Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,083)

Search Parameters:
Keywords = thick layer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 2093 KB  
Article
A Cosmic Radiation Modular Telescope on the Moon: The MoonRay Concept
by Pier Simone Marrocchesi
Particles 2025, 8(4), 86; https://doi.org/10.3390/particles8040086 (registering DOI) - 27 Oct 2025
Abstract
The MoonRay project is carrying out a concept study of a permanent lunar cosmic-ray (CR) and gamma-ray observatory, in view of the implementation of habitats on our satellite. The idea is to build a modular telescope that will be able to overcome the [...] Read more.
The MoonRay project is carrying out a concept study of a permanent lunar cosmic-ray (CR) and gamma-ray observatory, in view of the implementation of habitats on our satellite. The idea is to build a modular telescope that will be able to overcome the limitations, in available power and weight, of the present generation of CR instruments in Low Earth Orbit, while carrying out high-energy gamma-ray observations from a vantage point at the South Pole of the Moon. An array of fully independent modules (towers), with limited individual size and mass, can provide an acceptance more than one order of magnitude larger than instruments in flight at present. The modular telescope is designed to be deployed progressively, during a series of lunar missions, while collecting meaningful scientific data at the intermediate stages of its implementation. The operational power will be made available by the facilities maintaining the lunar habitats. With a geometric factor close to 15 m2sr and about 8 times larger sensitive area than FERMI-LAT, MoonRay will be able to carry out a very rich observational program over a time span of a few decades with an energy reach of 10 PeV allowing the exploration of the CR “knee” and the observation of the Southern Sky with gamma rays well into the TeV scale. Each tower (of approximate size 20 cm × 20 cm ×100 cm) is equipped with three instruments. A combined Charge and Time-of-Flight detector (CD-ToF) can identify individual cosmic elements, leveraging on an innovative two-layered array of pixelated Low-Gain Avalanche Diode (LGAD) sensors, with sub-ns time resolution. The latter can achieve an unprecedented rejection power against backscattered radiation from the calorimeter. It is followed by a tracker, providing also photon conversion, and by a thick crystal calorimeter (55 radiation lengths, 3 proton interaction lengths at normal incidence) with an energy resolution of 30–40% (1–2%) for protons (electrons) and a proton/electron rejection in excess of 105. A time resolution close to 100 ps has been obtained, with prototypal arrays of 3 mm × 3 mm LGAD pixels, in a recent test campaign carried out at CERN with Pb beam fragments. Full article
Show Figures

Figure 1

22 pages, 10298 KB  
Article
Allobaculum mucilyticum-Mediated Gut Barrier Dysfunction Exacerbates the Severity of Hypertriglyceridemic Acute Pancreatitis in Mice
by Ping Yang, Meirong Wu, Wenjie Liang, Yudong Sun, Li-Long Pan and Jia Sun
Antioxidants 2025, 14(11), 1284; https://doi.org/10.3390/antiox14111284 (registering DOI) - 27 Oct 2025
Abstract
Hypertriglyceridemic acute pancreatitis (HTGAP) is characterized by frequent severe complications and poor clinical prognosis. Recent evidence suggests that gut dysbiosis is correlated with pancreatic injury in HTGAP, although the precise mechanisms remain to be elucidated. Here, we found that experimental HTGAP mice exhibited [...] Read more.
Hypertriglyceridemic acute pancreatitis (HTGAP) is characterized by frequent severe complications and poor clinical prognosis. Recent evidence suggests that gut dysbiosis is correlated with pancreatic injury in HTGAP, although the precise mechanisms remain to be elucidated. Here, we found that experimental HTGAP mice exhibited gut dysbiosis and intestinal barrier dysfunction, accompanied by an abnormal increase in Allobaculum mucilyticum (A. mucilyticum) and a decrease in Akkermansia muciniphila (A. muciniphila). Administration of A. mucilyticum aggravated oxidative stress-associated intestinal barrier dysfunction, promoted bacterial translocation to the pancreas, and ultimately exacerbated pancreatic injury. Conversely, supplementation with A. muciniphila alleviated the severity of HTGAP by restoring mucus layer thickness and reducing intestinal pro-inflammatory macrophage polarization. These findings highlight the critical role of gut dysbiosis in HTGAP progression, mediated through the pro-inflammatory mucolytic pathobiont A. mucilyticum, and suggest that modulating gut microbiota may represent a novel therapeutic strategy for HTGAP. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

20 pages, 3814 KB  
Article
Humidity-Driven Interfacial Restructuring of Lubricating Films in Phosphate Ester Ionic Liquids: Aromatic vs. Aliphatic Cation Effects
by Zhaowen Ba, Dan Qiao, Dapeng Feng and Jian Zhang
Lubricants 2025, 13(11), 475; https://doi.org/10.3390/lubricants13110475 (registering DOI) - 27 Oct 2025
Abstract
This study investigates the interfacial behavior of four phosphate ester ionic liquids (ILs) with contrasting cation hydrophobicity under humid environments. Through tribological tests, surface analysis, and molecular dynamics simulations, we reveal how moisture absorption governs lubricant film organization at metal interfaces. Aromatic ILs [...] Read more.
This study investigates the interfacial behavior of four phosphate ester ionic liquids (ILs) with contrasting cation hydrophobicity under humid environments. Through tribological tests, surface analysis, and molecular dynamics simulations, we reveal how moisture absorption governs lubricant film organization at metal interfaces. Aromatic ILs (imidazolium/pyridinium cations) exhibit significant degradation in lubrication after moisture exposure, with friction coefficients increasing by 0.03–0.05 and wear volumes scaling with humidity. This deterioration arises from competitive water–cation adsorption, where hydrogen bonding disrupts Fe-cation coordination bonds and destabilizes the protective film. In contrast, aliphatic ILs (tetraalkylammonium/phosphonium cations) maintain robust tribological performance. Their alkyl chains spatially confine water to outer adsorption layers (>17 Å from the surface), preserving a stable core lubricating film (~14 Å thick). Molecular dynamics simulations confirm that water co-adsorbs with aromatic cations (RDF peak: 2.5 Å), weakening interfacial interactions, while aliphatic ILs minimize cation–water affinity (RDF peak: 4 Å). These findings establish cation hydrophobicity as a critical design parameter for humidity-resistant lubricants, providing fundamental insights into water-mediated interfacial phenomena in complex fluid systems. Full article
Show Figures

Figure 1

25 pages, 2419 KB  
Article
A Frequency-Dependent and Nonlinear, Time-Explicit Five-Layer Human Head Numerical Model for Realistic Estimation of Focused Acoustic Transmission Through the Human Skull for Noninvasive High-Intensity and High-Frequency Transcranial Ultrasound Stimulation: An Application to Neurological and Psychiatric Disorders
by Shivam Sharma, Nuno A. T. C. Fernandes and Óscar Carvalho
Bioengineering 2025, 12(11), 1161; https://doi.org/10.3390/bioengineering12111161 (registering DOI) - 26 Oct 2025
Abstract
Transcranial focused ultrasound is a promising noninvasive technique for neuromodulation in neurological and psychiatric disorders, but accurate prediction of acoustic transmission through the skull remains a major challenge. In this study, we present a five-layer numerical human head model that integrates frequency-dependent acoustic [...] Read more.
Transcranial focused ultrasound is a promising noninvasive technique for neuromodulation in neurological and psychiatric disorders, but accurate prediction of acoustic transmission through the skull remains a major challenge. In this study, we present a five-layer numerical human head model that integrates frequency-dependent acoustic parameters with nonlinear time-explicit dynamics to realistically capture ultrasound propagation. The model explicitly represents skin, trabecular bone, cortical bone, and brain, each assigned experimentally derived acoustic properties across a clinically relevant frequency range (0.5–5 MHz). Numerical simulations were performed in the frequency domain and time-explicit to quantify sound transmission loss and focal depth under high-intensity and high-frequency stimulation. The results show the effect of frequency, radius of curvature, and skull thickness on maximum pressure ratio, focal depth, and focus zone inside the brain tissue. Findings indicate that skull geometry, particularly radius of curvature and thickness, strongly influences the focal zone, with thinner skull regions allowing deeper penetration and reduced transmission loss. Comparison of the frequency-domain model with the time-explicit model demonstrated broadly similar trends; however, the frequency-domain approach consistently underestimated transmission loss and was unable to capture nonlinear effects such as frequency harmonics. These findings highlight the importance of nonlinear, time-explicit modeling for accurate transcranial ultrasound planning and suggest that the proposed framework provides a robust tool for optimizing stimulation parameters and identifying ideal target zones, supporting the development of safer and more effective neuromodulation strategies. Full article
Show Figures

Graphical abstract

17 pages, 3831 KB  
Article
Simulation Analysis of Cu2O Solar Cells
by Sinuo Chen, Lichun Wang, Chunlan Zhou, Jinli Yang and Xiaojie Jia
Energies 2025, 18(21), 5623; https://doi.org/10.3390/en18215623 (registering DOI) - 26 Oct 2025
Abstract
Cu2O solar cells are regarded as a promising emerging inorganic photovoltaic technology due to their power conversion efficiency (PCE) potential and material sustainability. While previous studies primarily focused on the band offset between n-type buffer layers and Cu2O optical [...] Read more.
Cu2O solar cells are regarded as a promising emerging inorganic photovoltaic technology due to their power conversion efficiency (PCE) potential and material sustainability. While previous studies primarily focused on the band offset between n-type buffer layers and Cu2O optical absorption, this work systematically investigated an ETL/buffer/p-Cu2O/HTL heterojunction structure using SCAPS-1D simulations. Key design parameters, including bandgap (Eg) and electron affinity (χ) matching across layers, were optimized to minimize carrier transport barriers. Furthermore, the doping concentration and thickness of each functional layer (ETL: transparent conductive oxide; HTL: hole transport layer) were tailored to balance electron conductivity, parasitic absorption, and Auger recombination. Through this approach, a maximum PCE of 14.12% was achieved (Voc = 1.51V, Jsc = 10.52 mA/cm2, FF = 88.9%). The study also identified candidate materials for ETL (e.g., GaN, ZnO:Mg) and HTL (e.g., ZnTe, NiOx), along with optimal thicknesses and doping ranges for the Cu2O absorber. These findings provide critical guidance for advancing high-performance Cu2O solar cells. Full article
(This article belongs to the Special Issue Functional Materials for Advanced Energy Applications)
Show Figures

Figure 1

29 pages, 8150 KB  
Article
A Calculation Method for Surface Energies with Thermodynamic Characteristics and Its Application in Investigating Activity Mechanisms for Nanoporous W
by Yingtong Guo, Kai Wang, Xingyu Chen, Xin Chen, Zumin Wang and Yuan Huang
Materials 2025, 18(21), 4895; https://doi.org/10.3390/ma18214895 (registering DOI) - 26 Oct 2025
Abstract
Surface energy is involved in various thermodynamic processes, providing a driving force for thermodynamic reactions. However, surface energies applied in current engineering calculations are generally measured in J/m2, which is unsuitable for thermodynamic analysis. To solve this problem, the calculation formula [...] Read more.
Surface energy is involved in various thermodynamic processes, providing a driving force for thermodynamic reactions. However, surface energies applied in current engineering calculations are generally measured in J/m2, which is unsuitable for thermodynamic analysis. To solve this problem, the calculation formula for surface energies was modified to convert the unit of measurement, transforming the non-thermodynamic measurement unit J/m2 into the thermodynamically characterized kJ/mol. The calculated surface energy values measured in kJ/mol are unstable due to the influence of the number of atomic layers (t) in the constructed models. Meanwhile, the problem of determining the surface layer thickness, i.e., the number of atomic layers with surface characteristics (t0), remains unresolved in surface science. Therefore, the extended Finnis Sinclair (EFS) potential was improved by extending the nearest neighbor range and utilized in analyzing the energy per atom, resulting in the determined number of t0. These results suggest that selecting the surface layer number corresponding to the first to third nearest-neighbor atoms could be appropriate, and the resulting surface energies in kJ/mol appear reasonable. The validity of this computational method and the origin of nanoporous W activity were confirmed by analyzing the changes in total surface energy before and after nano-treatment using the novel nanosized approach. Full article
(This article belongs to the Topic Surface Science of Materials)
18 pages, 5130 KB  
Article
Seismic Performance of Corroded RC Bridge Piers Strengthened with UHPC Shells
by Yixue Li, Wenting Yuan, Jianmei Chang and Bingjie Zhao
Buildings 2025, 15(21), 3863; https://doi.org/10.3390/buildings15213863 (registering DOI) - 26 Oct 2025
Abstract
Previous studies have investigated the enhancement of the chloride-corrosion resistance of reinforced concrete piers using ultra-high-performance concrete (UHPC) shells. However, these studies did not consider the combined effects of retrofitting time, UHPC shell thickness, and axial loads applied to the piers. To address [...] Read more.
Previous studies have investigated the enhancement of the chloride-corrosion resistance of reinforced concrete piers using ultra-high-performance concrete (UHPC) shells. However, these studies did not consider the combined effects of retrofitting time, UHPC shell thickness, and axial loads applied to the piers. To address this research gap, this study conducted numerical simulations, analyzing the seismic performance of retrofitted piers under different UHPC layer thicknesses (30 to 50 mm), service lives (50 to 85 years), and axial compression ratios (8%, 16%, and 24%). First, we briefly outlined the material property degradation characteristics of bridge piers. Then, using rectangular piers as case studies, numerical simulations were conducted on the cyclic performance of corroded piers. The results demonstrated that the strength of piers retrofitted before 70 years, even using a 30 mm thick UHPC shell, was greater than that of pristine RC piers across all axial loadings. For piers retrofitted with a 50 mm thick UHPC shell, the SRPF and SRYF reached about 1.4 and 1.5, respectively. The energy dissipation capacity and stiffness of the UHPC-retrofitted piers increased with the increase in the UHPC thickness and axial compression ratio. The research results of this study offer a useful reference for the seismic retrofitting of corroded piers using UHPC. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

13 pages, 1798 KB  
Article
Direct Synthesis of Single-Crystalline Bilayer Graphene on Dielectric Substrate
by Zuoquan Tan, Xianqin Xing, Yimei Fang, Le Huang, Shunqing Wu, Zhiyong Zhang, Le Wang, Xiangping Chen and Shanshan Chen
Nanomaterials 2025, 15(21), 1629; https://doi.org/10.3390/nano15211629 (registering DOI) - 25 Oct 2025
Viewed by 46
Abstract
Direct growth of high-quality, Bernal-stacked bilayer graphene (BLG) on dielectric substrates is crucial for electronic and optoelectronic devices, yet it remains hindered by poor film quality, uncontrollable thickness, and high-density grain boundaries. In this work, a facile, catalyst-assisted method to grow high-quality, single-crystalline [...] Read more.
Direct growth of high-quality, Bernal-stacked bilayer graphene (BLG) on dielectric substrates is crucial for electronic and optoelectronic devices, yet it remains hindered by poor film quality, uncontrollable thickness, and high-density grain boundaries. In this work, a facile, catalyst-assisted method to grow high-quality, single-crystalline BLG directly on dielectric substrates (SiO2/Si, sapphire, and quartz) was demonstrated. A single-crystal monolayer graphene template was first employed as a seed layer to facilitate the homoepitaxial synthesis of single-crystalline BLG directly on insulating substrates. Nanostructure Cu powders were used as the remote catalysis to provide long-lasting catalytic activity during the graphene growth. Transmission electron microscopy confirms the single-crystalline nature of the resulting BLG domains, which validates the superiority of the homoepitaxial growth technique. Raman spectroscopy and electrical measurement results indicate that the quality of the as-grown BLG is comparable to that on metal substrate surfaces. Field-effect transistors fabricated directly on the as-grown BLG/SiO2/Si showed a room temperature carrier mobility as high as 2297 ± 3 cm2 V−1 s−1, which is comparable to BLG grown on Cu and much higher than that reported on in-sulators. Full article
Show Figures

Figure 1

18 pages, 2378 KB  
Article
Spin-Coating of Sizing on Glass Fibres
by James L. Thomason, Roya Akrami and Liu Yang
Micro 2025, 5(4), 47; https://doi.org/10.3390/micro5040047 (registering DOI) - 25 Oct 2025
Viewed by 35
Abstract
Size is a surface coating applied to glass fibres during manufacture, and it is arguably the most important component in a glass-reinforced composite. Research and development on sizings and composite interfaces are severely limited, because conventional laboratory- scale glass fibre sizing analysis commonly [...] Read more.
Size is a surface coating applied to glass fibres during manufacture, and it is arguably the most important component in a glass-reinforced composite. Research and development on sizings and composite interfaces are severely limited, because conventional laboratory- scale glass fibre sizing analysis commonly involves sample preparation by dip coating, resulting in a size layer up to two orders of magnitude thicker than industrially produced glass fibre products. This makes it difficult to make useful comparisons between industrial and lab-scale-prepared samples when investigating size performance. This paper presents a novel, but simple, use of laboratory spin coating to apply a size layer to glass fibres that are similar to industrial-sized fibres. Thermogravimetric analysis and electron microscopy were used to investigate the size layers of glass fibres spin-coated with two chemically different sizing formulations, under a range of conditions. The average size layer thickness on spin-coated glass fibres could be easily and simply controlled in a range from 0.05 to 0.6 µm, compared to 0.4–1.3 µm on samples dip coated with the same size formulation and 0.06–0.10 µm on industrial reference samples. This novel application of the spin coating method offers the potential of improved research sample preparation, as it eliminates the need to alter the concentration of the sizing formulations to unacceptably low levels to obtain normal size layer thicknesses. Full article
23 pages, 8603 KB  
Article
Microstructure and Properties of Gas-Nitrided Ti-6Al-4V Alloy
by Qiang Li, Yichun Zhu, Sancai Du, Xuyan Liu, Rongbin Li and Yuqing Miao
Metals 2025, 15(11), 1185; https://doi.org/10.3390/met15111185 (registering DOI) - 25 Oct 2025
Viewed by 33
Abstract
To enhance its surface properties, the Ti-6Al-4V alloy was subjected to a nitrogen atmosphere at elevated temperatures. An orthogonal experiment was employed to investigate the effects of nitriding temperature, nitriding duration, and nitrogen flow rate on the surface hardness and the thickness of [...] Read more.
To enhance its surface properties, the Ti-6Al-4V alloy was subjected to a nitrogen atmosphere at elevated temperatures. An orthogonal experiment was employed to investigate the effects of nitriding temperature, nitriding duration, and nitrogen flow rate on the surface hardness and the thickness of the nitrided layer. Mechanical properties were assessed using a micro-Vickers hardness tester and a universal material testing machine. Accelerated corrosion tests were performed by immersing the samples in solutions with varying HF concentrations, while wear resistance was evaluated via a circumferential dry sliding wear test. The results indicate that after nitriding, the subsurface region is primarily composed of TiN, Ti2N, and Ti2AlN. Nitriding temperature exerts the greatest influence on the thickness of the nitrided layer, whereas nitrogen flow rate has the least impact. Conversely, nitrogen flow rate shows the strongest effect on surface hardness, with nitriding temperature having the weakest influence. After nitriding, the microstructure becomes coarse with a decrease in substrate hardness. As nitriding temperature and time increase, the thickness of the nitrided layer grows, but both the tensile strength and percentage elongation after fracture decline. The sample nitrided at 850 °C for 2 h under a nitrogen flow rate of 20 mL·min−1 exhibits favorable overall properties. Compared with the as-received sample, its surface hardness increases noticeably, though both the tensile strength and percentage elongation after fracture decrease. In comparison to the continuous weight loss of the as-received sample when immersed in HF solution, the nitrided sample exhibits an initial mass loss of nearly zero, which suggests that the nitrided layer has a protective efficacy. After nitriding, the wear rate is reduced to no more than 3% of that of the as-received sample. Therefore, gas nitriding is considered a feasible technique for improving the surface properties of Ti-6Al-4V in complex environments. Full article
(This article belongs to the Special Issue Surface Modification and Treatment of Metals)
Show Figures

Figure 1

24 pages, 4388 KB  
Article
Deep Temperature and Heat-Flow Characteristics in Uplifted and Depressed Geothermal Areas
by Pengfei Chi, Guoshu Huang, Liang Liu, Jian Yang, Ning Wang, Xueting Jing, Junjun Zhou, Ningbo Bai and Hui Ding
Energies 2025, 18(21), 5610; https://doi.org/10.3390/en18215610 (registering DOI) - 25 Oct 2025
Viewed by 83
Abstract
To address the high costs and inefficiencies of blind prospecting in deep geothermal exploration, this study develops a three-dimensional heat transfer model for quantitative prediction of geothermal enrichment targets. Unlike traditional qualitative or single-mechanism analyses, this research utilizes a finite element forward modeling [...] Read more.
To address the high costs and inefficiencies of blind prospecting in deep geothermal exploration, this study develops a three-dimensional heat transfer model for quantitative prediction of geothermal enrichment targets. Unlike traditional qualitative or single-mechanism analyses, this research utilizes a finite element forward modeling approach based on step-faulted depressions (sedimentary basins/grabens) and uplifts (domes/uplift belts). We simulate temperature fields and heat flux distributions in multilayered systems incorporating four thermal conductivity types (A, K, H, Q). By systematically comparing the geometric heat flow convergence in depressions with the lateral diffusion in uplifts, this work reveals mirror and anti-mirror relationships between temperature fields and structural morphology at middle and deep levels, as well as local “hot spot” and “cold zone” effects. The results indicate that, in depressional structures, shallow high-temperature reservoirs (<2 km) are mainly concentrated in A- and K-types, while deeper reservoirs (>3 km) are enriched in Q- and H-types. In contrast, uplift structures are characterized by mid- to shallow-depth (<3 km) reservoirs predominantly in A- and K-types, with high temperatures at depth preferentially hosted in A- and H-types, and the highest temperatures observed in the A-type. Thermal conductivity contrasts, layer thicknesses, and structural morphology collectively control the spatial distribution of heat flux. A strong positive correlation between thermal conductivity and heat flux is observed at the central target area, significantly stronger than at the margins, whereas this relationship is notably weakened in Q-type. Crucially, low-conductivity zones display high geothermal gradients coupled with low terrestrial heat flow, disproving the axiom that “elevated geothermal gradients imply high heat flow,” thus establishing “high-gradient/low-heat-flow coupling zones” as strategic exploration targets. The model developed in this study demonstrates high simulation accuracy and computational efficiency. The findings provide a robust theoretical basis for reconstructing geothermal geological evolution and precise geothermal target localization, thereby reducing the risk of “blind heat exploration” and promoting the cost-effective and refined development of deep concealed geothermal resources. Full article
(This article belongs to the Special Issue Advanced Research in Heat and Mass Transfer)
Show Figures

Figure 1

13 pages, 11748 KB  
Article
Structural Optimization and Trap Effects on the Output Performance of 4H-SiC Betavoltaic Cell
by Kyeong Min Kim, In Man Kang, Jae Hwa Seo, Young Jun Yoon and Kibeom Kim
Nanomaterials 2025, 15(21), 1625; https://doi.org/10.3390/nano15211625 (registering DOI) - 24 Oct 2025
Viewed by 117
Abstract
In this study, structural optimization and trap effect analysis of a 4H-SiC–based p–i–n betavoltaic (BV) cell were performed using Silvaco ATLAS TCAD (version 5.30.0.R) simulations combined with an electron-beam (e-beam) irradiation model. First, the optimum device structure was derived by varying the thickness [...] Read more.
In this study, structural optimization and trap effect analysis of a 4H-SiC–based p–i–n betavoltaic (BV) cell were performed using Silvaco ATLAS TCAD (version 5.30.0.R) simulations combined with an electron-beam (e-beam) irradiation model. First, the optimum device structure was derived by varying the thickness of the intrinsic layer (i-layer), the thickness of the p-layer, and the doping concentration of the i-layer. Under 17 keV e-beam irradiation, the electron–hole pairs generated in the i-layer were effectively separated and transported by the internal electric field, thereby contributing to the short-circuit current density (JSC), open-circuit voltage (VOC), and maximum output power density (Pout_max). Subsequently, to investigate the effects of traps, donor- and acceptor-like traps were introduced either individually or simultaneously, and their densities were varied to evaluate the changes in device performance. The simulation results revealed that traps degraded the performance through charge capture and recombination, with acceptor-like traps exhibiting the most pronounced impact. In particular, acceptor-like traps in the i-layer significantly reduced VOC from 2.47 V to 2.07 V and Pout_max from 3.08 μW/cm2 to 2.28 μW/cm2, demonstrating that the i-layer is the most sensitive region to performance degradation. These findings indicate that effective control of trap states within the i-layer is a critical factor for realizing high-efficiency and high-reliability SiC-based betavoltaic cells. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

27 pages, 9984 KB  
Article
Parameter Effects on Dynamic Characteristics Analysis of Multi-Layer Foil Thrust Bearing
by Yulong Jiang, Qianjing Zhu, Zhongwen Huang and Dongyan Gao
Lubricants 2025, 13(11), 472; https://doi.org/10.3390/lubricants13110472 (registering DOI) - 24 Oct 2025
Viewed by 177
Abstract
The paper studies the dynamic characteristics of a multi-layer foil thrust bearing (MLFTB). A modified efficient dynamic characteristic model is established, and the revised Reynolds equation coupled with the thick plate element and the boundary slip model is adopted. During the solving process, [...] Read more.
The paper studies the dynamic characteristics of a multi-layer foil thrust bearing (MLFTB). A modified efficient dynamic characteristic model is established, and the revised Reynolds equation coupled with the thick plate element and the boundary slip model is adopted. During the solving process, the small perturbation method is implemented. The elasto-hydrodynamic effect under geometric and operational parameters is investigated. It reflects that the dynamic characteristics can be visibly influenced by the slip effect when under tiny clearance with low bearing speed, and ought to be considered. Specifically, the maximum deviation of the axial and direct-rotational stiffness coefficients could be up to −4.93% and −5.02%, respectively. The direct-rotational stiffness is increased with the perturbation frequency; however, a turning point may exist in the cross-rotational stiffness. Additionally, both the rotational stiffness and rotational damping can be expanded at a smaller original clearance. It aims to provide prediction methods with high effectiveness and efficiency, and enrich theoretical guidance for the important MLFTB. Full article
Show Figures

Figure 1

15 pages, 8639 KB  
Article
Shot Blasting for Enhancing Wear Resistance and Impact Resistance of SCMnH11 High-Manganese Steel
by Qilin Huang, Zihao Liu, Liang Hao and Te Hu
Metals 2025, 15(11), 1179; https://doi.org/10.3390/met15111179 (registering DOI) - 24 Oct 2025
Viewed by 67
Abstract
In this study, shot blasting was employed to enhance the wear resistance and impact toughness of SCMnH11 high-manganese steel. The steel was first fabricated via vacuum casting, followed by forging and water-toughening treatment. Subsequently, the steel was cut to the required dimensions using [...] Read more.
In this study, shot blasting was employed to enhance the wear resistance and impact toughness of SCMnH11 high-manganese steel. The steel was first fabricated via vacuum casting, followed by forging and water-toughening treatment. Subsequently, the steel was cut to the required dimensions using wire electrical discharge machining before the final shot blasting was performed. The influence of shot blasting duration on the microstructure and mechanical properties was investigated. Shot blasting introduced compressive residual stress and dislocations, resulting in the formation of numerous low-angle grain boundaries. As the shot blasting time increased, the surface grains were progressively refined. The surface hardness increased rapidly from an initial value of approximately 250 HV, reaching a maximum of 643 HV. After 60 min of shot blasting, the thickness of the surface hardened layer reached 600 µm; however, the surface hardness exhibited a trend of first increasing and then decreasing. In contrast, the wear resistance showed the opposite trend. Additionally, the dominant surface wear mechanism transitioned from adhesive wear in the heat-treated sample to abrasive wear in the shot-blasted samples. Compared to the heat-treated sample, the impact toughness of the samples subjected to 5 min and 60 min shot blasting was significantly enhanced. Correspondingly, the fracture mechanism shifted from predominantly ductile fracture to a mixed mode of ductile and cleavage fracture. In summary, shot blasting can effectively enhance the wear resistance and impact resistance of SCMnH11 steel. However, the selection of shot blasting duration is critical. Appropriate parameters can balance work hardening, compressive stress, and surface microcracks, thereby enabling the material to achieve an optimal combination of wear resistance and impact resistance. Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

14 pages, 5797 KB  
Article
Investigation of Blade Printing Technique for Nano-Structuring Piezoelectric Polymer Ink in a Porous Anodic Aluminum Oxide
by Tsvetozar Tsanev and Mariya Aleksandrova
Polymers 2025, 17(21), 2839; https://doi.org/10.3390/polym17212839 (registering DOI) - 24 Oct 2025
Viewed by 177
Abstract
In this work, we investigated the use of a piezoelectric flexible device for energy harvesting. The main goal of the study was to fill the nanostructured pores of anodic aluminum oxide (AAO) films with piezoelectric polymer (PVDF-TrFE) via a modified conventional screen printing [...] Read more.
In this work, we investigated the use of a piezoelectric flexible device for energy harvesting. The main goal of the study was to fill the nanostructured pores of anodic aluminum oxide (AAO) films with piezoelectric polymer (PVDF-TrFE) via a modified conventional screen printing technique using blade printing. In this way, it is possible to obtain a composite from nanostructured thin films of polymer nanorods that shows improved charge generation ability compared to other non-nanostructured composites or pure (non-composite) aluminum with similar dimensions. This behavior is due to the effect of the highly developed surface of the material used to fill in the AAO nanopore template and its ability to withstand the application of higher mechanical loads to the structured piezoelectric material during deformation. The contact blade print filling technique can produce nanostructured piezoelectric polymer films with precise geometric parameters in terms of thickness and nanorod diameters, at around 200 nm, and a length of 12 μm. At a low frequency of 17 Hz, the highest root-mean-square (RMS) voltage generated using the nanostructured AAO/PVDF-TrFE sample with aluminum electrodes was around 395 mV. At high frequencies above 1700 Hz, the highest RMS voltage generated using the nanostructured AAO/PVDF-TrFE sample with gold electrodes was around 680 mV. The RMS voltage generated using a uniform (non-nanostructured) layer of PVDF-TrFE was 15% lower across the whole frequency range. Full article
(This article belongs to the Special Issue Advanced Polymers for Harnessing Power and Energy)
Show Figures

Graphical abstract

Back to TopTop