Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = theta oscillations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 783 KiB  
Article
Decreased Memory Suppression Ability in Restrained Eaters on Food Information—Evidence from ERP Experiment
by Qi Qi, Ke Cui, Li Luo, Yong Liu and Jia Zhao
Nutrients 2025, 17(15), 2523; https://doi.org/10.3390/nu17152523 - 31 Jul 2025
Viewed by 173
Abstract
Background/Objectives: Food-related memory influences appetite regulation, with memory inhibition potentially reducing cravings. While obesity is linked to inhibitory deficits, how restrained eating affects memory suppression in healthy-weight individuals remains unclear. This study examined the cognitive and neural mechanisms of food-memory suppression in young [...] Read more.
Background/Objectives: Food-related memory influences appetite regulation, with memory inhibition potentially reducing cravings. While obesity is linked to inhibitory deficits, how restrained eating affects memory suppression in healthy-weight individuals remains unclear. This study examined the cognitive and neural mechanisms of food-memory suppression in young women. Methods: Forty-two female participants completed a think/no-think task with high-/low-calorie food cues while an EEG was recorded. Event-related potentials (ERPs) were assessed and time–frequency analyses (theta/beta oscillations) were performed. Results: Restrained eaters showed reduced memory control for both food types. The ERP analysis revealed significant N200 amplitude differences between think/no-think conditions (p = 0.03) and a significant interaction between food calories and think/no-think conditions (p = 0.032). Theta oscillations differed by group, food calories, and conditions (p = 0.038), while beta oscillations reflected food-cue processing variations. Conclusions: In conclusion, restrained eaters exhibit distinct neural processing and attenuated food-memory suppression. These results elucidate the neurocognitive mechanisms underlying dietary behavior, suggesting that targeted interventions for maladaptive eating could strengthen memory inhibition. Full article
Show Figures

Figure 1

17 pages, 1448 KiB  
Article
A Pilot EEG Study on the Acute Neurophysiological Effects of Single-Dose Astragaloside IV in Healthy Young Adults
by Aynur Müdüroğlu Kırmızıbekmez, Mustafa Yasir Özdemir, Alparslan Önder, Ceren Çatı and İhsan Kara
Nutrients 2025, 17(15), 2425; https://doi.org/10.3390/nu17152425 - 24 Jul 2025
Viewed by 355
Abstract
Objective: This study aimed to explore the acute neurophysiological effects of a single oral dose of Astragaloside IV (AS-IV) on EEG-measured brain oscillations and cognitive-relevant spectral markers in healthy young adults. Methods: Twenty healthy adults (8 females, 12 males; mean age: [...] Read more.
Objective: This study aimed to explore the acute neurophysiological effects of a single oral dose of Astragaloside IV (AS-IV) on EEG-measured brain oscillations and cognitive-relevant spectral markers in healthy young adults. Methods: Twenty healthy adults (8 females, 12 males; mean age: 23.4±2.1) underwent eyes-closed resting-state EEG recordings before and approximately 90 min after oral intake of 150 mg AS-IV. EEG data were collected using a 21-channel 10–20 system and cleaned via Artifact Subspace Reconstruction and Independent Component Analysis. Data quality was confirmed using a signal-to-noise ratio and 1/f spectral slope. Absolute and relative power values, band ratios, and frontal alpha asymmetry were computed. Statistical comparisons were made using paired t-tests or Wilcoxon signed-rank tests. Results: Absolute power decreased in delta, theta, beta, and gamma bands (p < 0.05) but remained stable for alpha. Relative alpha power increased significantly (p = 0.002), with rises in relative beta, theta, and delta and a drop in relative gamma (p = 0.003). Alpha/beta and theta/beta ratios increased, while delta/alpha decreased. Frontal alpha asymmetry was unchanged. Sex differences were examined in all measures that showed significant changes; however, no sex-dependent effects were found. Conclusions: A single AS-IV dose may acutely modulate brain oscillations, supporting its potential neuroactive properties. Larger placebo-controlled trials, including concurrent psychometric assessments, are needed to verify and contextualize these findings. A single AS-IV dose may acutely modulate brain oscillations, supporting its potential neuroactive properties. Full article
(This article belongs to the Special Issue Dietary Factors and Interventions for Cognitive Neuroscience)
Show Figures

Graphical abstract

14 pages, 784 KiB  
Article
Resting-State EEG Alpha Asymmetry as a Potential Marker of Clinical Features in Parkinson’s Disease
by Thalita Frigo da Rocha, Valton Costa, Lucas Camargo, Elayne Borges Fernandes and Anna Carolyna Gianlorenço
J. Pers. Med. 2025, 15(7), 291; https://doi.org/10.3390/jpm15070291 - 4 Jul 2025
Viewed by 499
Abstract
Background: Asymmetrical brain oscillations may be characteristic of Parkinson’s disease (PD). We investigated differences in oscillation asymmetry between individuals with PD and healthy controls and explored associations between the asymmetry and clinical features. Methods: Clinical and resting-state EEG data from 37 [...] Read more.
Background: Asymmetrical brain oscillations may be characteristic of Parkinson’s disease (PD). We investigated differences in oscillation asymmetry between individuals with PD and healthy controls and explored associations between the asymmetry and clinical features. Methods: Clinical and resting-state EEG data from 37 patients and 24 controls were cross-sectionally analyzed. EEG asymmetry indices were calculated for the delta, theta, alpha, and beta frequencies in the frontal, central, and parietal regions. Independent t-tests and linear regression models were employed. Results: Patients exhibited lower alpha asymmetry than controls in the parietal region (t(59) = 2.12, p = 0.03). In the frontal alpha asymmetry models, there were associations with time since diagnosis (β = −0.042) and attention/orientation (β = 0.061), and with Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRSIII)-posture (β = 0.136) and MDS-UPDRSIII-rest-tremor persistence (β = −0.111). In the central alpha model, higher asymmetry was associated with the physical activity levels (International Physical Activity Questionnaire) IPAQ-active (β = 0.646) and IPAQ-very active (β = 0.689), (Timed Up and Go) TUG dual-task cost (β = 0.023), MDS-UPDRSII-freezing (β = 0.238), and being male (β = 0.535). In the parietal alpha asymmetry model, MDS-UPDRSII-gait/balance was inversely associated with alpha asymmetry (β = −0.156), while IPAQ-active (β = −0.247) and being male (β = −0.191) were associated with lower asymmetry. Conclusions: Our findings highlight the potential role of alpha asymmetry as a neurophysiological marker of PD’s motor symptoms, mainly rest tremor, gait/balance, freezing, and specific cognitive domains such as attention/orientation. The models stressed the relationship between disease progression and reduced alpha asymmetry. Brazilian Registry of Clinical Trials (RBR-7zjgnrx, 9 June 2022). Full article
(This article belongs to the Section Disease Biomarker)
Show Figures

Figure 1

13 pages, 814 KiB  
Review
Biofeedback for Motor and Cognitive Rehabilitation in Parkinson’s Disease: A Comprehensive Review of Non-Invasive Interventions
by Pierluigi Diotaiuti, Giulio Marotta, Salvatore Vitiello, Francesco Di Siena, Marco Palombo, Elisa Langiano, Maria Ferrara and Stefania Mancone
Brain Sci. 2025, 15(7), 720; https://doi.org/10.3390/brainsci15070720 - 4 Jul 2025
Viewed by 759
Abstract
(1) Background: Biofeedback and neurofeedback are gaining attention as non-invasive rehabilitation strategies in Parkinson’s disease (PD) treatment, aiming to modulate motor and non-motor symptoms through the self-regulation of physiological signals. (2) Objective: This review explores the application of biofeedback techniques, electromyographic (EMG) biofeedback, [...] Read more.
(1) Background: Biofeedback and neurofeedback are gaining attention as non-invasive rehabilitation strategies in Parkinson’s disease (PD) treatment, aiming to modulate motor and non-motor symptoms through the self-regulation of physiological signals. (2) Objective: This review explores the application of biofeedback techniques, electromyographic (EMG) biofeedback, heart rate variability (HRV) biofeedback, and electroencephalographic (EEG) neurofeedback in PD rehabilitation, analyzing their impacts on motor control, autonomic function, and cognitive performance. (3) Methods: This review critically examined 15 studies investigating the efficacy of electromyographic (EMG), heart rate variability (HRV), and electroencephalographic (EEG) feedback interventions in PD. Studies were selected through a systematic search of peer-reviewed literature and analyzed in terms of design, sample characteristics, feedback modality, outcomes, and clinical feasibility. (4) Results: EMG biofeedback demonstrated improvements in muscle activation, gait, postural stability, and dysphagia management. HRV biofeedback showed positive effects on autonomic regulation, emotional control, and cardiovascular stability. EEG neurofeedback targeted abnormal cortical oscillations, such as beta-band overactivity and reduced frontal theta, and was associated with improvements in motor initiation, executive functioning, and cognitive flexibility. However, the reviewed studies were heterogeneous in design and outcome measures, limiting generalizability. Subgroup trends suggested modality-specific benefits across motor, autonomic, and cognitive domains. (5) Conclusions: While EMG and HRV systems are more accessible for clinical or home-based use, EEG neurofeedback remains technically demanding. Standardization of protocols and further randomized controlled trials are needed. Future directions include AI-driven personalization, wearable technologies, and multimodal integration to enhance accessibility and long-term adherence. Biofeedback presents a promising adjunct to conventional PD therapies, supporting personalized, patient-centered rehabilitation models. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

17 pages, 5686 KiB  
Article
Transcranial Magneto-Acoustic Stimulation Enhances Cognitive and Working Memory in AD Rats by Regulating Theta-Gamma Oscillation Coupling and Synergistic Activity in the Hippocampal CA3 Region
by Jinrui Mi, Shuai Zhang, Xiaochao Lu and Yihao Xu
Brain Sci. 2025, 15(7), 701; https://doi.org/10.3390/brainsci15070701 - 29 Jun 2025
Viewed by 400
Abstract
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive dysfunction and working memory impairment, with early hippocampal damage being a prominent feature. Transcranial magneto-acoustic stimulation (TMAS) has been shown to target specific brain regions for neuroregulation. Methods: This study investigated [...] Read more.
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive dysfunction and working memory impairment, with early hippocampal damage being a prominent feature. Transcranial magneto-acoustic stimulation (TMAS) has been shown to target specific brain regions for neuroregulation. Methods: This study investigated the effects of TMAS on cognitive function, working memory, and hippocampal CA3 neural rhythms in AD rats by specifically stimulating the hippocampal region. Results: The novel object recognition test and T-maze test were employed to assess behavioral performance, while time-frequency analyses were conducted to evaluate memory-related activity, neural synchronization, and cross-frequency phase-amplitude coupling. TMAS significantly improved cognitive and working memory deficits in AD rats, enhancing long-term memory performance. Additionally, the abnormal energy levels observed in the θ and γ rhythm power spectra of the CA3 region were markedly restored, suggesting the recovery of normal neural function. This improvement was accompanied by a partial resurgence of neural activity, indicating enhanced inter-neuronal communication. Furthermore, the previously damaged coupling between the θ-fast γ and θ-slow γ rhythms was successfully improved, resulting in a notable enhancement of synchronized activity. Conclusions: These findings suggest that TMAS effectively alleviates cognitive and working memory impairments in AD rats and may provide experimental support for developing new treatments for AD. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

21 pages, 1275 KiB  
Review
Inflammation in Schizophrenia: The Role of Disordered Oscillatory Mechanisms
by Lucinda J. Speers and David K. Bilkey
Cells 2025, 14(9), 650; https://doi.org/10.3390/cells14090650 - 29 Apr 2025
Viewed by 1006
Abstract
Schizophrenia is a chronic, debilitating disorder with diverse symptomatology, including disorganised cognition and behaviour. Despite considerable research effort, we have only a limited understanding of the underlying brain dysfunction. A significant proportion of individuals with schizophrenia exhibit high levels of inflammation, and inflammation [...] Read more.
Schizophrenia is a chronic, debilitating disorder with diverse symptomatology, including disorganised cognition and behaviour. Despite considerable research effort, we have only a limited understanding of the underlying brain dysfunction. A significant proportion of individuals with schizophrenia exhibit high levels of inflammation, and inflammation associated with maternal immune system activation is a risk factor for the disorder. In this review, we outline the potential role of inflammation in the disorder, with a particular focus on how cytokine release might affect the development and function of GABAergic interneurons. One consequence of this change in inhibitory control is a disruption in oscillatory processes in the brain. These changes disrupt the spatial and temporal synchrony of neural activity in the brain, which, by disturbing representations of time and space, may underlie some of the disorganisation symptoms observed in the disorder. Full article
(This article belongs to the Special Issue Inflammatory Pathways in Psychiatric Disorders)
Show Figures

Figure 1

16 pages, 1955 KiB  
Article
Defective Intracortical Inhibition as a Marker of Impaired Neural Compensation in Amputees Undergoing Rehabilitation
by Guilherme J. M. Lacerda, Lucas Camargo, Fernanda M. Q. Silva, Marta Imamura, Linamara R. Battistella and Felipe Fregni
Biomedicines 2025, 13(5), 1015; https://doi.org/10.3390/biomedicines13051015 - 22 Apr 2025
Viewed by 423
Abstract
Background/Objectives: Lower-limb amputation (LLA) leads to disability, impaired mobility, and reduced quality of life, affecting 1.6 million people in the USA. Post-amputation, motor cortex reorganization occurs, contributing to phantom limb pain (PLP). Transcranial magnetic stimulation (TMS) assesses changes in cortical excitability, helping [...] Read more.
Background/Objectives: Lower-limb amputation (LLA) leads to disability, impaired mobility, and reduced quality of life, affecting 1.6 million people in the USA. Post-amputation, motor cortex reorganization occurs, contributing to phantom limb pain (PLP). Transcranial magnetic stimulation (TMS) assesses changes in cortical excitability, helping to identify compensatory mechanisms. This study investigated the association between TMS metrics and clinical and neurophysiological outcomes in LLA patients. Methods: A cross-sectional analysis of the DEFINE cohort, with 59 participants, was carried out. TMS metrics included resting motor threshold (rMT), motor-evoked potential (MEP) amplitude, short intracortical inhibition (SICI), and intracortical facilitation (ICF). Results: Multivariate analysis revealed increased ICF and rMT in the affected hemisphere of PLP patients, while SICI was reduced with the presence of PLP. A positive correlation between SICI and EEG theta oscillations in the frontal, central, and parietal regions suggested compensatory mechanisms in the unaffected hemisphere. Increased MEP was associated with reduced functional independence. Conclusions: SICI appears to be a key factor linked to the presence of PLP, but not its intensity. Reduced SICI may indicate impaired cortical compensation, contributing to PLP. Other neural mechanisms, including central sensitization and altered thalamocortical connectivity, may influence PLP’s severity. Our findings align with those of prior studies, reinforcing low SICI as a marker of maladaptive neuroplasticity in amputation-related pain. Additionally, longer amputation duration was associated with disrupted SICI, suggesting an impact of long-term plasticity changes. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

19 pages, 9288 KiB  
Article
Neural Mechanism of 5-HT4R-Mediated Memory Enhancement in Hippocampal–Prefrontal Circuits in a Mouse Model of Schizophrenia
by Thomas Gener, Sara Hidalgo-Nieves, Cristina López-Cabezón and Maria Victoria Puig
Int. J. Mol. Sci. 2025, 26(8), 3659; https://doi.org/10.3390/ijms26083659 - 12 Apr 2025
Viewed by 629
Abstract
We investigated the cellular and neurophysiological mechanisms underlying the pro-cognitive effects of 5-HT4R activation in hippocampal–prefrontal pathways. Our findings show that, in addition to pyramidal neurons, 30–60% of parvalbumin+ interneurons in the CA1, CA3, and dentate gyrus (DG) of the hippocampus and the [...] Read more.
We investigated the cellular and neurophysiological mechanisms underlying the pro-cognitive effects of 5-HT4R activation in hippocampal–prefrontal pathways. Our findings show that, in addition to pyramidal neurons, 30–60% of parvalbumin+ interneurons in the CA1, CA3, and dentate gyrus (DG) of the hippocampus and the anterior cingulate (ACC), prelimbic (PL), and infralimbic (IL) regions of the prefrontal cortex co-express 5-HT4Rs. Additionally, 15% of somatostatin+ interneurons in CA1 and CA3 express 5-HT4Rs. Partial 5-HT4R agonist RS-67333 (1 mg/kg, i.p.) exerted anxiolytic effects and ameliorated short-term (3-min) and long-term (24-h) memory deficits in a mouse model of schizophrenia-like cognitive impairment induced by sub-chronic phencyclidine (sPCP) but did not enhance memory in healthy mice. At the neurophysiological level, RS-67333 normalized sPCP-induced disruptions in hippocampal–prefrontal neural dynamics while having no effect in healthy animals. Specifically, sPCP increased delta oscillations in CA1 and PL, leading to aberrant delta–high-frequency coupling in CA1 and delta–high-gamma coupling in PL. RS-67333 administration attenuated this abnormal delta synchronization without altering phase coherence or signal directionality within the circuit. Collectively, these results highlight the therapeutic potential of 5-HT4R activation in pyramidal, parvalbumin+, and somatostatin+ neurons of hippocampal–prefrontal pathways for mitigation of cognitive and negative symptoms associated with schizophrenia. Full article
(This article belongs to the Special Issue Biological Research of Rhythms in the Nervous System)
Show Figures

Figure 1

27 pages, 3834 KiB  
Article
Effect of Different Frequencies of Transcutaneous Electrical Acupoint Stimulation (TEAS) on EEG Source Localization in Healthy Volunteers: A Semi-Randomized, Placebo-Controlled, Crossover Study
by Rael Lopes Alves, Maxciel Zortea, David Mayor, Tim Watson and Tony Steffert
Brain Sci. 2025, 15(3), 270; https://doi.org/10.3390/brainsci15030270 - 3 Mar 2025
Cited by 1 | Viewed by 1915
Abstract
Background/Objectives: Transcutaneous electrical acupoint stimulation (TEAS), also known as transcutaneous electroacupuncture stimulation, delivers electrical pulses to the skin over acupuncture points (“acupoints”) via surface electrodes. Electroencephalography (EEG) is an important tool for assessing the changes in the central nervous system (CNS) that may [...] Read more.
Background/Objectives: Transcutaneous electrical acupoint stimulation (TEAS), also known as transcutaneous electroacupuncture stimulation, delivers electrical pulses to the skin over acupuncture points (“acupoints”) via surface electrodes. Electroencephalography (EEG) is an important tool for assessing the changes in the central nervous system (CNS) that may result from applying different TEAS frequencies peripherally—i.e., acting via the peripheral nervous system (PNS)—and determining how these influence cerebral activity and neural plasticity. Methods: A total of 48 healthy volunteers were allocated in a semi-randomized crossover study to receive four different TEAS frequencies: 2.5 pulses per second (pps); 10 pps; 80 pps; and sham (160 pps at a low, clinically ineffective amplitude). TEAS was applied for 20 min to each hand at the acupuncture point Hegu (LI4). The EEG was recorded during an initial 5 min baseline recording, then during TEAS application, and after stimulation for a further 15 min, separated into three periods of 5 min (initial, intermediate, and final) in order to assess post-stimulation changes. Source localization analysis was conducted for the traditional five EEG frequency bands: delta (0.1–3.9 Hz), theta (4–7.9 Hz), alpha (8–13 Hz), beta (14–30 Hz), and gamma (30.1–45 Hz). Results: Within-group source localization analyses of EEG data showed that during the initial 5 min post-stimulation, theta oscillations in the 2.5 pps TEAS group increased over the parahippocampal gyrus (t = 4.42, p < 0.01). The 10 pps TEAS group exhibited decreased alpha rhythms over the inferior parietal gyrus (t = −4.20, p < 0.05), whereas the sham (160 pps) TEAS group showed decreased delta rhythms over the postcentral gyrus (t = −3.97, p < 0.05). During the intermediate 5 min post-stimulation, the increased theta activity over the left parahippocampal gyrus (BA27) remained in the 2.5 pps TEAS group (t = 3.97, p < 0.05). However, diminished alpha rhythms were observed in the 10 pps TEAS group over the postcentral gyrus (t = −4.20, p < 0.01), as well as in the delta rhythms in the sham (160 pps) TEAS group in the same area (t = −4.35, p < 0.01). In the final 5 min post-stimulation, reduced alpha rhythms were exhibited over the insula in the 10 pps TEAS group (t = −4.07, p < 0.05). Interaction effects of condition by group demonstrate decreased alpha rhythms in the 10 pps TEAS group over the supramarginal gyrus during the initial 5 min post-stimulation (t = −4.31, p < 0.05), and decreased delta rhythms over the insula in the sham TEAS group during the final 5 min post-stimulation (t = −4.42, p < 0.01). Conclusions: This study revealed that low TEAS frequencies of 2.5 pps and 10 pps modulate theta and alpha oscillations over the brain areas related to emotional and attentional processes driven by external stimuli, as well as neural synchronization of delta rhythms in the sham group in brain areas related to stimulus expectation at baseline. It is hoped that these findings will stimulate further research in order to evaluate such TEAS modulation effects in clinical patients. Full article
(This article belongs to the Section Sensory and Motor Neuroscience)
Show Figures

Figure 1

37 pages, 4554 KiB  
Article
Resting-State Electroencephalogram and Speech Perception in Young Children with Developmental Language Disorder
by Ana Campos, Rocio Loyola-Navarro, Claudia González and Paul Iverson
Brain Sci. 2025, 15(3), 219; https://doi.org/10.3390/brainsci15030219 - 20 Feb 2025
Viewed by 1639
Abstract
Background/Objectives: Endogenous oscillations reflect the spontaneous activity of brain networks involved in cognitive processes. In adults, endogenous activity across different bands correlates with, and can even predict, language and speech perception processing. However, it remains unclear how this activity develops in children with [...] Read more.
Background/Objectives: Endogenous oscillations reflect the spontaneous activity of brain networks involved in cognitive processes. In adults, endogenous activity across different bands correlates with, and can even predict, language and speech perception processing. However, it remains unclear how this activity develops in children with typical and atypical development. Methods: We investigated differences in resting-state EEG between preschoolers with developmental language disorder (DLD), their age-matched controls with typical language development (TLD), and a group of adults. Results: We observed significantly lower oscillatory power in adults than in children (p < 0.001 for all frequency bands), but no differences between the groups of children in power or hemispheric lateralisation, suggesting that oscillatory activity reflects differences in age, but not in language development. The only measure that differed between the children’s groups was theta/alpha band ratio (p = 0.004), which was significantly smaller in TLD than in DLD children, although this was an incidental finding. Behavioural results also did not fully align with previous research, as TLD children performed better in the filtered speech test (p = 0.01), but not in the speech-in-babble one, and behavioural test scores did not correlate with high-frequency oscillations, lateralisation indices, or band ratio measures. Conclusions: We discuss the suitability of these resting-state EEG measures to capture group-level differences between TLD/DLD preschoolers and the relevance of our findings for future studies investigating neural markers of typical and atypical language development. Full article
Show Figures

Figure 1

23 pages, 442 KiB  
Systematic Review
The Use of Magnetoencephalography in the Diagnosis and Monitoring of Mild Traumatic Brain Injuries and Post-Concussion Syndrome
by Ioannis Mavroudis, Dimitrios Kazis, Foivos E. Petridis, Ioana-Miruna Balmus and Alin Ciobica
Brain Sci. 2025, 15(2), 154; https://doi.org/10.3390/brainsci15020154 - 4 Feb 2025
Cited by 1 | Viewed by 1523
Abstract
Background/Objectives: The main objective of this systematic review was to explore the role of magnetoencephalography (MEG) in the diagnosis, assessment, and monitoring of mild traumatic brain injury (mTBI) and post-concussion syndrome (PCS). We aimed to evaluate the potential of some MEG biomarkers [...] Read more.
Background/Objectives: The main objective of this systematic review was to explore the role of magnetoencephalography (MEG) in the diagnosis, assessment, and monitoring of mild traumatic brain injury (mTBI) and post-concussion syndrome (PCS). We aimed to evaluate the potential of some MEG biomarkers in detecting subtle brain abnormalities often missed by conventional imaging techniques. Methods: A systematic review was conducted using 25 studies that administered MEG to examine mTBI and PCS patients. The quality of the studies was assessed based on selection, comparability, and outcomes. Studies were analyzed for their methodology, evaluated parameters, and the clinical implications of using MEG for mTBI diagnosis. Results: MEG detected abnormal brain oscillations, including increased delta, theta, and gamma waves and disruptions in functional connectivity, particularly in the default mode and frontoparietal networks of patients suffering from mTBI. MEG consistently revealed abnormalities in mTBI patients even when structural imaging was normal. The use of MEG in monitoring recovery showed significant reductions in abnormal slow-wave activity corresponding to clinical improvements. Machine learning algorithms applied to MEG data demonstrated high sensitivity and specificity in distinguishing mTBI patients from healthy controls and predicting clinical outcomes. Conclusions: MEG provides a valuable diagnostic and prognostic tool for mTBI and PCS by identifying subtle neurophysiological abnormalities. The high temporal resolution and the ability to assess functional brain networks make MEG a promising complement to conventional imaging. Future research should focus on integrating MEG with other neuroimaging modalities and standardizing MEG protocols for clinical use. Full article
(This article belongs to the Section Systems Neuroscience)
Show Figures

Figure 1

13 pages, 253 KiB  
Article
Adaptive Compensatory Neurophysiological Biomarkers of Motor Recovery Post-Stroke: Electroencephalography and Transcranial Magnetic Stimulation Insights from the DEFINE Cohort Study
by Guilherme J. M. Lacerda, Fernanda M. Q. Silva, Kevin Pacheco-Barrios, Linamara Rizzo Battistella and Felipe Fregni
Brain Sci. 2024, 14(12), 1257; https://doi.org/10.3390/brainsci14121257 - 15 Dec 2024
Viewed by 1348
Abstract
Objective: This study aimed to explore longitudinal relationships between neurophysiological biomarkers and upper limb motor function recovery in stroke patients, focusing on electroencephalography (EEG) and transcranial magnetic stimulation (TMS) metrics. Methods: This longitudinal cohort study analyzed neurophysiological, clinical, and demographic data from 102 [...] Read more.
Objective: This study aimed to explore longitudinal relationships between neurophysiological biomarkers and upper limb motor function recovery in stroke patients, focusing on electroencephalography (EEG) and transcranial magnetic stimulation (TMS) metrics. Methods: This longitudinal cohort study analyzed neurophysiological, clinical, and demographic data from 102 stroke patients enrolled in the DEFINE cohort. We investigated the associations between baseline and post-intervention changes in the EEG theta/alpha ratio (TAR) and TMS metrics with upper limb motor functionality, assessed using the outcomes of five tests: the Fugl-Meyer Assessment (FMA), Handgrip Strength Test (HST), Pinch Strength Test (PST), Finger Tapping Test (FTT), and Nine-Hole Peg Test (9HPT). Results: Our multivariate models identified that a higher baseline TAR in the lesioned hemisphere was consistently associated with poorer motor outcomes across all five assessments. Conversely, a higher improvement in the TAR was positively associated with improvements in FMA and 9HPT. Additionally, an increased TMS motor-evoked potential (MEP) amplitude in the non-lesioned hemisphere correlated with greater FMA-diff, while a lower TMS Short Intracortical Inhibition (SICI) in the non-lesioned hemisphere was linked to better PST improvements. These findings suggest the potential of the TAR and TMS metrics as biomarkers for predicting motor recovery in stroke patients. Conclusion: Our findings highlight the significance of the TAR in the lesioned hemisphere as a predictor of motor function recovery post-stroke and also a potential signature for compensatory oscillations. The observed relationships between the TAR and motor improvements, as well as the associations with TMS metrics, underscore the potential of these neurophysiological measures in guiding personalized rehabilitation strategies for stroke patients. Full article
(This article belongs to the Special Issue The Application of EEG in Neurorehabilitation)
14 pages, 2120 KiB  
Article
Flexible Polymer-Based Electrodes for Detecting Depression-Related Theta Oscillations in the Medial Prefrontal Cortex
by Rui Sun, Shunuo Shang, Qunchen Yuan, Ping Wang and Liujing Zhuang
Chemosensors 2024, 12(12), 258; https://doi.org/10.3390/chemosensors12120258 - 10 Dec 2024
Viewed by 1219
Abstract
This study investigates neural activity changes in the medial prefrontal cortex (mPFC) of a lipopolysaccharide (LPS)-induced acute depression mouse model using flexible polymer multichannel electrodes, local field potential (LFP) analysis, and a convolutional neural network-long short-term memory (CNN-LSTM) classification model. LPS treatment effectively [...] Read more.
This study investigates neural activity changes in the medial prefrontal cortex (mPFC) of a lipopolysaccharide (LPS)-induced acute depression mouse model using flexible polymer multichannel electrodes, local field potential (LFP) analysis, and a convolutional neural network-long short-term memory (CNN-LSTM) classification model. LPS treatment effectively induced depressive-like behaviors, including increased immobility in the tail suspension and forced swim tests, as well as reduced sucrose preference. These behavioral outcomes validate the LPS-induced depressive phenotype, providing a foundation for neurophysiological analysis. Flexible polymer-based electrodes enabled the long-term recording of high-quality LFP and spike signals from the mPFC. Time-frequency and power spectral density (PSD) analyses revealed a significant increase in theta band (3–8 Hz) amplitude under depressive conditions. Using theta waveform features extracted via empirical mode decomposition (EMD), we classified depressive states with a CNN-LSTM model, achieving high accuracy in both training and validation sets. This study presents a novel approach for depression state recognition using flexible polymer electrodes, EMD, and CNN-LSTM modeling, suggesting that heightened theta oscillations in the mPFC may serve as a neural marker for depression. Future studies may explore theta coupling across brain regions to further elucidate neural network disruptions associated with depression. Full article
(This article belongs to the Special Issue Advancements of Chemosensors and Biosensors in China—2nd Edition)
Show Figures

Figure 1

15 pages, 1488 KiB  
Article
EEG Oscillations as Neuroplastic Markers of Neural Compensation in Spinal Cord Injury Rehabilitation: The Role of Slow-Frequency Bands
by Guilherme J. M. Lacerda, Lucas Camargo, Marta Imamura, Lucas M. Marques, Linamara Battistella and Felipe Fregni
Brain Sci. 2024, 14(12), 1229; https://doi.org/10.3390/brainsci14121229 - 7 Dec 2024
Cited by 1 | Viewed by 1683
Abstract
Background: Spinal cord injury (SCI) affects approximately 250,000 to 500,000 individuals annually. Current therapeutic interventions predominantly focus on mitigating the impact of physical and neurological impairments, with limited functional recovery observed in many patients. Electroencephalogram (EEG) oscillations have been investigated in this context [...] Read more.
Background: Spinal cord injury (SCI) affects approximately 250,000 to 500,000 individuals annually. Current therapeutic interventions predominantly focus on mitigating the impact of physical and neurological impairments, with limited functional recovery observed in many patients. Electroencephalogram (EEG) oscillations have been investigated in this context of rehabilitation to identify effective markers for optimizing rehabilitation treatments. Methods: We performed an exploratory cross-sectional study assessing the baseline EEG resting state of 86 participants with SCI as part of the Deficit of Inhibitory as a Marker of Neuroplasticity in Rehabilitation Cohort Study (DEFINE). Results: Our multivariate models demonstrated a positive correlation between frontal delta asymmetry and depression symptoms, while the frontal alpha asymmetry band and anxiety symptoms were negatively correlated. Theta oscillations were negatively associated with motor-evoked potential (MEP), whereas alpha oscillations were positively associated with MEP in all regions of interest and with CPM response as a negative correlation. Based on the potential role of lower-frequency oscillations in exerting a salutogenic compensatory effect, detrimental clinical and neurophysiological markers, such as depression and lower ME, likely induce slow oscillatory rhythms. Alpha oscillations may indicate a more salutogenic state, often associated with various cognitive functions, such as attention and memory processing. Conclusions: These results show an attempt by the CNS to reorganize and restore function despite the disruption caused by SCI. Indeed, this finding also challenges the notion that low-frequency EEG rhythms are associated with cortical lesions. These results may contribute to the development of rehabilitation strategies and potentially improve the clinical outcomes of patients with SCI. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

20 pages, 2815 KiB  
Article
Attention Network Dysfunctions in Lewy Body Dementia and Alzheimer’s Disease
by Yujing Huang, Ruth Cromarty, Lina Jia, Ying Han, John O’Brien, John-Paul Taylor and Li Su
J. Clin. Med. 2024, 13(22), 6691; https://doi.org/10.3390/jcm13226691 - 7 Nov 2024
Viewed by 1386
Abstract
Background: Attention deficits are notable in Lewy body dementia (LBD) and in Alzheimer’s disease (AD). In this study, we combined functional magnetic resonance imaging (fMRI) and electroencephalograph (EEG) to detect neural correlates of attention dysfunctions in LBD and AD. Methods: We recruited 33 [...] Read more.
Background: Attention deficits are notable in Lewy body dementia (LBD) and in Alzheimer’s disease (AD). In this study, we combined functional magnetic resonance imaging (fMRI) and electroencephalograph (EEG) to detect neural correlates of attention dysfunctions in LBD and AD. Methods: We recruited 33 patients with LBD, 15 patients with AD and 19 elderly healthy controls. The participants performed the modified Attention Network Task (ANT) to investigate the attention dysfunctions. Results: We found that LBD had alerting attention deficits and AD showed apparent orienting attention dysfunctions, while LBD and AD maintained relatively normal executive/conflict attention. Based on source-level EEG analyses, LBD had frontal-central deficits for alerting attention while AD showed inferior frontal and precentral impairments for orienting attention. In addition, the insular and inferior frontal areas were hyper-activated in LBD and AD for executive/conflict attention. Apart from these areas, LBD showed activity in the complementary temporal-central-occipital network for the modified ANT task. Furthermore, the oscillational sources for the ANT effects indicated that the alpha and theta bands were partly impaired in dementia patients. Conclusions: In summary, using source-localised EEG, we found that attention dysfunctions in LBD and AD engaged different neural networks. Full article
(This article belongs to the Special Issue Recent Studies in Brain Imaging for Neurocognitive Disorders)
Show Figures

Figure 1

Back to TopTop