Improving the Performance of Ultrathin ZnO TFTs Using High-Pressure Hydrogen Annealing
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TFTs | Thin Film Transistors |
HPHA | High Pressure Hydrogen Annealing |
AFM | Atomic Force Microscopy |
XPS | X-ray Photoelectron Spectroscopy |
References
- Fortunato, E.M.; Barquinha, P.M.; Pimentel, A.; Goncalves, A.M.; Marques, A.J.; Pereira, L.M.; Martins, R.F. Fully transparent ZnO thin-film transistor produced at room temperature. Adv. Mater. 2005, 17, 590–594. [Google Scholar] [CrossRef]
- Aikawa, S.; Nabatame, T.; Tsukagoshi, K. Effects of dopants in InOx-based amorphous oxide semiconductors for thin-film transistor applications. Appl. Phys. Lett. 2013, 103, 172105. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 2003, 300, 1269–1272. [Google Scholar] [CrossRef] [PubMed]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef]
- Kim, M.J.; Park, H.J.; Yoo, S.; Cho, M.H.; Jeong, J.K. Effect of channel thickness on performance of ultra-thin body IGZO field-effect transistors. IEEE Trans. Electron Devices 2022, 69, 2409–2416. [Google Scholar] [CrossRef]
- Nakata, M.; Tsuji, H.; Sato, H.; Nakajima, Y.; Fujisaki, Y.; Takei, T.; Yamamoto, T.; Fujikake, H. Influence of oxide semiconductor thickness on TFT characteristics. In Proceedings of the 2012 19th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), Kyoto, Japan, 4–6 July 2012; pp. 43–44. [Google Scholar]
- Choi, S.; Kim, J.-Y.; Rhee, J.; Kang, H.; Park, S.; Kim, D.M.; Choi, S.-J.; Kim, D.H. Method to extract interface and bulk trap separately over the full sub-gap range in amorphous InGaZnO thin-film transistors by using various channel thicknesses. IEEE Electron Device Lett. 2019, 40, 574–577. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, D.H.; Chong, E.; Jeon, Y.W.; Kim, D.H. Effect of channel thickness on density of states in amorphous InGaZnO thin film transistor. Appl. Phys. Lett. 2011, 98, 122105. [Google Scholar] [CrossRef]
- Isakov, I.; Faber, H.; Mottram, A.D.; Das, S.; Grell, M.; Regoutz, A.; Kilmurray, R.; McLachlan, M.A.; Payne, D.J.; Anthopoulos, T.D. Quantum confinement and thickness-dependent electron transport in solution-processed In2O3 transistors. Adv. Electron. Mater. 2020, 6, 2000682. [Google Scholar] [CrossRef]
- Chiang, T.-H.; Yeh, B.-S.; Wager, J.F. Amorphous IGZO thin-film transistors with ultrathin channel layers. IEEE Trans. Electron Devices 2015, 62, 3692–3696. [Google Scholar] [CrossRef]
- Oh, S.-I.; Woo, J.-M.; Jang, J.-H. Comparative studies of long-term ambiance and electrical stress stability of IGZO thin-film transistors annealed under hydrogen and nitrogen ambiance. IEEE Trans. Electron Devices 2016, 63, 1910–1915. [Google Scholar] [CrossRef]
- Kim, M.; Kim, K.-B.; Lee, K.-Y.; Yu, C.; Kim, H.-D.; Chung, H.-K. Effects of high pressure annealing on the characteristics of solid phase crystallization poly-Si thin-film transistors. J. Appl. Phys. 2008, 103, 044508. [Google Scholar] [CrossRef]
- Kim, M.; Jin, G. Effects of gate insulator using high pressure annealing on the characteristics of solid phase crystallized polycrystalline silicon thin-film transistors. J. Appl. Phys. 2009, 105, 074507. [Google Scholar] [CrossRef]
- Yoon, S.; Tak, Y.J.; Yoon, D.H.; Choi, U.H.; Park, J.-S.; Ahn, B.D.; Kim, H.J. Study of nitrogen high-pressure annealing on InGaZnO thin-film transistors. ACS Appl. Mater. Interfaces 2014, 6, 13496–13501. [Google Scholar] [CrossRef]
- Ji, K.H.; Kim, J.-I.; Jung, H.Y.; Park, S.Y.; Choi, R.; Kim, U.K.; Hwang, C.S.; Lee, D.; Hwang, H.; Jeong, J.K. Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors. Appl. Phys. Lett. 2011, 98, 103509. [Google Scholar] [CrossRef]
- Rim, Y.S.; Choi, H.-W.; Kim, K.H.; Kim, H.J. Effects of structural modification via high-pressure annealing on solution-processed InGaO films and thin-film transistors. J. Phys. D Appl. Phys. 2016, 49, 075112. [Google Scholar] [CrossRef]
- Shin, H.S.; Rim, Y.S.; Mo, Y.G.; Choi, C.G.; Kim, H.J. Effects of high-pressure H2O-annealing on amorphous IGZO thin-film transistors. Phys. Status Solidi (a) 2011, 208, 2231–2234. [Google Scholar] [CrossRef]
- Lee, S.K.; Kim, Y.J.; Heo, S.; Park, W.; Yoo, T.J.; Cho, C.; Hwang, H.J.; Lee, B.H. Advantages of a buried-gate structure for graphene field-effect transistor. Semicond. Sci. Technol. 2019, 34, 055010. [Google Scholar] [CrossRef]
- Kim, D.; Kim, H.J.; Lee, C.; Kim, K.; Bae, J.H.; Kang, I.M.; Jang, J. Influence of Active Channel Layer Thickness on SnO2 Thin-Film Transistor Performance. Electronics 2021, 10, 200. [Google Scholar] [CrossRef]
- Zhu, M.; Huang, H.; Gong, J.; Sun, C.; Jiang, X. Role of oxygen desorption during vacuum annealing in the improvement of electrical properties of aluminum doped zinc oxide films synthesized by sol gel method. J. Appl. Phys. 2007, 102, 043106. [Google Scholar] [CrossRef]
- Arulraj, A. Enhanced photoconductive response of ZnO thin films with the impact of annealing temperatures on structural and optical properties. Sci. Rep. 2025, 15, 28851. [Google Scholar] [CrossRef]
- Nunes, P.; Fortunato, E.; Martins, R. Influence of the annealing conditions on the properties of ZnO thin films. Int. J. Inorg. Mater. 2001, 3, 1125–1128. [Google Scholar] [CrossRef]
- Mamat, M.H.; Che Khalin, M.I.; Nik Mohammad, N.N.H.; Khusaimi, Z.; Md Sin, N.D.; Shariffudin, S.S.; Mohamed Zahidi, M.; Mahmood, M.R. Effects of Annealing Environments on the Solution-Grown, Aligned Aluminium-Doped Zinc Oxide Nanorod-Array-Based Ultraviolet Photoconductive Sensor. J. Nanomater. 2012, 2012, 189279. [Google Scholar] [CrossRef]
- Bang, S.; Lee, S.; Park, J.; Park, S.; Ko, Y.; Choi, C.; Chang, H.; Park, H.; Jeon, H. The effects of post-annealing on the performance of ZnO thin film transistors. Thin Solid Films 2011, 519, 8109–8113. [Google Scholar] [CrossRef]
- Yi, G.R.; Kim, H.S.; Lee, D.H.; Kim, B.; Kim, C.K. Effect of annealing on performance of ZnO thin film transistors. Mol. Cryst. Liq. Cryst. 2019, 678, 43–52. [Google Scholar] [CrossRef]
- Jiang, L.; Li, J.; Huang, K.; Li, S.; Wang, Q.; Sun, Z.; Mei, T.; Wang, J.; Zhang, L.; Wang, N. Low-temperature and solution-processable zinc oxide transistors for transparent electronics. ACS Omega 2017, 2, 8990–8996. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Khosravi, A.; Azcatl, A.; Bolshakov, P.; Mirabelli, G.; Caruso, E.; Hinkle, C.L.; Hurley, P.K.; Wallace, R.M.; Young, C.D. Evaluation of border traps and interface traps in HfO2/MoS2 gate stacks by capacitance–voltage analysis. 2D Mater. 2018, 5, 031002. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Z.; Si, M.; Ye, P.D. Characterization of interface and bulk traps in ultrathin atomic layer-deposited oxide semiconductor MOS capacitors with HfO2/In2O3 gate stack by CV and conductance method. Front. Mater. 2022, 9, 850451. [Google Scholar] [CrossRef]
- Lee, K.; Jung, L.; Hwang, H. Study of high-pressure hydrogen annealing effects on InGaZnO thin-film transistors. Appl. Phys. Lett. 2022, 121, 072104. [Google Scholar] [CrossRef]
- Lee, S.; Niu, C.; Shih, C.-A.; Lin, J.-Y.; Zhang, Z.; Zhang, Y.; Long, L.; Wang, H.; Alam, M.A.; Ye, P.D. Comprehensive Study of Low-Frequency Noise Origins in Scaled Atomic-Layer-Deposited IGZO TFTs. IEEE Trans. Electron Devices 2025, 72, 2993–2999. [Google Scholar] [CrossRef]
- Shin, W.; Lee, J.Y.; Kim, J.; Lee, S.Y.; Lee, S.-T. Low-frequency noise analysis on asymmetric damage and self-recovery behaviors of ZnSnO thin-film transistors under hot carrier stress. Discover Nano 2024, 19, 187. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, C.G.; Tsormpatzoglou, A.; Dimitriadis, C.A.; Khan, S.A.; Hatalis, M.K.; Jomaah, J.; Ghibaudo, G. Origin of low-frequency noise in the low drain current range of bottom-gate amorphous IGZO thin-film transistors. IEEE Electron Device Lett. 2011, 32, 898–900. [Google Scholar] [CrossRef]
- Muhea, W.E.; Castillo, G.U.; Ordoñez, H.C.; Gneiting, T.; Ghibaudo, G.; Iñiguez, B. Parameter extraction and compact modeling of 1/f noise for amorphous ESL IGZO TFTs. IEEE J. Electron Devices Soc. 2020, 8, 407–412. [Google Scholar] [CrossRef]
- Park, J.C.; Kim, S.W.; Kim, C.J.; Kim, S.; Kim, D.H.; Cho, I.-T.; Kwon, H.-I. Low-frequency noise in amorphous indium-gallium-zinc oxide thin-film transistors from subthreshold to saturation. Appl. Phys. Lett. 2010, 97, 122104. [Google Scholar] [CrossRef]
- Vandamme, L.K.; Hooge, F. What Do We Certainly Know About 1/f Noise in MOSTs? IEEE Trans. Electron Devices 2008, 55, 3070–3085. [Google Scholar] [CrossRef]
- Hooge, F.; Kleinpenning, T.; Vandamme, L.K. Experimental studies on 1/f noise. Rep. Prog. Phys. 1981, 44, 479. [Google Scholar] [CrossRef]
- Hooge, F.N. 1/f noise sources. IEEE Trans. Electron Devices 1994, 41, 1926–1935. [Google Scholar] [CrossRef]
- Fung, T.-C.; Baek, G.; Kanicki, J. Low frequency noise in long channel amorphous In–Ga–Zn–O thin film transistors. J. Appl. Phys. 2010, 108, 074518. [Google Scholar] [CrossRef]
Device Type | On Current (μA) | Effective Mobility (cm2/V·s) | VTH (V) | On/Off Ratio | S.S (mV/dec) |
---|---|---|---|---|---|
Before annealing | 0.17 ± 0.02 | 1.4 ± 0.15 | 0.61 ± 0.10 | 1.43 × 108 | 157 |
Vacuum annealing | 0.35 ± 0.03 | 3.35 ± 0.11 | 0.37 ± 0.10 | 2.78 × 108 | 133 |
HPHA | 0.73± 0.1 | 5.31 ± 0.13 | 0.16 ± 0.05 | 1.32 × 109 | 118 |
Device Type | CLF (pF) | CHF (pF) | COX (pF) | Dit (eV−1cm−2) |
---|---|---|---|---|
Before annealing | 5.43 | 3.07 | 12.82 | 4.48 × 1012 |
Vacuum annealing | 3.60 | 2.34 | 9.20 | 2.31 × 1012 |
HPHA | 3.49 | 2.68 | 10.63 | 1.34 × 1012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-W.; Kim, M.; Jun, J.H.; Choi, U.; Lee, B.H. Improving the Performance of Ultrathin ZnO TFTs Using High-Pressure Hydrogen Annealing. Nanomaterials 2025, 15, 1484. https://doi.org/10.3390/nano15191484
Lee H-W, Kim M, Jun JH, Choi U, Lee BH. Improving the Performance of Ultrathin ZnO TFTs Using High-Pressure Hydrogen Annealing. Nanomaterials. 2025; 15(19):1484. https://doi.org/10.3390/nano15191484
Chicago/Turabian StyleLee, Hae-Won, Minjae Kim, Jae Hyeon Jun, Useok Choi, and Byoung Hun Lee. 2025. "Improving the Performance of Ultrathin ZnO TFTs Using High-Pressure Hydrogen Annealing" Nanomaterials 15, no. 19: 1484. https://doi.org/10.3390/nano15191484
APA StyleLee, H.-W., Kim, M., Jun, J. H., Choi, U., & Lee, B. H. (2025). Improving the Performance of Ultrathin ZnO TFTs Using High-Pressure Hydrogen Annealing. Nanomaterials, 15(19), 1484. https://doi.org/10.3390/nano15191484