Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (354)

Search Parameters:
Keywords = thickness of liquid film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4392 KiB  
Article
Visualization of Kinetic Parameters of a Droplet Nucleation Boiling on Smooth and Micro-Pillar Surfaces with Inclined Angles
by Yi-Nan Zhang, Guo-Qing Huang, Lu-Ming Zhao and Hong-Xia Chen
Energies 2025, 18(15), 4152; https://doi.org/10.3390/en18154152 - 5 Aug 2025
Abstract
The evaporation dynamics of droplets on smooth and inclined micro-pillar surfaces were experimentally investigated. The surface temperature was increased from 50 °C to 120 °C, with the inclination angles being 0°, 30°, 45°, and 60° respectively. The dynamic parameters, including contact area, nucleation [...] Read more.
The evaporation dynamics of droplets on smooth and inclined micro-pillar surfaces were experimentally investigated. The surface temperature was increased from 50 °C to 120 °C, with the inclination angles being 0°, 30°, 45°, and 60° respectively. The dynamic parameters, including contact area, nucleation density, bubble stable diameter, and droplet asymmetry, were recorded using two high-speed video cameras, and the corresponding evaporation performance was analyzed. Experimental results showed that the inclination angle had a significant influence on the evaporation of micro-pillar surfaces than smooth surfaces as well as a positive correlation between the enhancement performance of the micro-pillars and increasing inclination angles. This angular dependence arises from surface inclination-induced tail elongation and the corresponding asymmetry of droplets. With definition of the one-dimensional asymmetry factor (ε) and volume asymmetry factor (γ), it was proven that although the asymmetric thickness of the droplets reduces the nucleation density and bubble stable diameter, the droplet asymmetry significantly increased the heat exchange area, resulting in a 37% improvement in the evaporation rate of micro-pillar surfaces and about a 15% increase in its enhancement performance to smooth surfaces when the inclination angle increased from 0°to 60°. These results indicate that asymmetry causes changes in heat transfer conditions, specifically, a significant increase in the wetted area and deformation of the liquid film, which are the direct enhancement mechanisms of inclined micro-pillar surfaces. Full article
(This article belongs to the Special Issue Advancements in Heat Transfer and Fluid Flow for Energy Applications)
Show Figures

Figure 1

16 pages, 993 KiB  
Article
Optical and Photoconversion Properties of Ce3+-Doped (Ca,Y)3(Mg,Sc)2Si3O12 Films Grown via LPE Method onto YAG and YAG:Ce Substrates
by Anna Shakhno, Vitalii Gorbenko, Tetiana Zorenko, Aleksandr Fedorov and Yuriy Zorenko
Materials 2025, 18(15), 3590; https://doi.org/10.3390/ma18153590 - 30 Jul 2025
Viewed by 195
Abstract
This work presents a comprehensive study of the structural, luminescent, and photoconversion properties of epitaxial composite phosphor converters based on single crystalline films of Ce3+-activated Ca2−xY1+xMg1+xSc1−xSi3O12:Ce (x = 0–0.25) [...] Read more.
This work presents a comprehensive study of the structural, luminescent, and photoconversion properties of epitaxial composite phosphor converters based on single crystalline films of Ce3+-activated Ca2−xY1+xMg1+xSc1−xSi3O12:Ce (x = 0–0.25) (CYMSSG:Ce) garnet, grown using the liquid phase epitaxy (LPE) method on single-crystal Y3Al5O12 (YAG) and YAG:Ce substrates. The main goal of this study is to elucidate the structure–composition–property relationships that influence the photoluminescence and photoconversion efficiency of these film–substrate composite converters, aiming to optimize their performance in high-power white light-emitting diode (WLED) applications. Systematic variation in the Y3+/Sc3+/Mg2+ cationic ratios within the garnet structure, combined with the controlled tuning of film thickness (ranging from 19 to 67 µm for CYMSSG:Ce/YAG and 10–22 µm for CYMSSG:Ce/YAG:Ce structures), enabled the precise modulation of their photoconversion properties. Prototypes of phosphor-converted WLEDs (pc-WLEDs) were developed based on these epitaxial structures to assess their performance and investigate how the content and thickness of SCFs affect the colorimetric properties of SCFs and composite converters. Clear trends were observed in the Ce3+ emission peak position, intensity, and color rendering, induced by the Y3+/Sc3+/Mg2+ cation substitution in the film converter, film thickness, and activator concentrations in the substrate and film. These results may be useful for the design of epitaxial phosphor converters with tunable emission spectra based on the epitaxially grown structures of garnet compounds. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

21 pages, 6272 KiB  
Article
Numerical Study of Gas Dynamics and Condensate Removal in Energy-Efficient Recirculation Modes in Train Cabins
by Ivan Panfilov, Alexey N. Beskopylny, Besarion Meskhi and Sergei F. Podust
Fluids 2025, 10(8), 197; https://doi.org/10.3390/fluids10080197 - 29 Jul 2025
Viewed by 184
Abstract
Maintaining the required relative humidity values in the vehicle cabin is an important HVAC task, along with considerations related to the temperature, velocity, air pressure and noise. Deviation from the optimal values worsens the psycho-physiological state of the driver and affects the energy [...] Read more.
Maintaining the required relative humidity values in the vehicle cabin is an important HVAC task, along with considerations related to the temperature, velocity, air pressure and noise. Deviation from the optimal values worsens the psycho-physiological state of the driver and affects the energy efficiency of the train. In this study, a model of liquid film formation on and removal from various cabin surfaces was constructed using the fundamental Navier–Stokes hydrodynamic equations. A special transport model based on the liquid vapor diffusion equation was used to simulate the air environment inside the cabin. The evaporation and condensation of surface films were simulated using the Euler film model, which directly considers liquid–gas and gas–liquid transitions. Numerical results were obtained using the RANS equations and a turbulence model by means of the finite volume method in Ansys CFD. Conjugate fields of temperature, velocity and moisture concentration were constructed for various time intervals, and the dependence values for the film thicknesses on various surfaces relative to time were determined. The verification was conducted in comparison with the experimental data, based on the protocol for measuring the microclimate indicators in workplaces, as applied to the train cabin: the average ranges encompassed temperature changes from 11% to 18%, and relative humidity ranges from 16% to 26%. Comparison with the results of other studies, without considering the phase transition and condensation, shows that, for the warm mode, the average air temperature in the cabin with condensation is 12.5% lower than without condensation, which is related to the process of liquid evaporation from the heated walls. The difference in temperature values for the model with and without condensation ranged from −12.5% to +4.9%. We demonstrate that, with an effective mode of removing condensate film from the window surface, including recirculation modes, the energy consumption of the climate control system improves significantly, but this requires a more accurate consideration of thermodynamic parameters and relative humidity. Thus, considering the moisture condensation model reveals that this variable can significantly affect other parameters of the microclimate in cabins: in particular, the temperature. This means that it should be considered in the numerical modeling, along with the basic heat transfer equations. Full article
Show Figures

Figure 1

25 pages, 3790 KiB  
Article
Studying Inverse Problem of Microscale Droplets Squeeze Flow Using Convolutional Neural Network
by Aryan Mehboudi, Shrawan Singhal and S.V. Sreenivasan
Fluids 2025, 10(8), 190; https://doi.org/10.3390/fluids10080190 - 24 Jul 2025
Viewed by 261
Abstract
We present a neural-network-based approach to solve the image-to-image translation problem in microscale droplets squeeze flow. A residual convolutional neural network is proposed to address the inverse problem: reconstructing a low-resolution (LR) droplet pattern image from a high-resolution (HR) liquid film thickness imprint. [...] Read more.
We present a neural-network-based approach to solve the image-to-image translation problem in microscale droplets squeeze flow. A residual convolutional neural network is proposed to address the inverse problem: reconstructing a low-resolution (LR) droplet pattern image from a high-resolution (HR) liquid film thickness imprint. This enables the prediction of initial droplet configurations that evolve into target HR imprints after a specified spreading time. The developed neural network architecture aims at learning to tune the refinement level of its residual convolutional blocks by using function approximators that are trained to map a given film thickness to an appropriate refinement level indicator. We use multiple stacks of convolutional layers, the output of which is translated according to the refinement level indicators provided by the directly connected function approximators. Together with a non-linear activation function, the translation mechanism enables the HR imprint image to be refined sequentially in multiple steps until the target LR droplet pattern image is revealed. We believe that this work holds value for the semiconductor manufacturing and packaging industry. Specifically, it enables desired layouts to be imprinted on a surface by squeezing strategically placed droplets with a blank surface, eliminating the need for customized templates and reducing manufacturing costs. Additionally, this approach has potential applications in data compression and encryption. Full article
Show Figures

Figure 1

27 pages, 3398 KiB  
Review
A Comprehensive Review on Studies of Flow Characteristics in Horizontal Tube Falling Film Heat Exchangers
by Zhenchuan Wang and Meijun Li
Energies 2025, 18(13), 3587; https://doi.org/10.3390/en18133587 - 7 Jul 2025
Viewed by 386
Abstract
The horizontal tube falling film heat exchangers (HTFFHEs), which exhibit remarkable advantages such as high efficiency in heat and mass transfer, low resistance, and a relatively simple structural configuration, have found extensive applications. Complex flow phenomena and the coupled processes of heat and [...] Read more.
The horizontal tube falling film heat exchangers (HTFFHEs), which exhibit remarkable advantages such as high efficiency in heat and mass transfer, low resistance, and a relatively simple structural configuration, have found extensive applications. Complex flow phenomena and the coupled processes of heat and mass transfer take place within it. Given that the heat and mass transfer predominantly occur at the gas-liquid interface, the flow characteristics therein emerge as a significant factor governing the performance of heat and mass transfer. This article elaborates on the progress of experimental and simulation research approaches with respect to flow characteristics. It systematically reviews the influence patterns of various operating parameters, namely parameters of gas, solution and internal medium, as well as structural parameters like tube diameter and tube spacing, on the flow characteristics, such as the flow regime between tubes, liquid film thickness, and wettability. This review serves to furnish theoretical underpinnings for optimizing the heat and mass transfer performance of the horizontal tube falling film heat exchanger. It is further indicated that the multi-dimensional flow characteristics and their quantitative characterizations under the impacts of different airflow features will constitute the focal research directions for horizontal tube falling film heat exchangers in the foreseeable future. Full article
Show Figures

Figure 1

16 pages, 2389 KiB  
Article
Collaboration of Two UV-Absorbing Dyes in Cholesteric Liquid Crystals Films for Infrared Broadband Reflection and Ultraviolet Shielding
by Mengqi Xie, Yutong Liu, Xiaohui Zhao, Zhidong Liu, Jinghao Zhang, Dengyue Zuo, Guang Cui, Hui Cao and Maoyuan Li
Photonics 2025, 12(7), 656; https://doi.org/10.3390/photonics12070656 - 29 Jun 2025
Viewed by 365
Abstract
This study developed cholesteric liquid crystal broadband reflective films using zinc oxide nanoparticles (ZnO NPs) and homotriazine UV-absorbing dye (UV-1577) to enhance infrared shielding. Unlike benzotriazole-based UV absorber UV-327, which suffers from volatility and contamination, UV-1577 exhibits superior compatibility with liquid crystals, higher [...] Read more.
This study developed cholesteric liquid crystal broadband reflective films using zinc oxide nanoparticles (ZnO NPs) and homotriazine UV-absorbing dye (UV-1577) to enhance infrared shielding. Unlike benzotriazole-based UV absorber UV-327, which suffers from volatility and contamination, UV-1577 exhibits superior compatibility with liquid crystals, higher UV absorption efficiency, and enhanced processing stability due to its larger molecular structure. By synergizing UV-1577 with ZnO NPs, we achieved a gradient UV intensity distribution across the film thickness, inducing a pitch gradient that broadened the reflection bandwidth to 915 nm and surpassing the performance of previous systems using UV-327/ZnO NPs (<900 nm). We conducted a detailed examination of the factors influencing the reflective bandwidth. These included the UV-1577/ZnO NP ratio, the concentrations of the polymerizable monomer (RM257) and chiral dopant (R5011), along with polymerization temperature, UV irradiation intensity, and irradiation time. The resultant films demonstrated efficient ultraviolet shielding via the UV-1577/ZnO NPs collaboration and infrared shielding through the induced pitch gradient. This work presents a scalable strategy for energy-saving smart windows. Full article
(This article belongs to the Special Issue Liquid Crystals in Photonics II)
Show Figures

Figure 1

20 pages, 3408 KiB  
Article
Friction Stress Analysis of Slag Film in Mold of Medium-Carbon Special Steel Square Billet
by Xingjuan Wang, Xulin Si, Liguang Zhu, Tianshuo Wei and Xuelong Zheng
Metals 2025, 15(7), 702; https://doi.org/10.3390/met15070702 - 24 Jun 2025
Viewed by 270
Abstract
Non-uniform friction and lubrication are the key factors affecting the surface quality of the casting billet. Based on the three-layer structure of the casting powder in the mold, the frictional stress in the mold was calculated and analyzed by using the relationship between [...] Read more.
Non-uniform friction and lubrication are the key factors affecting the surface quality of the casting billet. Based on the three-layer structure of the casting powder in the mold, the frictional stress in the mold was calculated and analyzed by using the relationship between the frictional stress and the thickness and viscosity of the liquid slag film, and the lubrication state between the cast billet and the mold was evaluated. Based on the actual production data of 40Mn2 steel and combined with the numerical simulation results of the solidification and shrinkage process of the molten steel in the mold by ANSYS 2022 R1 software, the frictional stress on the cast billet in the mold was calculated. It was found that within the range of 44~300 mm from the meniscus, the friction between the cast billet and the mold was mainly liquid friction, and the friction stress value increased from 0 to 145 KPa. Within 300–720 mm from the meniscus, the billet shell is in direct contact with the mold. The friction between the cast billet and the mold is mainly solid-state friction, and the friction stress value increases from 10.6 KPa to 26.6 KPa. It indicates that the excessive frictional stress inside the mold causes poor lubrication of the cast billet. By reducing the taper of the mold and optimizing the physical and chemical properties of the protective powder, within the range of 44~550 mm from the meniscus, the friction between the cast billet and the mold is mainly liquid friction, and the friction stress value varies within the range of 0–200 Pa. It reduces the frictional stress inside the mold, improves the lubrication between the billet shell and the mold, and completely solves the problem of mesh cracks on the surface of 40Mn2 steel cast billets. Full article
(This article belongs to the Special Issue Numerical Modelling of Metal-Forming Processes)
Show Figures

Figure 1

34 pages, 3719 KiB  
Article
Experimental and Numerical Study of Film Boiling Around a Small Nickel Sphere
by Charles Brissot, Léa Cailly-Brandstäter, Romain Castellani, Elie Hachem and Rudy Valette
Fluids 2025, 10(7), 162; https://doi.org/10.3390/fluids10070162 - 24 Jun 2025
Viewed by 246
Abstract
This work—mixing an original experimental approach, as well as numerical simulations—proposes to study film boiling modes around a small nickel sphere. While dealing with a simple looking phenomenon that is found in many industrial processes and has been solved for basic quenching regimes, [...] Read more.
This work—mixing an original experimental approach, as well as numerical simulations—proposes to study film boiling modes around a small nickel sphere. While dealing with a simple looking phenomenon that is found in many industrial processes and has been solved for basic quenching regimes, we focus on describing precisely how vapor formation and film thicknesses, as well as vapor bubble evacuation, affect cooling kinetics. As instrumenting small spheres may lead to experimental inaccuracies, we optically captured, using a high-speed camera, the vapor film thickness at mid height, the vapor bubble volume, and the bubble detachment frequency, along with the heat flux. More precisely, an estimation of the instant sphere temperature, in different conditions, was obtained through cooling time measurement before the end of the film boiling mode, subsequently facilitating heat flux evaluation. We encountered a nearly linear decrease in both the vapor film thickness and vapor bubble volume as the sphere temperature decreased. Notably, the detachment frequency remained constant across the whole temperature range. The estimation of the heat fluxes confirmed the prevalence of conduction as the primary heat transfer mode; a major portion of the energy was spent increasing the liquid temperature. The results were then compared to finite element simulations using an in-house multiphysics solver, including thermic phase changes (liquid to vapor) and their hydrodynamics, and we also captured the interfaces. While presenting a challenge due to the contrast in densities and viscosities between phases, the importance of the small circulations along them, which improve the heat removal in the liquid phase, was highlighted; we also assessed the suitability of the model and the numerical code for the simulation of such quenching cases when subcooling in the vicinity of a saturation temperature. Full article
(This article belongs to the Section Heat and Mass Transfer)
Show Figures

Figure 1

17 pages, 13043 KiB  
Article
Lubrication Performance Promotion of GTL Base Oil by BN Nanosheets via Cascade Centrifugation-Assisted Liquid-Phase Exfoliation
by Jiashun Liu, Shuo Xiang, Xiaoyu Zhou, Shigang Lin, Kehong Dong, Yiwei Liu, Donghai He, Yunhong Fan, Yuehao Liu, Bingxue Xiong, Kai Ma, Kaiyang Xiao, Genmao Luo, Qinhui Zhang and Xin Yang
Lubricants 2025, 13(7), 281; https://doi.org/10.3390/lubricants13070281 - 23 Jun 2025
Viewed by 376
Abstract
Broad lateral size and thickness distributions impede the application of hexagonal boron nitride nanosheets (BNNSs) as friction modifiers in base oil, although they possess remarkable potential for lubrication performance promotion. In this work, a cascade centrifugation-assisted liquid-phase exfoliation approach was presented to prepare [...] Read more.
Broad lateral size and thickness distributions impede the application of hexagonal boron nitride nanosheets (BNNSs) as friction modifiers in base oil, although they possess remarkable potential for lubrication performance promotion. In this work, a cascade centrifugation-assisted liquid-phase exfoliation approach was presented to prepare BNNSs from hexagonal boron nitride (h-BN) efficiently and scalably. Subsequently, they were ultrasonically dispersed into gas-to-liquid (GTL) base oil, and their lubrication performance promotion was evaluated by a four-ball tribotester. Tribological tests demonstrated that BNNS possesses excellent friction-reducing and anti-wear properties in GTL. Furthermore, the findings indicate that at a BNNS content of 0.8 wt.%, the system displayed the lowest COF and WSD. Particularly, with an addition of 0.8 wt.% BNNS into GTL, the AFC and WSD are reduced significantly by 40.1% and 35.4% compared to pure base oil, respectively, and the surface roughness, wear depth, and wear volume were effectively reduced by 91.0%, 68.5%, and 76.8% compared to GTL base oil, respectively. Raman, SEM-EDS, and XPS results proved that the outstanding friction-reducing and anti-wear properties of BNNS can mainly be ascribed to the presence of physical adsorption film and tribo-chemical film, which were composed of FeOOH, FeO, Fe3O4, and B2O3. Full article
Show Figures

Figure 1

15 pages, 1993 KiB  
Article
Compact Dual-Wavelength Optical Fiber Sensor for the Simultaneous Measurement of the Refractive Index and Temperature of Liquid Samples
by Karla Ivonne Serrano-Arévalo, Erika Rodríguez-Sevilla, Monserrat Alonso-Murias, Héctor Pérez-Aguilar and David Monzón-Hernández
Chemosensors 2025, 13(6), 198; https://doi.org/10.3390/chemosensors13060198 - 28 May 2025
Viewed by 1014
Abstract
This study proposes the development of a dual-wavelength optical fiber sensor (DWOFS) that integrates two optical fiber structures in a multimode transmission line to measure the refractive index and temperature of a liquid concurrently. One structure is based on a refractive index sensor [...] Read more.
This study proposes the development of a dual-wavelength optical fiber sensor (DWOFS) that integrates two optical fiber structures in a multimode transmission line to measure the refractive index and temperature of a liquid concurrently. One structure is based on a refractive index sensor that utilizes surface plasmon resonance, comprising a 5 mm long single-mode fiber (SMF) section coated with chromium/gold (Cr/Au) films. The secondary structure employs a multimode interferometer with a 29 mm long no-core fiber (NCF) section covered with a thick layer of polydimethylsiloxane (PDMS) to measure temperature. The measurements obtained reveal two distinct drops in the transmission spectrum at approximately 600 nm and 1550 nm, respectively, enabling precise measurement of the two parameters. The sensor demonstrates a high degree of sensitivity to both refractive index and temperature, spanning the visible (2770.30 nm/RIU) and infrared (0.178 nm/°C) regions of the spectra, respectively. Furthermore, the thermo-optical coefficient for water (0.9928×104 RIU/°C) was estimated. The proposed sensor offers a compact solution for the simultaneous measurement of refractive index and temperature in liquid samples for a variety of applications, including biological, environmental, and healthcare research. Full article
Show Figures

Figure 1

11 pages, 3574 KiB  
Article
Preparation of Few-Micron-Thick Free-Standing Au-Nanorod/UDMA-TEGDMA Nanocomposite Films by Using PVA Sacrificial Layers
by Nóra Tarpataki, Andrea Keczánné-Üveges, Melinda Szalóki and Attila Bonyár
Polymers 2025, 17(10), 1391; https://doi.org/10.3390/polym17101391 - 19 May 2025
Viewed by 409
Abstract
A method to prepare free-standing, few-micron-thick films from a dental photopolymer resin, namely UDMA-TEGDMA in a 3:1 weight ratio, doped with gold nanorods, is presented. The method is based on a sandwich structure consisting of a 4 μm thick PVA sacrificial layer, the [...] Read more.
A method to prepare free-standing, few-micron-thick films from a dental photopolymer resin, namely UDMA-TEGDMA in a 3:1 weight ratio, doped with gold nanorods, is presented. The method is based on a sandwich structure consisting of a 4 μm thick PVA sacrificial layer, the Au-nanorod/UDMA-TEGDMA nanocomposite layer, and glycerol, all spin-coated sequentially onto a glass slide. Glycerol serves as a cover layer to shut out oxygen during photopolymerization, while the water-soluble PVA enables the subsequent detachment of the nanocomposite film by simple immersion into a liquid bath. Layer thicknesses were controlled by profilometry, while the presence of homogeneously dispersed gold nanorods was confirmed by optical spectroscopy and dark-field optical microscopy. A total of five similar spin-coating scenarios were tested, out of which two approaches produced positive results, with final nanocomposite layer thicknesses in the 2.5–4 μm range, which is smaller than the usual thickness of the oxygen inhibition layer (OIL) commonly present in these types of resins. Optimization of these technological processes and parameters to control film thickness and consistency is discussed in detail. Full article
(This article belongs to the Special Issue Advances in Photopolymerization Process and Applications)
Show Figures

Figure 1

11 pages, 2208 KiB  
Article
Enhanced Localized Electric Field from Surface Plasmon Coupling in a Silver Nanostructure Array with a Silver Thin Film for Bioimaging and Biosensing
by Kota Yamasaki, Ryohei Hatsuoka, Kenji Wada, Tetsuya Matsuyama and Koichi Okamoto
Photonics 2025, 12(5), 439; https://doi.org/10.3390/photonics12050439 - 1 May 2025
Viewed by 655
Abstract
The electric field enhancement effect induced by localized surface plasmon resonance (LSPR) plays a critical role in imaging and sensing applications. In particular, nanocube structures with narrow gaps provide large hotspot areas, making them highly promising for high-sensitivity applications. This study predicts the [...] Read more.
The electric field enhancement effect induced by localized surface plasmon resonance (LSPR) plays a critical role in imaging and sensing applications. In particular, nanocube structures with narrow gaps provide large hotspot areas, making them highly promising for high-sensitivity applications. This study predicts the electric field enhancement effect of structures combining silver nanocubes and a 10 nm thick silver thin film using the finite-difference time-domain (FDTD) method. We demonstrate that the interaction between the silver nanocubes and silver thin film allows control over sharp LSPR peaks in the visible wavelength range. Specifically, the structure with a spacer layer between the silver nanocubes and the silver thin film is suitable for multimodal imaging, while the direct contact structure of the silver nanocubes and the silver thin film shows potential as a highly sensitive refractive index sensor. The 10 nm thick silver thin film enables backside illumination due to its transparency in the visible wavelength region, making it compatible with inverted microscopes and allowing for versatile applications, such as living cell imaging and observations in liquid media. These structures are particularly expected to contribute to advancements in bioimaging and biosensing. Full article
(This article belongs to the Special Issue Plasmon-Enhanced Photon Emission in Nanostructures)
Show Figures

Figure 1

34 pages, 8692 KiB  
Review
Recent Advances in Polyphenylene Sulfide-Based Separators for Lithium-Ion Batteries
by Lianlu Wan, Haitao Zhou, Haiyun Zhou, Jie Gu, Chen Wang, Quan Liao, Hongquan Gao, Jianchun Wu and Xiangdong Huo
Polymers 2025, 17(9), 1237; https://doi.org/10.3390/polym17091237 - 30 Apr 2025
Viewed by 828
Abstract
Polyphenylene sulfide (PPS)-based separators have garnered significant attention as high-performance components for next-generation lithium-ion batteries (LIBs), driven by their exceptional thermal stability (>260 °C), chemical inertness, and mechanical durability. This review comprehensively examines advances in PPS separator design, focusing on two structurally distinct [...] Read more.
Polyphenylene sulfide (PPS)-based separators have garnered significant attention as high-performance components for next-generation lithium-ion batteries (LIBs), driven by their exceptional thermal stability (>260 °C), chemical inertness, and mechanical durability. This review comprehensively examines advances in PPS separator design, focusing on two structurally distinct categories: porous separators engineered via wet-chemical methods (e.g., melt-blown spinning, electrospinning, thermally induced phase separation) and nonporous solid-state separators fabricated through solvent-free dry-film processes. Porous variants, typified by submicron pore architectures (<1 μm), enable electrolyte-mediated ion transport with ionic conductivities up to >1 mS·cm−1 at >55% porosity, while their nonporous counterparts leverage crystalline sulfur-atom alignment and trace electrolyte infiltration to establish solid–liquid biphasic conduction pathways, achieving ion transference numbers >0.8 and homogenized lithium flux. Dry-processed solid-state PPS separators demonstrate unparalleled thermal dimensional stability (<2% shrinkage at 280 °C) and mitigate dendrite propagation through uniform electric field distribution, as evidenced by COMSOL simulations showing stable Li deposition under Cu particle contamination. Despite these advancements, challenges persist in reconciling thickness constraints (<25 μm) with mechanical robustness, scaling solvent-free manufacturing, and reducing costs. Innovations in ultra-thin formats (<20 μm) with self-healing polymer networks, coupled with compatibility extensions to sodium/zinc-ion systems, are identified as critical pathways for advancing PPS separators. By addressing these challenges, PPS-based architectures hold transformative potential for enabling high-energy-density (>500 Wh·kg−1), intrinsically safe energy storage systems, particularly in applications demanding extreme operational reliability such as electric vehicles and grid-scale storage. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 3855 KiB  
Article
Thermocapillary Flow in Fluid Smectic Bubbles in Microgravity
by Eric Minor, Ravin Chowdhury, Cheol S. Park, Joseph E. Maclennan and Noel A. Clark
Crystals 2025, 15(5), 416; https://doi.org/10.3390/cryst15050416 - 29 Apr 2025
Viewed by 452
Abstract
Interfaces between two fluids exhibit an excess free-energy cost per unit area that is manifested as surface tension. This equilibrium property generally depends on temperature, which enables the phenomenon of thermocapillary flow, wherein application of a temperature gradient having a component parallel to [...] Read more.
Interfaces between two fluids exhibit an excess free-energy cost per unit area that is manifested as surface tension. This equilibrium property generally depends on temperature, which enables the phenomenon of thermocapillary flow, wherein application of a temperature gradient having a component parallel to the surface generates a net in-plane effective body force on the fluid and thereby causes flow. Here, we study the thermocapillary flow in fluid smectic liquid crystal films freely suspended in air and stabilized in thickness by the smectic layering. If such films are a single layer (~3 nm) or a few layers thick, they have the largest surface to volume ratio of any fluid preparation, making them particularly interesting in the context of thermocapillary flow, which is two-dimensional (2D) in the film plane. Five-layer thick films in the form of spherical bubbles were subjected to a north–south temperature gradient field along a polar axis, with flow fields mapped using inclusions on the film surface as tracers, where the inclusions were “islands”, small circular stacks of extra layers. These experiments were carried out on the International Space Station to avoid interference from thermal convention of the air. The flow field as a function of latitude on the bubble can be successfully modeled using Navier–Stokes hydrodynamics, modified to include permeative flow out of the background fluid into the islands. Full article
(This article belongs to the Section Liquid Crystals)
Show Figures

Figure 1

15 pages, 9464 KiB  
Article
Molecular Simulation Study of Gas–Water Adsorption Behavior and Mobility Evaluation in Ultra-Deep, High-Pressure Fractured Tight Sandstone Reservoirs
by Yongfu Liu, Xuehao Pei, Fenglai Yang, Junjie Zhong, Li Dai, Cuili Wang, Tingya Zhou, Yijia Li and Sa Xiao
Energies 2025, 18(9), 2175; https://doi.org/10.3390/en18092175 - 24 Apr 2025
Cited by 1 | Viewed by 454
Abstract
Under high-temperature and high-pressure conditions, understanding the competitive adsorption and mobilization mechanisms of gas and water in fractured tight sandstone gas reservoirs is crucial for optimizing the recovery factor. This study employs molecular dynamics simulation to investigate the adsorption behavior and mobilization characteristics [...] Read more.
Under high-temperature and high-pressure conditions, understanding the competitive adsorption and mobilization mechanisms of gas and water in fractured tight sandstone gas reservoirs is crucial for optimizing the recovery factor. This study employs molecular dynamics simulation to investigate the adsorption behavior and mobilization characteristics of H2O and CH4 in 10 nm quartz nanopores under the conditions of the Keshen fractured tight sandstone gas reservoir. The results indicate that H2O exhibits strong adsorption on the quartz surface, forming two high-density adsorption layers with a thickness of approximately 0.6 nm, whereas CH4 forms three adsorption layers with a thickness of about 1.1 nm. Under gas–water coexistence conditions, the competitive adsorption effect of the water phase significantly influences the distribution of CH4. Due to the hydrophilicity of the quartz wall, H2O molecules preferentially adsorb onto the wall surface, forming a stable water film that significantly inhibits CH4 adsorption. When the water saturation reaches 35%, water molecules form liquid bridges within the pores, segmenting the gas phase into different regions. As water saturation further increases, more stable liquid bridge structures develop, and microscopic water lock effects emerge, further restricting gas flow. During depletion development, H2O remains difficult to mobilize due to strong wall adsorption, with a recovery factor of only 7%. In contrast, CH4 exhibits high mobility, with a recovery factor of up to 75%. However, as water saturation increases from 30% to 70%, the recovery factor of CH4 decreases significantly from 75% to 29%, indicating that the water phase not only occupies pore space, but also exerts a blocking effect that significantly inhibits CH4 percolation and production. This study provides important theoretical support for the development strategies of ultra-deep fractured tight sandstone gas reservoirs and offers key insights for improving the ultimate recovery factor under gas–water coexistence conditions. Full article
(This article belongs to the Special Issue New Advances in Low-Energy Processes for Geo-Energy Development)
Show Figures

Figure 1

Back to TopTop