effects of substrate temperature on film morphology and crystallinity were systematically investigated. X-ray diffraction (XRD) revealed that the Zr(100) plane exhibited [...] Read more.
Zirconium (Zr) thin films were deposited on silicon (Si) substrates via pulsed laser deposition (PLD) using a 248 nm excimer laser. The effects of substrate temperature on film morphology and crystallinity were systematically investigated. X-ray diffraction (XRD) revealed that the Zr(100) plane exhibited the strongest orientation at 400 °C while Zr (002) was maximum at 500 °C. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses demonstrated an increase in surface roughness with temperature, with the smoothest surface observed at lower temperatures and significant island formation at 500 °C due to the transition to 3D growth. At 500 °C, interdiffusion effects led to the formation of zirconium silicide at the Zr/Si interface. To further interpret the experimental findings, computational modeling was employed to analyze the transition from 2D layer-by-layer growth to 3D island formation at elevated temperatures. Using a multi-parameter kinetics-free model based on free energy minimization, the critical film thickness for this transition was determined to be ~1–2 nm, aligning well with experimental observations. A separate kinetic model of island nucleation and growth predicts that this shift is driven by the kinetics of adatom surface diffusion. Additionally, the kinetic simulations revealed that, at 400 °C, adatom diffusivity optimally balances crystallization and surface energy minimization, yielding the highest film quality. At 500 °C, the rapid increase in diffusivity leads to the proliferation of 3D islands, consistent with the roughness trends observed in SEM and AFM data. These findings underscore the critical role of deposition parameters in tailoring Zr thin films for applications in advanced coatings and electronic devices. Full article
(This article belongs to the Collection Collection of Papers on Thin Film Deposition)
Show Figures

Figure 1

19 pages, 1457 KB  
Article
Development and Evaluation of Hyaluronic Acid-Chitosan Coated Liposomes for Enhanced Delivery of Resveratrol to Breast Cancer Cells
by Yin Yin Myat, Khin Khin Gyi, Pornthida Riangjanapatee, Chuda Chittasupho, Songyot Anuchapreeda and Siriporn Okonogi
Polysaccharides 2025, 6(4), 93; https://doi.org/10.3390/polysaccharides6040093 - 10 Oct 2025
Viewed by 170
Abstract
Resveratrol (RES), a naturally occurring polyphenolic compound with well-documented anticancer potential, is limited in clinical application due to its poor aqueous solubility and low bioavailability. This study aimed to develop RES-loaded liposomes coated sequentially with chitosan (CS) and hyaluronic acid-chitosan (HA) (RES-HA-CS-Lip) to [...] Read more.
Resveratrol (RES), a naturally occurring polyphenolic compound with well-documented anticancer potential, is limited in clinical application due to its poor aqueous solubility and low bioavailability. This study aimed to develop RES-loaded liposomes coated sequentially with chitosan (CS) and hyaluronic acid-chitosan (HA) (RES-HA-CS-Lip) to enhance RES stability, delivery, and anticancer efficacy in breast cancer cells. HA-CS-coated liposomes were prepared using a thin-film hydration technique. Their physicochemical characteristics were thoroughly investigated through dynamic light scattering, transmission electron microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The optimized RES-HA-CS-Lip exhibited spherical morphology with an average particle size of 212 nm, a narrow polydispersity index (<0.4), a zeta potential of +9.04 ± 1.0 mV, and high entrapment efficiency of 82.16%. Stability studies demonstrated superior retention of size, surface charge, and encapsulation efficiency over 28 days at both 4 °C and 25 °C. In vitro release profiles at physiological and acidic pH revealed sustained drug release, with enhanced release under acidic conditions mimicking the tumor microenvironment. Antioxidant activity, assessed via DPPH and ABTS radical-scavenging assays, indicated that RES retained its radical-scavenging potential upon encapsulation. Cytotoxicity assays demonstrated markedly improved anticancer activity against MCF-7 breast cancer cells, with an IC50 of 13.08 μg/mL at 48 h, while maintaining high biocompatibility toward normal HaCaT keratinocytes. RES-HA-CS-Lip demonstrated excellent stability against degradation and aggregation. Overall, these findings highlight HA-CS-coated liposomes as a promising polysaccharide-based nanocarrier that enhances stability, bioactivity, and therapeutic efficacy of RES, representing a potential strategy for targeted breast cancer therapy. Full article
Show Figures

Figure 1

13 pages, 2805 KB  
Article
Facile Synthesis of Mg-MOF-74 Thin Films for Enhanced CO2 Detection
by Yujing Zhang, Evan J. Haning, Hao Sun, Tzer-Rurng Su, Alan X. Wang, Ki-Joong Kim, Paul R. Ohodnicki and Chih-Hung Chang
Nanomaterials 2025, 15(20), 1541; https://doi.org/10.3390/nano15201541 - 10 Oct 2025
Viewed by 189
Abstract
Metal–organic frameworks (MOFs) are a class of highly ordered nanoporous crystals that possess a designable framework and unique chemical versatility. MOF thin films are ideal for nanotechnology-enabling applications, such as optoelectronics, catalytic coatings, and sensing. Mg-MOF-74 has been drawing increasing attention due to [...] Read more.
Metal–organic frameworks (MOFs) are a class of highly ordered nanoporous crystals that possess a designable framework and unique chemical versatility. MOF thin films are ideal for nanotechnology-enabling applications, such as optoelectronics, catalytic coatings, and sensing. Mg-MOF-74 has been drawing increasing attention due to its remarkable CO2 uptake capacity among MOFs and other commonly used CO2 absorbents. Mg-MOF-74 thin films are currently fabricated by immersing selected substrates in precursor solutions, followed by a traditional solvothermal synthesis process. Herein, we introduce a rapid, easy, and cost-effective synthesis protocol to fabricate MOF thin films in an additive manner. In this work, the controllable synthesis of Mg-MOF-74 thin films directly on optical supports is reported for the first time. Dense, continuous, and uniform Mg-MOF-74 thin films are successfully fabricated on bare glass slides, with an average growth rate of up to 85.3 nm min−1. The structural and optical properties of the resulting Mg-MOF-74 thin films are characterized using X-ray diffraction, atomic force microscopy, scanning electron microscopy, UV-Vis-NIR spectroscopy, and Fourier Transform Infrared Spectroscopy (FTIR). The CO2 adsorption performance of the resulting Mg-MOF-74 thin films is studied using FTIR for the first time, which demonstrates that, as per the length of the light path for gas absorption, 1 nm Mg-MOF-74 thin film could provide 400.9 ± 18.0 nm absorption length for CO2, which is achieved via the extraordinary CO2 adsorption by Mg-MOF-74. The synthesis protocol enables the rapid synthesis of MOF thin films, highlighting Mg-MOF-74 in more CO2-related applications, such as enhanced CO2 adsorption and MOF-enhanced infrared gas sensing. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

12 pages, 2224 KB  
Article
A Memory-Efficient Compensation Algorithm for Vertical Crosstalk in 8K LCD Panels
by Yongwoo Lee, Kiwon Choi, Hyeryoung Park, Yong Ju Kim, Kookhyun Choi, Jae-Hong Jeon and Min Jae Ko
Electronics 2025, 14(19), 3965; https://doi.org/10.3390/electronics14193965 - 9 Oct 2025
Viewed by 149
Abstract
As ultra-high resolution liquid crystal displays (LCDs) advance, crosstalk has become a critical challenge due to the reduced spacing of electronic circuits and increased signal frequencies. In particular, vertical crosstalk (V-CT) in vertical-alignment LCDs arises mainly from fringing electric fields generated by data [...] Read more.
As ultra-high resolution liquid crystal displays (LCDs) advance, crosstalk has become a critical challenge due to the reduced spacing of electronic circuits and increased signal frequencies. In particular, vertical crosstalk (V-CT) in vertical-alignment LCDs arises mainly from fringing electric fields generated by data lines, along with secondary contributions from data line–pixel coupling effect, thin-film transistor leakage, and other factors. To resolve V-CT, we propose a memory-efficient compensation algorithm implemented on a field-programmable gate array as a customized timing controller. The proposed algorithm achieves compensation accuracy within 2% while significantly reducing memory requirements. A conventional 7680 × 4320 pixel LCD panel requires approximately 796 MB of memory for compensation data, whereas our method reduces this to only 0.37 MB—a nearly 2000-fold reduction—by referencing only preceding pixel information. This approach enables cost-effective implementation, faster processing, and enhanced image quality. Overall, the proposed method provides a practical and scalable solution for resolving V-CT in 8K LCD panels, establishing a new benchmark for high-resolution display technologies. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

14 pages, 3567 KB  
Article
Structural and Electrical Properties of Si-Doped β-Ga2O3 Thin Films Deposited by RF Sputtering: Effects of Oxygen Flow Ratio and Post-Annealing Temperature
by Haechan Kim, Yuta Kubota, Nobuhiro Matsushita, Gonjae Lee and Jeongsoo Hong
Coatings 2025, 15(10), 1181; https://doi.org/10.3390/coatings15101181 - 9 Oct 2025
Viewed by 213
Abstract
Beta-gallium oxide (β-Ga2O3) is a semiconductor with an ultra-wide bandgap, high optical transparency, and excellent electrical properties, which can be finely tuned for a wide range of electronic devices. This study optimized the process conditions for fabricating β-Ga2 [...] Read more.
Beta-gallium oxide (β-Ga2O3) is a semiconductor with an ultra-wide bandgap, high optical transparency, and excellent electrical properties, which can be finely tuned for a wide range of electronic devices. This study optimized the process conditions for fabricating β-Ga2O3 thin films with desired electrical characteristics. β-Ga2O3 films were deposited on (100) Si substrates via RF magnetron sputtering with varying O2 flow rates and post-annealed at temperatures ranging from 600 °C to 800 °C. The structural and electrical properties of the films were analyzed using X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), and Hall effect measurements. The XRD results confirmed the formation of nanocrystalline β-Ga2O3, with variations in peak intensities and shifts observed based on O2 flow rates. The films exhibited carrier concentrations exceeding 5 × 1022 cm−3, mobilities ranging from 50 to 115 cm2/Vs, and resistivity around 1 × 10−6 Ω⋅cm. This study demonstrates that the electrical properties of β-Ga2O3 thin films can be modulated during the deposition and post-annealing processes. The ability to control these properties underscores the potential of β-Ga2O3 for advanced applications in high-performance high-power devices and optoelectronic devices such as deep ultraviolet photodetectors. Full article
(This article belongs to the Special Issue Thin Films and Nanostructures Deposition Techniques)
Show Figures

Figure 1

18 pages, 2205 KB  
Article
Design of Residual Stress-Balanced Transferable Encapsulation Platform Using Urethane-Based Polymer Superstrate for Reliable Wearable Electronics
by Sung-Hun Jo, Donghwan Kim, Chaewon Park and Eun Gyo Jeong
Polymers 2025, 17(19), 2688; https://doi.org/10.3390/polym17192688 - 4 Oct 2025
Viewed by 347
Abstract
Wearable and skin-mounted electronics demand encapsulation designs that simultaneously provide strong barrier performance, mechanical reliability, and transferability under ultrathin conditions. In this study, a residual stress-balanced transferable encapsulation platform was developed by integrating a urethane-based copolymer superstrate [p(IEM-co-HEMA)] with inorganic thin films. The [...] Read more.
Wearable and skin-mounted electronics demand encapsulation designs that simultaneously provide strong barrier performance, mechanical reliability, and transferability under ultrathin conditions. In this study, a residual stress-balanced transferable encapsulation platform was developed by integrating a urethane-based copolymer superstrate [p(IEM-co-HEMA)] with inorganic thin films. The polymer, deposited via initiated chemical vapor deposition (iCVD), offered over 90% optical transmittance, low RMS roughness (1–3 nm), and excellent solvent resistance, providing a stable base for inorganic barrier integration. An ALD Al2O3/ZnO nano-stratified barrier initially delivered effective moisture blocking, but tensile stress accumulation imposed a critical thickness of 30 nm, where the WVTR plateaued at ~2.5 × 10−4 g/m2/day. To overcome this limitation, a 40 nm e-beam SiO2 capping layer was added, introducing compressive stress via atomic peening and stabilizing Al2O3 interfaces through Si–O–Al bonding. This stress-balanced design doubled the critical thickness to 60 nm and reduced the WVTR to 3.75 × 10−5 g/m2/day, representing an order-of-magnitude improvement. OLEDs fabricated on this ultrathin platform preserved J–V–L characteristics and efficiency (~4.5–5.0 cd/A) after water-assisted transfer and on-skin deformation, while maintaining LT80 lifetimes of 140–190 h at 400 cd/m2 and stable emission for over 20 days in ambient storage. These results demonstrate that the stress-balanced encapsulation platform provides a practical route to meet the durability and reliability requirements of next-generation wearable optoelectronic devices. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 3501 KB  
Article
A Comprehensive Study of the Optical, Structural, and Morphological Properties of Chemically Deposited ZnO Thin Films
by Sayra Guadalupe Ruvalcaba-Manzo, Rafael Ramírez-Bon, Ramón Ochoa-Landín and Santos Jesús Castillo
Inorganics 2025, 13(10), 331; https://doi.org/10.3390/inorganics13100331 - 2 Oct 2025
Viewed by 281
Abstract
Zinc oxide (ZnO) is a wide bandgap semiconductor with optoelectronic and photocatalytic properties, which depend on its optical, structural, and morphological characteristics. In this study, we synthesized ZnO thin films by chemical bath deposition (CBD) and then thermally annealed them at 400 °C [...] Read more.
Zinc oxide (ZnO) is a wide bandgap semiconductor with optoelectronic and photocatalytic properties, which depend on its optical, structural, and morphological characteristics. In this study, we synthesized ZnO thin films by chemical bath deposition (CBD) and then thermally annealed them at 400 °C and 600 °C to evaluate the effect of thermal treatments. We characterized their structural, optical, morphological, and chemical properties using X-ray diffraction (XRD), UV–Vis spectroscopy, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The optical bandgap values were 3.20 eV for the as-grown thin films, and 3.23 eV and 3.21 eV after annealing at 400 °C and 600 °C, respectively. SEM micrographs revealed a change from elongated agglomerates in the as-grown thin films to uniform flower-like structures after annealing at 600 °C. XPS analysis confirmed ZnO formation in all samples, and we detected residual precursor species only in the as-grown thin films, which were completely removed by annealing at 600 °C. These results demonstrate that the CBD synthesis of ZnO can tune its optical and morphological properties through thermal annealing, making it suitable for optoelectronic, sensing, and photocatalytic applications. Full article
(This article belongs to the Special Issue Featured Papers in Inorganic Materials 2025)
Show Figures

Figure 1

16 pages, 1714 KB  
Article
Studies of Intra-Chain and Inter-Chain Charge Carrier Conduction in Acid Doped Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Thin Films
by Ayman A. A. Ismail, Henryk Bednarski and Andrzej Marcinkowski
Materials 2025, 18(19), 4569; https://doi.org/10.3390/ma18194569 - 1 Oct 2025
Viewed by 311
Abstract
Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is a conductive water-processable polymer with many important applications in organic electronics. The electrical conductivity of PEDOT:PSS layers is very diverse and can be changed by changing the processing and post-deposition conditions, e.g., by using different solvent additives, doping [...] Read more.
Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is a conductive water-processable polymer with many important applications in organic electronics. The electrical conductivity of PEDOT:PSS layers is very diverse and can be changed by changing the processing and post-deposition conditions, e.g., by using different solvent additives, doping or modifying the physical conditions of the layer deposition. Despite many years of intensive research on the relationship between the microstructure and properties of these layers, there are still gaps in our knowledge, especially with respect to the detailed understanding of the charge carrier transport mechanism in organic semiconductor thin films. In this work, we investigate the effect of acid doping of PEDOT:PSS thin films on the intra-chain and inter-chain conductivity by developing a model that treats PEDOT:PSS as a nanocomposite material. This model is based on the effective medium theory and uses the percolation theory equation for the electrical conductivity of a mixture of two materials. Here its implementation assumes that the role of the highly conductive material is attributed to the intra-chain conductivity of PEDOT and its quantitative contribution is determined based on the optical Drude–Lorentz model. While the weaker inter-chain conductivity is assumed to originate from the weakly conductive material and is determined based on electrical measurements using the van der Pauw method and coherent nanostructure-dependent analysis. Our studies show that doping with methanesulfonic acid significantly affects both types of conductivity. The intra-chain conductivity of PEDOT increases from 260 to almost 400 Scm−1. Meanwhile, the inter-chain conductivity increases by almost three orders of magnitude, reaching a critical state, i.e., exceeding the percolation threshold. The observed changes in electrical conductivity due to acid doping are attributed to the flattening of the PEDOT/PSS gel nanoparticles. In the model developed here, this flattening is accounted for by the inclusion shape factor. Full article
(This article belongs to the Special Issue Advances in Electronic and Photonic Materials)
Show Figures

Graphical abstract

18 pages, 3355 KB  
Article
Characterizations of Semiconductive W-Doped Ga2O3 Thin Films and Application in Heterojunction Diode Fabrication
by Chia-Te Liao, Yi-Wen Wang, Cheng-Fu Yang and Kao-Wei Min
Inorganics 2025, 13(10), 329; https://doi.org/10.3390/inorganics13100329 - 1 Oct 2025
Viewed by 247
Abstract
In this study, high-conductivity W-doped Ga2O3 thin films were successfully fabricated by directly depositing a composition of Ga2O3 with 10.7 at% WO3 (W:Ga = 12:100) using electron beam evaporation. The resulting thin films were found to [...] Read more.
In this study, high-conductivity W-doped Ga2O3 thin films were successfully fabricated by directly depositing a composition of Ga2O3 with 10.7 at% WO3 (W:Ga = 12:100) using electron beam evaporation. The resulting thin films were found to be amorphous. Due to the ohmic contact behavior observed between the W-doped Ga2O3 film and platinum (Pt), Pt was used as the contact electrode. Current-voltage (J-V) measurements of the W-doped Ga2O3 thin films demonstrated that the samples exhibited significant current density even without any post-deposition annealing treatment. To further validate the excellent charge transport characteristics, Hall effect measurements were conducted. Compared to undoped Ga2O3 thin films, which showed non-conductive characteristics, the W-doped thin films showed an increased carrier concentration and enhanced electron mobility, along with a substantial decrease in resistivity. The measured Hall coefficient of the W-doped Ga2O3 thin films was negative, indicating that these thin films were n-type semiconductors. Energy-Dispersive X-ray Spectroscopy was employed to verify the elemental ratios of Ga, O, and W in the W-doped Ga2O3 thin films, while X-ray photoelectron spectroscopy analysis further confirmed these ratios and demonstrated their variation with the depth of the deposited thin films. Furthermore, the W-doped Ga2O3 thin films were deposited onto both p-type and heavily doped p+-type silicon (Si) substrates to fabricate heterojunction diodes. All resulting devices exhibited good rectifying behavior, highlighting the promising potential of W-doped Ga2O3 thin films for use in rectifying electronic components. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 3rd Edition)
Show Figures

Figure 1

26 pages, 11868 KB  
Article
Correlating Structural Properties with Catalytic Stability in Nanocrystalline La(Sr)CoO3 Thin Films Grown by Pulsed Electron Deposition (PED)
by Lukasz Cieniek, Dominik Grochala, Tomasz Moskalewicz, Agnieszka Kopia and Kazimierz Kowalski
Materials 2025, 18(19), 4550; https://doi.org/10.3390/ma18194550 - 30 Sep 2025
Viewed by 299
Abstract
This study investigates the structural, morphological, and gas-sensing properties of pure and strontium-doped lanthanum cobaltite (La1−xSrxCoO3) perovskite thin films obtained by Pulsed Electron Deposition (PED). This sustainable ablative technique successfully produced high-quality, dense, nanocrystalline films on Si [...] Read more.
This study investigates the structural, morphological, and gas-sensing properties of pure and strontium-doped lanthanum cobaltite (La1−xSrxCoO3) perovskite thin films obtained by Pulsed Electron Deposition (PED). This sustainable ablative technique successfully produced high-quality, dense, nanocrystalline films on Si and MgO substrates, demonstrating excellent stoichiometric transfer from the source targets. A comprehensive analysis using XRD, SEM, TEM, AFM, and XPS was conducted to characterize the films. The results show that Sr-doping significantly refines the microstructure, leading to smaller crystallites and a more uniform surface topography. Gas sensing measurements, performed in a temperature range of 100–450 °C, revealed that all films exhibit a characteristic p-type semiconductor response to nitrogen dioxide (NO2). The La0.8Sr0.2CoO3 composition, in particular, demonstrated the most promising performance, with enhanced sensitivity and excellent operational stability at temperatures up to 350 °C. These findings validate that PED is a reliable and precise method for fabricating complex oxide films and confirm that Sr-doped LaCoO3 is a highly promising material for developing high-temperature NO2 gas sensors. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

15 pages, 4890 KB  
Article
Tunable Bandgap in Cobalt-Doped FeS2 Thin Films for Enhanced Solar Cell Performance
by Eder Cedeño Morales, Yolanda Peña Méndez, Sergio A. Gamboa-Sánchez, Boris Ildusovich Kharissov, Tomás C. Hernández García and Marco A. Garza-Navarro
Materials 2025, 18(19), 4546; https://doi.org/10.3390/ma18194546 - 30 Sep 2025
Viewed by 296
Abstract
Cobalt-doped iron disulfide (FeS2) thin films were synthesized via chemical bath deposition (CBD) followed by annealing at 450 °C, yielding phase-pure pyrite structures with multifunctional properties. A deposition temperature of 95 °C is critical for promoting Co incorporation, suppressing sulphur vacancies, [...] Read more.
Cobalt-doped iron disulfide (FeS2) thin films were synthesized via chemical bath deposition (CBD) followed by annealing at 450 °C, yielding phase-pure pyrite structures with multifunctional properties. A deposition temperature of 95 °C is critical for promoting Co incorporation, suppressing sulphur vacancies, and achieving structural stabilization of the film. After annealing, the dendritic morphologies transformed into compact quasi-spherical nanoparticles (~100 nm), which enhanced the crystallinity and optoelectronic performance of the films. The films exhibited strong absorption (>50%) in the visible and near-infrared regions and tunable direct bandgaps (1.14 to 0.96 eV, within the optimal range for single-junction solar cells. Electrical characterization revealed a fourth-order increase in conductivity after annealing (up to 4.78 Ω−1 cm−1) and confirmed stable p-type behavior associated with Co2+-induced acceptor states and defect passivation. These results demonstrate that CBD enabled the fabrication of Co-doped FeS2 thin films with synergistic structural, electrical, and optical properties. The integration of earth-abundant elements and tunable electronic properties makes these films promising absorber materials for the next-generation photovoltaic devices. Full article
(This article belongs to the Special Issue The Optical, Ferroelectric and Dielectric Properties of Thin Films)
Show Figures

Figure 1

15 pages, 9550 KB  
Article
Enhancing Energy Harvesting in Plant Microbial Fuel Cells with SnS-Coated 304 Stainless Steel Electrodes
by Nestor Rodríguez-Regalado, Yolanda Peña-Méndez, Edith Osorio-de-la-Rosa, Idalia Gómez-de-la-Fuente, Mirna Valdez-Hernández and Francisco López-Huerta
Coatings 2025, 15(10), 1130; https://doi.org/10.3390/coatings15101130 - 30 Sep 2025
Viewed by 340
Abstract
Plant microbial fuel cells (PMFCs) represent an eco-friendly solution for generating clean energy by converting biological processes into electricity. This work presents the first integration of tin sulfide (SnS)-coated 304 stainless steel (SS304) electrodes into Aloe vera-based PMFCs for enhanced energy harvesting. [...] Read more.
Plant microbial fuel cells (PMFCs) represent an eco-friendly solution for generating clean energy by converting biological processes into electricity. This work presents the first integration of tin sulfide (SnS)-coated 304 stainless steel (SS304) electrodes into Aloe vera-based PMFCs for enhanced energy harvesting. SnS thin films were obtained via chemical bath deposition and screen printing, followed by thermal treatment. X-ray diffraction (XRD) revealed a crystal size of 15 nm, while scanning electron microscopy (SEM) confirmed film thicknesses ranging from 3 to 13.75 µm. Over a 17-week period, SnS-coated SS304 electrodes demonstrated stable performance, with open circuit voltages of 0.6–0.7 V and current densities between 30 and 92 mA/m2, significantly improving power generation compared to uncoated electrodes. Polarization analysis indicated an internal resistance of 150 Ω and a power output of 5.8 mW/m2. Notably, the system successfully charged a 15 F supercapacitor with 8.8 J of stored energy, demonstrating a practical proof-of-concept for powering low-power IoT devices and advancing PMFC applications beyond power generation. Microbial biofilm formation, observed via SEM, contributed to enhanced electron transfer and system stability. These findings highlight the potential of PMFCs as a scalable, cost-effective, and sustainable energy solution suitable for industrial and commercial applications, contributing to the transition toward greener energy systems. These incremental advances demonstrate the potential of combining low-cost electrode materials and energy storage systems for future scalable and sustainable bioenergy solutions. Full article
(This article belongs to the Special Issue Advances and Challenges in Coating Materials for Battery Cathodes)
Show Figures

Figure 1

10 pages, 1628 KB  
Article
Improving the Performance of Ultrathin ZnO TFTs Using High-Pressure Hydrogen Annealing
by Hae-Won Lee, Minjae Kim, Jae Hyeon Jun, Useok Choi and Byoung Hun Lee
Nanomaterials 2025, 15(19), 1484; https://doi.org/10.3390/nano15191484 - 28 Sep 2025
Viewed by 292
Abstract
Ultrathin oxide semiconductors are promising channel materials for next-generation thin-film transistors (TFTs), but their performance is severely limited by bulk and interface defects as the channel thickness approaches a few nanometers. In this study, we show that high-pressure hydrogen annealing (HPHA) effectively mitigates [...] Read more.
Ultrathin oxide semiconductors are promising channel materials for next-generation thin-film transistors (TFTs), but their performance is severely limited by bulk and interface defects as the channel thickness approaches a few nanometers. In this study, we show that high-pressure hydrogen annealing (HPHA) effectively mitigates these limitations in 3.6 nm thick ZnO TFTs. HPHA-treated devices exhibit a nearly four-fold increase in on-current, a steeper subthreshold swing, and a negative shift in threshold voltage compared to reference groups. X-ray photoelectron spectroscopy reveals a marked reduction in oxygen vacancies and hydroxyl groups, while capacitance–voltage measurements confirm more than a three-fold decrease in interface trap density. Low-frequency noise analysis further demonstrates noise suppression and a transition in the dominant noise mechanism from carrier number fluctuation to mobility fluctuation. These results establish HPHA as a robust strategy for defect passivation in ultrathin oxide semiconductor channels and provide critical insights for their integration into future low-power, high-density electronic systems. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

14 pages, 2468 KB  
Article
Optimizing Annealing Temperature for Enhanced Electrical Performance and Stability of Solution-Processed In2O3 Thin-Film Transistors
by Taehui Kim, Seullee Lee, Ye-Won Lee, Dongwook Kim, Youngjun Yun, Jin-Hyuk Bae, Hyeonju Lee and Jaehoon Park
Micromachines 2025, 16(10), 1091; https://doi.org/10.3390/mi16101091 - 26 Sep 2025
Viewed by 357
Abstract
This study investigates the influence of post-deposition thermal annealing temperature on the crystal structure, chemical composition, and electrical performance of solution-processed indium oxide (In2O3) thin films. Based on thermogravimetric analysis (TGA) of the precursor solution, annealing temperatures of 350, [...] Read more.
This study investigates the influence of post-deposition thermal annealing temperature on the crystal structure, chemical composition, and electrical performance of solution-processed indium oxide (In2O3) thin films. Based on thermogravimetric analysis (TGA) of the precursor solution, annealing temperatures of 350, 450, and 550 °C were adopted. The resulting In2O3 films were characterized using ultraviolet–visible (UV–Vis) spectroscopy, atomic force microscopy (AFM), Raman spectroscopy, and Hall-effect measurements to evaluate their optical, morphological, crystalline polymorphism, and electrical properties. The results revealed that the film annealed at 450 °C exhibited a field-effect mobility of 4.28 cm2/V·s and an on/off current ratio of 2.15 × 107. The measured hysteresis voltages were 3.11, 1.80, and 0.92 V for annealing temperatures of 350, 450, and 550 °C, respectively. Altogether, these findings indicate that an annealing temperature of 450 °C provides an optimal balance between the electrical performance and device stability for In2O3-based thin-film transistors (TFTs), making this condition favourable for high-performance oxide electronics. Full article
Show Figures

Figure 1

24 pages, 5557 KB  
Article
The Antidepressant Effect of Targeted Release of Ketamine-Loaded Nanodroplets Stimulated by Low-Intensity Focused Ultrasound
by Bailing Wu, Yu Xu, Yuhang Xie, Youzhuo Li, Yue Huang, Yuran Feng and Mei Zhu
Pharmaceutics 2025, 17(10), 1251; https://doi.org/10.3390/pharmaceutics17101251 - 24 Sep 2025
Viewed by 328
Abstract
Objectives: Ketamine has demonstrated rapid and sustained antidepressant effects; however, its clinical utility is limited by the risk of addiction and systemic side effects. This study aimed to develop ketamine-loaded nanodroplets (Ket-NDs) with high encapsulation efficiency (EE) and stability for targeted low-dose [...] Read more.
Objectives: Ketamine has demonstrated rapid and sustained antidepressant effects; however, its clinical utility is limited by the risk of addiction and systemic side effects. This study aimed to develop ketamine-loaded nanodroplets (Ket-NDs) with high encapsulation efficiency (EE) and stability for targeted low-dose intravenous (IV) administration in a mice model of depression. Low-intensity focused ultrasound (LIFU) was employed to induce transcranial, region-specific drug release in the lateral habenula (LHb). Methods: Ket-NDs were synthesized using a thin-film hydration method with sonication and emulsification, incorporating perfluoropentane as the core material. Characterization was performed using light microscopy, cryogenic scanning electron microscopy (cryo-SEM), transmission electron microscopy, and dynamic light scattering (DLS). Drug EE and loading efficiency (LE) were quantified by reversed-phase high-performance liquid chromatography. A chronic restraint stress model was established, and Ket-NDs were administered intravenously followed by LIFU targeting the LHb. Antidepressant efficacy and biosafety were systematically evaluated. Results: (1) Ket-NDs exhibited uniform spherical morphology and a narrow size distribution, as confirmed by DLS (particle size: 139.75 ± 9.43 nm; Polydispersity index: 0.225 ± 0.025) and cryo-SEM analysis (number-average diameter: 109.5 ± 10.4 nm). The zeta potential was −15.93 ± 5.906 mV, and the formulation remained stable under 4 °C storage. (2) Ket-NDs demonstrated high EE (78.25 ± 16.13%) and LE (15.55 ± 4.49%). (3) In depressive mice, IV administration of Ket-NDs followed by LIFU targeting the LHb significantly improved behavioral outcomes: increased locomotor activity in the open field test, elevated sucrose preference index, and reduced immobility time in the tail suspension test. (4) Safety assessments revealed no significant organ toxicity or brain tissue damage in ultrasound-exposed regions. Conclusions: In summary, this study developed stable Ket-NDs. When combined with LIFU, they enable precise regional drug delivery to the brain, showcasing a promising treatment strategy for depression with reduced systemic side effects. Full article
Show Figures

Figure 1

Back to TopTop