Inflammation in Schizophrenia: The Role of Disordered Oscillatory Mechanisms
Abstract
:1. Introduction
2. Evidence of Altered Inflammatory Responses in Individuals with Schizophrenia
3. The Role of Cytokines in the Aetiology and Development of Schizophrenia
4. How Might Inflammatory Cytokines Affect Brain Function?
5. How Inflammatory Cytokines Affect GABA
6. How Changes to GABA Could Alter Neural Oscillations
7. Links Between Neural Oscillations and Schizophrenia
8. How Disruptions in Oscillatory Activity Could Lead to Disorganisation Symptoms
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MIA | Maternal Immune Activation |
GABA | gamma-aminobutyric acid |
GAD67 | glutamate decarboxylase |
NMDA | N-methyl-D-aspartate |
PV | Pavalbumin |
References
- O’Donnell, K.; Meaney, M.J. Fetal Origins of Mental Health: The Developmental Origins of Health and Disease Hypothesis. Am. J. Psychiatry 2017, 174, 303–399. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The ICD-11 Classification of Mental and Behavioural Disorders-Clinical Description and Diagnostic Guidelines; WHO: Geneva, Switzerland, 2012; Available online: https://icd.who.int/en/ (accessed on 23 April 2025).
- Jauhar, S.; Johnstone, M.; McKenna, P.J. Schizophrenia. Lancet 2022, 399, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Bowie, C.R.; Harvey, P.D. Cognitive Deficits and Functional Outcome in Schizophrenia. Neuropsychiatr. Dis. Treat. 2006, 2, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Green, M.F. Cognitive Impairment and Functional Outcome in Schizophrenia and Bipolar Disorder. J. Clin. Psychiatry 2006, 67 (Suppl. 9), 3–8; discussion 36–42. [Google Scholar] [CrossRef]
- McCutcheon, R.A.; Keefe, R.S.E.; McGuire, P.K. Cognitive Impairment in Schizophrenia: Aetiology, Pathophysiology, and Treatment. Mol. Psychiatry 2023, 28, 1902–1918. [Google Scholar] [CrossRef]
- Connor, T.J.; Leonard, B.E. Depression, Stress and Immunological Activation: The Role of Cytokines in Depressive Disorders. Life Sci. 1998, 62, 583–606. [Google Scholar] [CrossRef]
- Meyer, U.; Feldon, J.; Yee, B.K. A Review of the Fetal Brain Cytokine Imbalance Hypothesis of Schizophrenia. Schizophr. Bull. 2009, 35, 959–972. [Google Scholar] [CrossRef]
- Martínez-Gras, I.; García-Sánchez, F.; Guaza, C.; Rodríguez-Jiménez, R.; Andrés-Esteban, E.; Palomo, T.; Rubio, G.; Borrell, J. Altered Immune Function in Unaffected First-Degree Biological Relatives of Schizophrenia Patients. Psychiatry Res. 2012, 200, 1022–1025. [Google Scholar] [CrossRef]
- Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta-Analysis of Cytokine Alterations in Schizophrenia: Clinical Status and Antipsychotic Effects. Biol. Psychiatry 2011, 70, 663–671. [Google Scholar] [CrossRef]
- Dawidowski, B.; Górniak, A.; Podwalski, P.; Lebiecka, Z.; Misiak, B.; Samochowiec, J. The Role of Cytokines in the Pathogenesis of Schizophrenia. J. Clin. Med. 2021, 10, 3849. [Google Scholar] [CrossRef]
- King, S.; Holleran, L.; Mothersill, D.; Patlola, S.; Rokita, K.; McManus, R.; Kenyon, M.; McDonald, C.; Hallahan, B.; Corvin, A.; et al. Early Life Adversity, Functional Connectivity and Cognitive Performance in Schizophrenia: The Mediating Role of IL-6. Brain Behav. Immun. 2021, 98, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Patlola, S.R.; Donohoe, G.; McKernan, D.P. The Relationship between Inflammatory Biomarkers and Cognitive Dysfunction in Patients with Schizophrenia: A Systematic Review and Meta-Analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2023, 121, 110668. [Google Scholar] [CrossRef] [PubMed]
- Halstead, S.; Siskind, D.; Amft, M.; Wagner, E.; Yakimov, V.; Shih-Jung Liu, Z.; Walder, K.; Warren, N. Alteration Patterns of Peripheral Concentrations of Cytokines and Associated Inflammatory Proteins in Acute and Chronic Stages of Schizophrenia: A Systematic Review and Network Meta-Analysis. Lancet Psychiatry 2023, 10, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Upthegrove, R.; Manzanares-Teson, N.; Barnes, N.M. Cytokine Function in Medication-Naive First Episode Psychosis: A Systematic Review and Meta-Analysis. Schizophr. Res. 2014, 155, 101–108. [Google Scholar] [CrossRef]
- de Bartolomeis, A.; Barone, A.; Vellucci, L.; Benedetta, M.; Austin, M.; Iasevoli, F.; Ciccarelli, M. Linking Inflammation, Aberrant Glutamate-Dopamine Interaction, and Post-Synaptic Changes: Translational Relevance for Schizophrenia and Antipsychotic Treatment: A Systematic Review | Molecular Neurobiology. Mol. Neurobiol. 2022, 59, 6460–6501. [Google Scholar] [CrossRef]
- Momtazmanesh, S.; Zare-Shahabadi, A.; Rezaei, N. Cytokine Alterations in Schizophrenia: An Updated Review. Front. Psychiatry 2019, 10, 892. [Google Scholar] [CrossRef]
- Fatemi, S.H.; Folsom, T.D. The Neurodevelopmental Hypothesis of Schizophrenia, Revisited. Schizophr. Bull. 2009, 35, 528–548. [Google Scholar] [CrossRef]
- Kahn, R.S.; Sommer, I.E.; Murray, R.M.; Meyer-Lindenberg, A.; Weinberger, D.R.; Cannon, T.D.; O’Donovan, M.; Correll, C.U.; Kane, J.M.; van Os, J.; et al. Schizophrenia. Nat. Rev. Dis. Primer 2015, 1, 15067. [Google Scholar] [CrossRef]
- van Os, J.; Kenis, G.; Rutten, B.P.F. The Environment and Schizophrenia. Nature 2010, 468, 203–212. [Google Scholar] [CrossRef]
- Keshavan, M.S.; Anderson, S.; Pettergrew, J.W. Is Schizophrenia Due to Excessive Synaptic Pruning in the Prefrontal Cortex? The Feinberg Hypothesis Revisited. J. Psychiatr. Res. 1994, 28, 239–265. [Google Scholar] [CrossRef]
- Rapoport, J.L.; Giedd, J.N.; Gogtay, N. Neurodevelopmental Model of Schizophrenia: Update 2012. Mol. Psychiatry 2012, 17, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Maynard, T.M.; Sikich, L.; Lieberman, J.A.; LaMantia, A.-S. Neural Development, Cell-Cell Signaling, and the “Two-Hit” Hypothesis of Schizophrenia. Schizophr. Bull. 2001, 27, 457–476. [Google Scholar] [CrossRef]
- Cornblatt, B.A.; Lencz, T.; Smith, C.W.; Correll, C.U.; Auther, A.M.; Nakayama, E. The Schizophrenia Prodrome Revisited: A Neurodevelopmental Perspective. Schizophr. Bull. 2003, 29, 633–651. [Google Scholar] [CrossRef]
- Fusar-Poli, P.; Deste, G.; Smieskova, R.; Barlati, S.; Yung, A.R.; Howes, O.; Stieglitz, R.-D.; Vita, A.; McGuire, P.; Borgwardt, S. Cognitive Functioning in Prodromal Psychosis: A Meta-Analysis. Arch. Gen. Psychiatry 2012, 69, 562–571. [Google Scholar] [CrossRef]
- Merritt, K.; Luque Laguna, P.; Irfan, A.; David, A.S. Longitudinal Structural MRI Findings in Individuals at Genetic and Clinical High Risk for Psychosis: A Systematic Review. Front. Psychiatry 2021, 12, 62041. [Google Scholar] [CrossRef]
- Mednick, S.; Huttunen, M.O.; Machón, R.A. Prenatal Influenza Infections and Adult Schizophrenia. Schizophr. Bull. 1994, 20, 263–267. [Google Scholar] [CrossRef]
- Susser, E.; Neugebauer, R.; Hoek, H.W.; Brown, A.S.; Lin, S.; Labovitz, D.; Gorman, J.M. Schizophrenia After Prenatal Famine: Further Evidence. Arch. Gen. Psychiatry 1996, 53, 25–31. [Google Scholar] [CrossRef]
- Brown, A.S.; Begg, M.D.; Gravenstein, S.; Schaefer, C.A.; Wyatt, R.J.; Bresnahan, M.; Babulas, V.P.; Susser, E.S. Serologic Evidence of Prenatal Influenza in the Etiology of Schizophrenia. Arch. Gen. Psychiatry 2004, 61, 774–780. [Google Scholar] [CrossRef]
- Brown, A.S.; Derkits, E.J. Prenatal Infection and Schizophrenia: A Review of Epidemiologic and Translational Studies. Am. J. Psychiatry 2009, 167, 261–280. [Google Scholar] [CrossRef]
- Brown, A.S.; Meyer, U. Maternal Immune Activation and Neuropsychiatric Illness: A Translational Research Perspective. Am. J. Psychiatry 2018, 175, 1073–1083. [Google Scholar] [CrossRef]
- Selemon, L.D.; Zecevic, N. Schizophrenia: A Tale of Two Critical Periods for Prefrontal Cortical Development. Transl. Psychiatry 2015, 5, e623. [Google Scholar] [CrossRef] [PubMed]
- Cheslack-Postava, K.; Brown, A.S. Prenatal Infection and Schizophrenia: A Decade of Further Progress. Schizophr. Res. 2022, 247, 7–15. [Google Scholar] [CrossRef]
- Gilmore, J.H.; Jarskog, L.F. Exposure to Infection and Brain Development: Cytokines in the Pathogenesis of Schizophrenia. Schizophr. Res. 1997, 24, 365–367. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Someya, T.; Nawa, H. Cytokine Hypothesis of Schizophrenia Pathogenesis: Evidence from Human Studies and Animal Models. Psychiatry Clin. Neurosci. 2010, 64, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Vilotić, A.; Nacka-Aleksić, M.; Pirković, A.; Bojić-Trbojević, Ž.; Dekanski, D.; Jovanović Krivokuća, M. IL-6 and IL-8: An Overview of Their Roles in Healthy and Pathological Pregnancies. Int. J. Mol. Sci. 2022, 23, 14574. [Google Scholar] [CrossRef]
- Zaretsky, M.V.; Alexander, J.M.; Byrd, W.; Bawdon, R.E. Transfer of Inflammatory Cytokines Across the Placenta. Obstet. Gynecol. 2004, 103, 546. [Google Scholar] [CrossRef]
- Bermick, J.; Watson, S.; Lueschow, S.; McElroy, S.J. The Fetal Response to Maternal Inflammation Is Dependent upon Maternal IL-6 in a Murine Model. Cytokine 2023, 167, 156210. [Google Scholar] [CrossRef]
- Bergdolt, L.; Dunaevsky, A. Brain Changes in a Maternal Immune Activation Model of Neurodevelopmental Brain Disorders. Prog. Neurobiol. 2019, 175, 1–19. [Google Scholar] [CrossRef]
- Estes, M.L.; McAllister, A.K. Maternal Immune Activation: Implications for Neuropsychiatric Disorders. Science 2016, 353, 772–777. [Google Scholar] [CrossRef]
- Han, V.X.; Patel, S.; Jones, H.F.; Nielsen, T.C.; Mohammad, S.S.; Hofer, M.J.; Gold, W.; Brilot, F.; Lain, S.J.; Nassar, N.; et al. Maternal Acute and Chronic Inflammation in Pregnancy Is Associated with Common Neurodevelopmental Disorders: A Systematic Review. Transl. Psychiatry 2021, 11, 71. [Google Scholar] [CrossRef]
- Meyer, U. Neurodevelopmental Resilience and Susceptibility to Maternal Immune Activation. Trends Neurosci. 2019, 42, 793–806. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Niijima, M.; Kunisawa, K.; Teshigawara, T.; Kubota, H.; Fujigaki, S.; Fujigaki, H.; Yamamoto, Y.; Kim, H.-C.; Saito, K.; et al. Maternal Immune Activation Induces Neurodevelopmental Impairments of Adult Offspring through Alterations in Tryptophane-Kynurenine Pathway in the Placenta. Biochem. Biophys. Res. Commun. 2024, 737, 150922. [Google Scholar] [CrossRef] [PubMed]
- Matteoli, M.; Pozzi, D.; Fossati, M.; Menna, E. Immune Synaptopathies: How Maternal Immune Activation Impacts Synaptic Function during Development. EMBO J. 2023, 42, e113796. [Google Scholar] [CrossRef] [PubMed]
- Cale, J.A.; Chauhan, E.J.; Cleaver, J.J.; Fusciardi, A.R.; McCann, S.; Waters, H.C.; Žavbi, J.; King, M.V. GABAergic and Inflammatory Changes in the Frontal Cortex Following Neonatal PCP plus Isolation Rearing, as a Dual-Hit Neurodevelopmental Model for Schizophrenia. Mol. Neurobiol. 2024, 61, 6968–6983. [Google Scholar] [CrossRef]
- Chamera, K.; Trojan, E.; Kotarska, K.; Szuster-Głuszczak, M.; Bryniarska, N.; Tylek, K.; Basta-Kaim, A. Role of Polyinosinic:Polycytidylic Acid-Induced Maternal Immune Activation and Subsequent Immune Challenge in the Behaviour and Microglial Cell Trajectory in Adult Offspring: A Study of the Neurodevelopmental Model of Schizophrenia. Int. J. Mol. Sci. 2021, 22, 1558. [Google Scholar] [CrossRef]
- Petanjek, Z.; Judaš, M.; Šimić, G.; Rašin, M.R.; Uylings, H.B.M.; Rakic, P.; Kostović, I. Extraordinary Neoteny of Synaptic Spines in the Human Prefrontal Cortex. Proc. Natl. Acad. Sci. USA 2011, 108, 13281–13286. [Google Scholar] [CrossRef]
- Zecevic, N.; Bourgeois, J.-P.; Rakic, P. Changes in Synaptic Density in Motor Cortex of Rhesus Monkey during Fetal and Postnatal Life. Dev. Brain Res. 1989, 50, 11–32. [Google Scholar] [CrossRef]
- Benes, F.M. Myelination of Cortical-Hippocampal Relays During Late Adolescence. Schizophr. Bull. 1989, 15, 585–593. [Google Scholar] [CrossRef]
- Caballero, A.; Granberg, R.; Tseng, K.Y. Mechanisms Contributing to Prefrontal Cortex Maturation during Adolescence. Neurosci. Biobehav. Rev. 2016, 70, 4–12. [Google Scholar] [CrossRef]
- Gogtay, N.; Giedd, J.N.; Lusk, L.; Hayashi, K.M.; Greenstein, D.; Vaituzis, A.C.; Nugent, T.F.; Herman, D.H.; Clasen, L.S.; Toga, A.W.; et al. Dynamic Mapping of Human Cortical Development during Childhood through Early Adulthood. Proc. Natl. Acad. Sci. USA 2004, 101, 8174–8179. [Google Scholar] [CrossRef]
- Cannon, T.D.; Chung, Y.; He, G.; Sun, D.; Jacobson, A.; van Erp, T.G.M.; McEwen, S.; Addington, J.; Bearden, C.E.; Cadenhead, K.; et al. Progressive Reduction in Cortical Thickness as Psychosis Develops: A Multisite Longitudinal Neuroimaging Study of Youth at Elevated Clinical Risk. Biol. Psychiatry 2015, 77, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Pantelis, C.; Velakoulis, D.; McGorry, P.D.; Wood, S.J.; Suckling, J.; Phillips, L.J.; Yung, A.R.; Bullmore, E.T.; Brewer, W.; Soulsby, B.; et al. Neuroanatomical Abnormalities before and after Onset of Psychosis: A Cross-Sectional and Longitudinal MRI Comparison. Lancet 2003, 361, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Ziermans, T.B.; Schothorst, P.F.; Schnack, H.G.; Koolschijn, P.C.M.P.; Kahn, R.S.; van Engeland, H.; Durston, S. Progressive Structural Brain Changes During Development of Psychosis. Schizophr. Bull. 2012, 38, 519–530. [Google Scholar] [CrossRef]
- van den Bosch, A.M.R.; Hümmert, S.; Steyer, A.; Ruhwedel, T.; Hamann, J.; Smolders, J.; Nave, K.-A.; Stadelmann, C.; Kole, M.H.P.; Möbius, W.; et al. Ultrastructural Axon–Myelin Unit Alterations in Multiple Sclerosis Correlate with Inflammation. Ann. Neurol. 2023, 93, 856–870. [Google Scholar] [CrossRef]
- Geloso, M.C.; D’Ambrosi, N. Microglial Pruning: Relevance for Synaptic Dysfunction in Multiple Sclerosis and Related Experimental Models. Cells 2021, 10, 686. [Google Scholar] [CrossRef]
- Khazaei, S.; Chen, C.C.L.; Andrade, A.F.; Kabir, N.; Azarafshar, P.; Morcos, S.M.; França, J.A.; Lopes, M.; Lund, P.J.; Danieau, G.; et al. Single Substitution in H3.3G34 Alters DNMT3A Recruitment to Cause Progressive Neurodegeneration. Cell 2023, 186, 1162–1178.e20. [Google Scholar] [CrossRef]
- Howes, O.D.; Kapur, S. The Dopamine Hypothesis of Schizophrenia: Version III—The Final Common Pathway. Schizophr. Bull. 2009, 35, 549–562. [Google Scholar] [CrossRef]
- Javitt, D.C.; Schoepp, D.; Kalivas, P.W.; Volkow, N.D.; Zarate, C.; Merchant, K.; Bear, M.F.; Umbricht, D.; Hajos, M.; Potter, W.Z.; et al. Translating Glutamate: From Pathophysiology to Treatment. Sci. Transl. Med. 2011, 3, 102mr2. [Google Scholar] [CrossRef]
- Mordelt, A.; de Witte, L.D. Microglia-Mediated Synaptic Pruning as a Key Deficit in Neurodevelopmental Disorders: Hype or Hope? Curr. Opin. Neurobiol. 2023, 79, 102674. [Google Scholar] [CrossRef]
- Mastenbroek, L.J.M.; Kooistra, S.M.; Eggen, B.J.L.; Prins, J.R. The Role of Microglia in Early Neurodevelopment and the Effects of Maternal Immune Activation. Semin. Immunopathol. 2024, 46, 1. [Google Scholar] [CrossRef]
- Santos, E.N.; Fields, R.D. Regulation of Myelination by Microglia. Sci. Adv. 2021, 7, eabk1131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jing, Y.; Zhang, H.; Bilkey, D.K.; Liu, P. Maternal Immune Activation Altered Microglial Immunoreactivity in the Brain of Postnatal Day 2 Rat Offspring. Synapse 2019, 73, e22072. [Google Scholar] [CrossRef]
- Hayes, L.N.; An, K.; Carloni, E.; Li, F.; Vincent, E.; Trippaers, C.; Paranjpe, M.; Dölen, G.; Goff, L.A.; Ramos, A.; et al. Prenatal Immune Stress Blunts Microglia Reactivity, Impairing Neurocircuitry. Nature 2022, 610, 327–334. [Google Scholar] [CrossRef]
- Park, G.-H.; Noh, H.; Shao, Z.; Ni, P.; Qin, Y.; Liu, D.; Beaudreault, C.P.; Park, J.S.; Abani, C.P.; Park, J.M.; et al. Activated Microglia Cause Metabolic Disruptions in Developmental Cortical Interneurons That Persist in Interneurons from Individuals with Schizophrenia. Nat. Neurosci. 2020, 23, 1352–1364. [Google Scholar] [CrossRef]
- Markram, H.; Toledo-Rodriguez, M.; Wang, Y.; Gupta, A.; Silberberg, G.; Wu, C. Interneurons of the Neocortical Inhibitory System. Nat. Rev. Neurosci. 2004, 5, 793–807. [Google Scholar] [CrossRef]
- Tzilivaki, A.; Tukker, J.J.; Maier, N.; Poirazi, P.; Sammons, R.P.; Schmitz, D. Hippocampal GABAergic Interneurons and Memory. Neuron 2023, 111, 3154–3175. [Google Scholar] [CrossRef]
- Wonders, C.P.; Anderson, S.A. The Origin and Specification of Cortical Interneurons. Nat. Rev. Neurosci. 2006, 7, 687–696. [Google Scholar] [CrossRef]
- McFarlan, A.R.; Chou, C.Y.C.; Watanabe, A.; Cherepacha, N.; Haddad, M.; Owens, H.; Sjöström, P.J. The Plasticitome of Cortical Interneurons. Nat. Rev. Neurosci. 2023, 24, 80–97. [Google Scholar] [CrossRef]
- Allami, P.; Yazdanpanah, N.; Rezaei, N. The Role of Neuroinflammation in PV Interneuron Impairments in Brain Networks; Implications for Cognitive Disorders. Rev. Neurosci. 2025. [Google Scholar] [CrossRef]
- Hijazi, S.; Smit, A.B.; van Kesteren, R.E. Fast-Spiking Parvalbumin-Positive Interneurons in Brain Physiology and Alzheimer’s Disease. Mol. Psychiatry 2023, 28, 4954–4967. [Google Scholar] [CrossRef]
- Birnbaum, R.; Weinberger, D.R. Genetic Insights into the Neurodevelopmental Origins of Schizophrenia. Nat. Rev. Neurosci. 2017, 18, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Arion, D.; Unger, T.; Maldonado-Avilés, J.G.; Morris, H.M.; Volk, D.W.; Mirnics, K.; Lewis, D.A. Alterations in GABA-Related Transcriptome in the Dorsolateral Prefrontal Cortex of Subjects with Schizophrenia. Mol. Psychiatry 2007, 13, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.A.; Hashimoto, T.; Volk, D.W. Cortical Inhibitory Neurons and Schizophrenia. Nat. Rev. Neurosci. 2005, 6, 312–324. [Google Scholar] [CrossRef]
- Lewis, D.A.; Curley, A.A.; Glausier, J.R.; Volk, D.W. Cortical Parvalbumin Interneurons and Cognitive Dysfunction in Schizophrenia. Trends Neurosci. 2012, 35, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, T.; dos Santos Fabris, D.; de Oliveira, C.L.; Guimarães, F.S.; Gomes, F.V. Prefrontal and Hippocampal Parvalbumin Interneurons in Animal Models for Schizophrenia: A Systematic Review and Meta-Analysis. Schizophr. Bull. 2024, 50, 210–223. [Google Scholar] [CrossRef]
- Gonzalez-Burgos, G.; Fish, K.N.; Lewis, D.A. GABA Neuron Alterations, Cortical Circuit Dysfunction and Cognitive Deficits in Schizophrenia. Neural Plast. 2011, 2011, 723184. [Google Scholar] [CrossRef]
- Nakahara, T.; Tsugawa, S.; Noda, Y.; Ueno, F.; Honda, S.; Kinjo, M.; Segawa, H.; Hondo, N.; Mori, Y.; Watanabe, H.; et al. Glutamatergic and GABAergic Metabolite Levels in Schizophrenia-Spectrum Disorders: A Meta-Analysis of 1H-Magnetic Resonance Spectroscopy Studies. Mol. Psychiatry 2022, 27, 744–757. [Google Scholar] [CrossRef]
- Reddy-Thootkur, M.; Kraguljac, N.V.; Lahti, A.C. The Role of Glutamate and GABA in Cognitive Dysfunction in Schizophrenia and Mood Disorders–A Systematic Review of Magnetic Resonance Spectroscopy Studies. Schizophr. Res. 2022, 249, 74–84. [Google Scholar] [CrossRef]
- Jahangir, M.; Zhou, J.-S.; Lang, B.; Wang, X.-P. GABAergic System Dysfunction and Challenges in Schizophrenia Research. Front. Cell Dev. Biol. 2021, 9, 663854. [Google Scholar] [CrossRef]
- Canetta, S.; Bolkan, S.; Padilla-Coreano, N.; Song, L.J.; Sahn, R.; Harrison, N.L.; Gordon, J.A.; Brown, A.; Kellendonk, C. Maternal Immune Activation Leads to Selective Functional Deficits in Offspring Parvalbumin Interneurons. Mol. Psychiatry 2016, 21, 956–968. [Google Scholar] [CrossRef]
- Rezaei, S.; Prévot, T.D.; Vieira, E.; Sibille, E. LPS-Induced Inflammation Reduces GABAergic Interneuron Markers and Brain-Derived Neurotrophic Factor in Mouse Prefrontal Cortex and Hippocampus. Brain Behav. Immun.-Health 2024, 38, 100761. [Google Scholar] [CrossRef] [PubMed]
- Labouesse, M.A.; Dong, E.; Grayson, D.R.; Guidotti, A.; Meyer, U. Maternal Immune Activation Induces GAD1 and GAD2 Promoter Remodeling in the Offspring Prefrontal Cortex. Epigenetics 2015, 10, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Pribiag, H.; Stellwagen, D. TNF-α Downregulates Inhibitory Neurotransmission through Protein Phosphatase 1-Dependent Trafficking of GABAA Receptors. J. Neurosci. 2013, 33, 15879–15893. [Google Scholar] [CrossRef]
- Klosterkötter, J.; Hellmich, M.; Steinmeyer, E.M.; Schultze-Lutter, F. Diagnosing Schizophrenia in the Initial Prodromal Phase. Arch. Gen. Psychiatry 2001, 58, 158–164. [Google Scholar] [CrossRef]
- Pieters, L.E.; Nadesalingam, N.; Walther, S.; van Harten, P.N. A Systematic Review of the Prognostic Value of Motor Abnormalities on Clinical Outcome in Psychosis. Neurosci. Biobehav. Rev. 2022, 132, 691–705. [Google Scholar] [CrossRef]
- Petrescu, C.; Petrescu, D.M.; Marian, G.; Focseneanu, B.E.; Iliuta, F.P.; Ciobanu, C.A.; Papacocea, S.; Ciobanu, A.M. Neurological Soft Signs in Schizophrenia, a Picture of the Knowledge in the Last Decade: A Scoping Review. Healthcare 2023, 11, 1471. [Google Scholar] [CrossRef]
- Vasistha, N.A.; Pardo-Navarro, M.; Gasthaus, J.; Weijers, D.; Müller, M.K.; García-González, D.; Malwade, S.; Korshunova, I.; Pfisterer, U.; von Engelhardt, J.; et al. Maternal Inflammation Has a Profound Effect on Cortical Interneuron Development in a Stage and Subtype-Specific Manner. Mol. Psychiatry 2020, 25, 2313–2329. [Google Scholar] [CrossRef]
- Nakamura, J.P.; Schroeder, A.; Gibbons, A.; Sundram, S.; Hill, R.A. Timing of Maternal Immune Activation and Sex Influence Schizophrenia-Relevant Cognitive Constructs and Neuregulin and GABAergic Pathways. Brain. Behav. Immun. 2022, 100, 70–82. [Google Scholar] [CrossRef]
- Gillespie, B.; Panthi, S.; Sundram, S.; Hill, R.A. The Impact of Maternal Immune Activation on GABAergic Interneuron Development: A Systematic Review of Rodent Studies and Their Translational Implications. Neurosci. Biobehav. Rev. 2024, 156, 105488. [Google Scholar] [CrossRef]
- Rahman, T.; Weickert, C.S.; Harms, L.; Meehan, C.; Schall, U.; Todd, J.; Hodgson, D.M.; Michie, P.T.; Purves-Tyson, T. Effect of Immune Activation during Early Gestation or Late Gestation on Inhibitory Markers in Adult Male Rats. Sci. Rep. 2020, 10, 1982. [Google Scholar] [CrossRef]
- Kann, O.; Papageorgiou, I.E.; Draguhn, A. Highly Energized Inhibitory Interneurons Are a Central Element for Information Processing in Cortical Networks. J. Cereb. Blood Flow Metab. 2014, 34, 1270–1282. [Google Scholar] [CrossRef]
- Behrens, M.M.; Sejnowski, T.J. Does Schizophrenia Arise from Oxidative Dysregulation of Parvalbumin-Interneurons in the Developing Cortex? Neuropharmacology 2009, 57, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Crowley, T.; Cryan, J.F.; Downer, E.J.; O’Leary, O.F. Inhibiting Neuroinflammation: The Role and Therapeutic Potential of GABA in Neuro-Immune Interactions. Brain. Behav. Immun. 2016, 54, 260–277. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.J.; Herzig, K.-H.; Jokelainen, J.; Karhu, T.; Keinänen-Kiukaanniemi, S.; Järvelin, M.-R.; Veijola, J.; Viinamäki, H.; Tanskanen, P.; Jääskeläinen, E.; et al. Inflammation, Hippocampal Volume, and Cognition in Schizophrenia: Results from the Northern Finland Birth Cohort 1966. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 609–622. [Google Scholar] [CrossRef]
- Stellwagen, D.; Malenka, R.C. Synaptic Scaling Mediated by Glial TNF-α. Nature 2006, 440, 1054–1059. [Google Scholar] [CrossRef]
- Cuenod, M.; Steullet, P.; Cabungcal, J.-H.; Dwir, D.; Khadimallah, I.; Klauser, P.; Conus, P.; Do, K.Q. Caught in Vicious Circles: A Perspective on Dynamic Feed-Forward Loops Driving Oxidative Stress in Schizophrenia. Mol. Psychiatry 2022, 27, 1886–1897. [Google Scholar] [CrossRef]
- Coyle, J.T. The GABA-Glutamate Connection in Schizophrenia: Which Is the Proximate Cause? Biochem. Pharmacol. 2004, 68, 1507–1514. [Google Scholar] [CrossRef]
- Jardri, R.; Denève, S. Circular Inferences in Schizophrenia. Brain 2013, 136, 3227–3241. [Google Scholar] [CrossRef]
- Righes Marafiga, J.; Vendramin Pasquetti, M.; Calcagnotto, M.E. GABAergic Interneurons in Epilepsy: More than a Simple Change in Inhibition. Epilepsy Behav. 2021, 121, 106935. [Google Scholar] [CrossRef]
- Purves-Tyson, T.D.; Brown, A.M.; Weissleder, C.; Rothmond, D.A.; Shannon Weickert, C. Reductions in Midbrain GABAergic and Dopamine Neuron Markers Are Linked in Schizophrenia. Mol. Brain 2021, 14, 96. [Google Scholar] [CrossRef]
- Hirano, Y.; Uhlhaas, P.J. Current Findings and Perspectives on Aberrant Neural Oscillations in Schizophrenia. Psychiatry Clin. Neurosci. 2021, 75, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Uhlhaas, P.J.; Singer, W. Abnormal Neural Oscillations and Synchrony in Schizophrenia. Nat. Rev. Neurosci. 2010, 11, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Uhlhaas, P.J.; Singer, W. Oscillations and Neuronal Dynamics in Schizophrenia: The Search for Basic Symptoms and Translational Opportunities. Biol. Psychiatry 2015, 77, 1001–1009. [Google Scholar] [CrossRef]
- Buzsaki, G. Rhythms of the Brain; Oxford University Press: Oxford, UK, 2006; ISBN 978-0-19-804125-2. [Google Scholar]
- Lisman, J.; Buzsaki, G. A Neural Coding Scheme Formed by the Combined Function of Gamma and Theta Oscillations. Schizophr. Bull. 2008, 34, 974–980. [Google Scholar] [CrossRef]
- Singer, W. Neuronal Synchrony: A Versatile Code for the Definition of Relations? Neuron 1999, 24, 49–65. [Google Scholar] [CrossRef]
- Engel, A.K.; Singer, W. Temporal Binding and the Neural Correlates of Sensory Awareness. Trends Cogn. Sci. 2001, 5, 16–25. [Google Scholar] [CrossRef]
- Başar, E.; Başar-Eroglu, C.; Karakaş, S.; Schürmann, M. Gamma, Alpha, Delta, and Theta Oscillations Govern Cognitive Processes. Int. J. Psychophysiol. 2001, 39, 241–248. [Google Scholar] [CrossRef]
- Buzsáki, G.; Geisler, C.; Henze, D.A.; Wang, X.-J. Interneuron Diversity Series: Circuit Complexity and Axon Wiring Economy of Cortical Interneurons. Trends Neurosci. 2004, 27, 186–193. [Google Scholar] [CrossRef]
- Mann, E.O.; Paulsen, O. Role of GABAergic Inhibition in Hippocampal Network Oscillations. Trends Neurosci. 2007, 30, 343–349. [Google Scholar] [CrossRef]
- Belluscio, M.A.; Mizuseki, K.; Schmidt, R.; Kempter, R.; Buzsáki, G. Cross-Frequency Phase-Phase Coupling between θ and γ Oscillations in the Hippocampus. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 423–435. [Google Scholar] [CrossRef]
- Jaramillo, J.; Kempter, R. Phase Precession: A Neural Code Underlying Episodic Memory? Curr. Opin. Neurobiol. 2017, 43, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Hasselmo, M.E.; Bodelón, C.; Wyble, B.P. A Proposed Function for Hippocampal Theta Rhythm: Separate Phases of Encoding and Retrieval Enhance Reversal of Prior Learning. Neural Comput. 2002, 14, 793–817. [Google Scholar] [CrossRef] [PubMed]
- Adaikkan, C.; Joseph, J.; Foustoukos, G.; Wang, J.; Polygalov, D.; Boehringer, R.; Middleton, S.J.; Huang, A.J.Y.; Tsai, L.-H.; McHugh, T.J. Silencing CA1 Pyramidal Cells Output Reveals the Role of Feedback Inhibition in Hippocampal Oscillations. Nat. Commun. 2024, 15, 2190. [Google Scholar] [CrossRef] [PubMed]
- Buzsáki, G. Hippocampal Sharp Wave-Ripple: A Cognitive Biomarker for Episodic Memory and Planning. Hippocampus 2015, 25, 1073–1188. [Google Scholar] [CrossRef]
- Colgin, L.L. Rhythms of the Hippocampal Network. Nat. Rev. Neurosci. 2016, 17, 239–249. [Google Scholar] [CrossRef]
- Onorato, I.; Tzanou, A.; Schneider, M.; Uran, C.; Broggini, A.C.; Vinck, M. Distinct Roles of PV and Sst Interneurons in Visually Induced Gamma Oscillations. Cell Rep. 2025, 44, 115385. [Google Scholar] [CrossRef]
- Pastoll, H.; Solanka, L.; van Rossum, M.C.W.; Nolan, M.F. Feedback Inhibition Enables Theta-Nested Gamma Oscillations and Grid Firing Fields. Neuron 2013, 77, 141–154. [Google Scholar] [CrossRef]
- Herweg, N.A.; Solomon, E.A.; Kahana, M.J. Theta Oscillations in Human Memory. Trends Cogn. Sci. 2020, 24, 208–227. [Google Scholar] [CrossRef]
- Brankačk, J.; Stewart, M.; Fox, S.E. Current Source Density Analysis of the Hippocampal Theta Rhythm: Associated Sustained Potentials and Candidate Synaptic Generators. Brain Res. 1993, 615, 310–327. [Google Scholar] [CrossRef]
- Buzsáki, G. Theta Oscillations in the Hippocampus. Neuron 2002, 33, 325–340. [Google Scholar] [CrossRef]
- Fox, S.E. Membrane Potential and Impedance Changes in Hippocampal Pyramidal Cells during Theta Rhythm. Exp. Brain Res. 1989, 77, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Hangya, B.; Borhegyi, Z.; Szilágyi, N.; Freund, T.F.; Varga, V. GABAergic Neurons of the Medial Septum Lead the Hippocampal Network during Theta Activity. J. Neurosci. 2009, 29, 8094–8102. [Google Scholar] [CrossRef] [PubMed]
- del Pino, I.; García-Frigola, C.; Dehorter, N.; Brotons-Mas, J.R.; Alvarez-Salvado, E.; Martínez de Lagrán, M.; Ciceri, G.; Gabaldón, M.V.; Moratal, D.; Dierssen, M.; et al. Erbb4 Deletion from Fast-Spiking Interneurons Causes Schizophrenia-like Phenotypes. Neuron 2013, 79, 1152–1168. [Google Scholar] [CrossRef] [PubMed]
- Batista-Brito, R.; Majumdar, A.; Nuño, A.; Ward, C.; Barnes, C.; Nikouei, K.; Vinck, M.; Cardin, J.A. Developmental Loss of ErbB4 in PV Interneurons Disrupts State-Dependent Cortical Circuit Dynamics. Mol. Psychiatry 2023, 28, 3133–3143. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, X.; Zhou, Z.; Liu, P.; Yang, J.; Ji, M. Dysfunction of NRG1/ErbB4 Signaling in the Hippocampus Might Mediate Long-Term Memory Decline After Systemic Inflammation. Mol. Neurobiol. 2023, 60, 3210–3226. [Google Scholar] [CrossRef]
- Van Derveer, A.B.; Bastos, G.; Ferrell, A.D.; Gallimore, C.G.; Greene, M.L.; Holmes, J.T.; Kubricka, V.; Ross, J.M.; Hamm, J.P. A Role for Somatostatin-Positive Interneurons in Neuro-Oscillatory and Information Processing Deficits in Schizophrenia. Schizophr. Bull. 2021, 47, 1385–1398. [Google Scholar] [CrossRef]
- Günther, A.; Hanganu-Opatz, I.L. Neuronal Oscillations: Early Biomarkers of Psychiatric Disease? Front. Behav. Neurosci. 2022, 16, 1038981. [Google Scholar] [CrossRef]
- Williams, S.; Boksa, P. Gamma Oscillations and Schizophrenia. J. Psychiatry Neurosci. 2010, 35, 75–77. [Google Scholar] [CrossRef]
- Krishnan, G.P.; Vohs, J.L.; Hetrick, W.P.; Carroll, C.A.; Shekhar, A.; Bockbrader, M.A.; O’Donnell, B.F. Steady State Visual Evoked Potential Abnormalities in Schizophrenia. Clin. Neurophysiol. 2005, 116, 614–624. [Google Scholar] [CrossRef]
- Thuné, H.; Recasens, M.; Uhlhaas, P.J. The 40-Hz Auditory Steady-State Response in Patients With Schizophrenia: A Meta-Analysis. JAMA Psychiatry 2016, 73, 1145–1153. [Google Scholar] [CrossRef]
- Grent-‘t-Jong, T.; Gajwani, R.; Gross, J.; Gumley, A.I.; Krishnadas, R.; Lawrie, S.M.; Schwannauer, M.; Schultze-Lutter, F.; Uhlhaas, P.J. 40-Hz Auditory Steady-State Responses Characterize Circuit Dysfunctions and Predict Clinical Outcomes in Clinical High-Risk for Psychosis Participants: A Magnetoencephalography Study. Biol. Psychiatry 2021, 90, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.M.; Nestor, P.G.; Niznikiewicz, M.A.; Salisbury, D.F.; Shenton, M.E.; McCarley, R.W. Abnormal Neural Synchrony in Schizophrenia. J. Neurosci. 2003, 23, 7407–7411. [Google Scholar] [CrossRef] [PubMed]
- Fryer, S.L.; Roach, B.J.; Wiley, K.; Loewy, R.L.; Ford, J.M.; Mathalon, D.H. Reduced Amplitude of Low-Frequency Brain Oscillations in the Psychosis Risk Syndrome and Early Illness Schizophrenia. Neuropsychopharmacology 2016, 41, 2388–2398. [Google Scholar] [CrossRef]
- Ramyead, A.; Kometer, M.; Studerus, E.; Koranyi, S.; Ittig, S.; Gschwandtner, U.; Fuhr, P.; Riecher-Roessler, A. Aberrant Current Source-Density and Lagged Phase Synchronization of Neural Oscillations as Markers for Emerging Psychosis. Schizophr. Bull. 2015, 41, 919–929. [Google Scholar] [CrossRef]
- Ford, J.M.; Mathalon, D.H.; Whitfield, S.; Faustman, W.O.; Roth, W.T. Reduced Communication between Frontal and Temporal Lobes during Talking in Schizophrenia. Biol. Psychiatry 2002, 51, 485–492. [Google Scholar] [CrossRef]
- Hirvonen, J.; Wibral, M.; Palva, J.M.; Singer, W.; Uhlhaas, P.; Palva, S. Whole-Brain Source-Reconstructed MEG-Data Reveal Reduced Long-Range Synchronization in Chronic Schizophrenia. eNeuro 2017, 4, 1–14. [Google Scholar] [CrossRef]
- Dickerson, D.D.; Wolff, A.R.; Bilkey, D.K. Abnormal Long-Range Neural Synchrony in a Maternal Immune Activation Animal Model of Schizophrenia. J. Neurosci. 2010, 30, 12424–12431. [Google Scholar] [CrossRef]
- Sigurdsson, T.; Stark, K.L.; Karayiorgou, M.; Gogos, J.A.; Gordon, J.A. Impaired Hippocampal–Prefrontal Synchrony in a Genetic Mouse Model of Schizophrenia. Nature 2010, 464, 763–767. [Google Scholar] [CrossRef]
- Dietz, S.M.; Schantell, M.; Spooner, R.K.; Sandal, M.E.; Mansouri, A.; Arif, Y.; Okelberry, H.J.; John, J.A.; Glesinger, R.; May, P.E.; et al. Elevated CRP and TNF-α Levels Are Associated with Blunted Neural Oscillations Serving Fluid Intelligence. Brain. Behav. Immun. 2023, 114, 430–437. [Google Scholar] [CrossRef]
- Mamad, O.; Islam, M.N.; Cunningham, C.; Tsanov, M. Differential Response of Hippocampal and Prefrontal Oscillations to Systemic LPS Application. Brain Res. 2018, 1681, 64–74. [Google Scholar] [CrossRef]
- Hirao, A.; Hojo, Y.; Murakami, G.; Ito, R.; Hashizume, M.; Murakoshi, T.; Uozumi, N. Effects of Systemic Inflammation on the Network Oscillation in the Anterior Cingulate Cortex and Cognitive Behavior. PLoS ONE 2024, 19, e0302470. [Google Scholar] [CrossRef] [PubMed]
- Hardy-Baylé, M.-C.; Sarfati, Y.; Passerieux, C. The Cognitive Basis of Disorganization Symptomatology in Schizophrenia and Its Clinical Correlates: Toward a Pathogenetic Approach to Disorganization. Schizophr. Bull. 2003, 29, 459–471. [Google Scholar] [CrossRef]
- Palaniyappan, L. Dissecting the Neurobiology of Linguistic Disorganisation and Impoverishment in Schizophrenia. Semin. Cell Dev. Biol. 2022, 129, 47–60. [Google Scholar] [CrossRef]
- Ciullo, V.; Spalletta, G.; Caltagirone, C.; Jorge, R.E.; Piras, F. Explicit Time Deficit in Schizophrenia: Systematic Review and Meta-Analysis Indicate It Is Primary and Not Domain Specific. Schizophr. Bull. 2016, 42, 505–518. [Google Scholar] [CrossRef]
- Thoenes, S.; Oberfeld, D. Meta-Analysis of Time Perception and Temporal Processing in Schizophrenia: Differential Effects on Precision and Accuracy. Clin. Psychol. Rev. 2017, 54, 44–64. [Google Scholar] [CrossRef]
- Ciullo, V.; Piras, F.; Vecchio, D.; Banaj, N.; Coull, J.T.; Spalletta, G. Predictive Timing Disturbance Is a Precise Marker of Schizophrenia. Schizophr. Res. Cogn. 2018, 12, 42–49. [Google Scholar] [CrossRef]
- Titone, D.; Ditman, T.; Holzman, P.S.; Eichenbaum, H.; Levy, D.L. Transitive Inference in Schizophrenia: Impairments in Relational Memory Organization. Schizophr. Res. 2004, 68, 235–247. [Google Scholar] [CrossRef]
- Onwuameze, O.E.; Titone, D.; Ho, B.-C. Transitive Inference Deficits in Unaffected Biological Relatives of Schizophrenia Patients. Schizophr. Res. 2016, 175, 64–71. [Google Scholar] [CrossRef]
- Pedersen, A.; Siegmund, A.; Ohrmann, P.; Rist, F.; Rothermundt, M.; Suslow, T.; Arolt, V. Reduced Implicit and Explicit Sequence Learning in First-Episode Schizophrenia. Neuropsychologia 2008, 46, 186–195. [Google Scholar] [CrossRef]
- Siegert, R.J.; Weatherall, M.; Bell, E.M. Is Implicit Sequence Learning Impaired in Schizophrenia? A Meta-Analysis. Brain Cogn. 2008, 67, 351–359. [Google Scholar] [CrossRef]
- Nour, M.M.; Liu, Y.; Arumuham, A.; Kurth-Nelson, Z.; Dolan, R.J. Impaired Neural Replay of Inferred Relationships in Schizophrenia. Cell 2021, 184, 4315–4328.e17. [Google Scholar] [CrossRef]
- Dickinson, D.; Ramsey, M.E.; Gold, J.M. Overlooking the Obvious: A Meta-Analytic Comparison of Digit Symbol Coding Tasks and Other Cognitive Measures in Schizophrenia. Arch. Gen. Psychiatry 2007, 64, 532–542. [Google Scholar] [CrossRef]
- Andreasen, N.C.; Nopoulos, P.; O’Leary, D.S.; Miller, D.D.; Wassink, T.; Flaum, M. Defining the Phenotype of Schizophrenia: Cognitive Dysmetria and Its Neural Mechanisms. Biol. Psychiatry 1999, 46, 908–920. [Google Scholar] [CrossRef]
- Eichenbaum, H. Memory: Organization and Control. Annu. Rev. Psychol. 2017, 68, 19–45. [Google Scholar] [CrossRef]
- Tingley, D.; Buzsáki, G. Transformation of a Spatial Map across the Hippocampal-Lateral Septal Circuit. Neuron 2018, 98, 1229–1242.e5. [Google Scholar] [CrossRef]
- Meck, W.H.; Church, R.M.; Matell, M.S. Hippocampus, Time, and Memory—A Retrospective Analysis. Behav. Neurosci. 2013, 127, 642–654. [Google Scholar] [CrossRef]
- Banker, S.M.; Gu, X.; Schiller, D.; Foss-Feig, J.H. Hippocampal Contributions to Social and Cognitive Deficits in Autism Spectrum Disorder. Trends Neurosci. 2021, 44, 793–807. [Google Scholar] [CrossRef]
- Harrison, P.J. The Hippocampus in Schizophrenia: A Review of the Neuropathological Evidence and Its Pathophysiological Implications. Psychopharmacology 2004, 174, 151–162. [Google Scholar] [CrossRef]
- Hughes, H.K.; Moreno, R.J.; Ashwood, P. Innate Immune Dysfunction and Neuroinflammation in Autism Spectrum Disorder (ASD). Brain. Behav. Immun. 2023, 108, 245–254. [Google Scholar] [CrossRef]
- Knight, S.; McCutcheon, R.; Dwir, D.; Grace, A.A.; O’Daly, O.; McGuire, P.; Modinos, G. Hippocampal Circuit Dysfunction in Psychosis. Transl. Psychiatry 2022, 12, 344. [Google Scholar] [CrossRef]
- Stone, W.S.; Iguchi, L. Do Apparent Overlaps between Schizophrenia and Autistic Spectrum Disorders Reflect Superficial Similarities or Etiological Commonalities? N. Am. J. Med. Sci. 2011, 4, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Krajcovic, B.; Fajnerova, I.; Horacek, J.; Kelemen, E.; Kubik, S.; Svoboda, J.; Stuchlik, A. Neural and Neuronal Discoordination in Schizophrenia: From Ensembles through Networks to Symptoms. Acta Physiol. 2019, 226, e13282. [Google Scholar] [CrossRef] [PubMed]
- Olypher, A.V. Cognitive Disorganization in Hippocampus: A Physiological Model of the Disorganization in Psychosis. J. Neurosci. 2006, 26, 158–168. [Google Scholar] [CrossRef]
- Speers, L.J.; Cheyne, K.R.; Cavani, E.; Hayward, T.; Schmidt, R.; Bilkey, D.K. Hippocampal Sequencing Mechanisms Are Disrupted in a Maternal Immune Activation Model of Schizophrenia Risk. J. Neurosci. Off. J. Soc. Neurosci. 2021, 41, 6954–6965. [Google Scholar] [CrossRef]
- Munn, R.G.K.; Wolff, A.; Speers, L.J.; Bilkey, D.K. Disrupted Hippocampal Synchrony Following Maternal Immune Activation in a Rat Model. Hippocampus 2023, 33, 995–1008. [Google Scholar] [CrossRef]
- Speers, L.J.; Bilkey, D.K. Disorganization of Oscillatory Activity in Animal Models of Schizophrenia. Front. Neural Circuits 2021, 15, 108. [Google Scholar] [CrossRef]
- Dickerson, D.D.; Overeem, K.A.; Wolff, A.R.; Williams, J.M.; Abraham, W.C.; Bilkey, D.K. Association of Aberrant Neural Synchrony and Altered GAD67 Expression Following Exposure to Maternal Immune Activation, a Risk Factor for Schizophrenia. Transl. Psychiatry 2014, 4, e418. [Google Scholar] [CrossRef]
- Lodge, D.J.; Behrens, M.M.; Grace, A.A. A Loss of Parvalbumin-Containing Interneurons Is Associated with Diminished Oscillatory Activity in an Animal Model of Schizophrenia. J. Neurosci. 2009, 29, 2344–2354. [Google Scholar] [CrossRef]
- Lansink, C.S.; Goltstein, P.M.; Lankelma, J.V.; McNaughton, B.L.; Pennartz, C.M. Hippocampus Leads Ventral Striatum in Replay of Place-Reward Information. PLoS Biol. 2009, 7, e1000173. [Google Scholar] [CrossRef]
- Luo, A.H.; Tahsili-Fahadan, P.; Wise, R.A.; Lupica, C.R.; Aston-Jones, G. Linking Context with Reward: A Functional Circuit from Hippocampal CA3 to Ventral Tegmental Area. Science 2011, 333, 353–357. [Google Scholar] [CrossRef]
- Speers, L.J.; Schmidt, R.; Bilkey, D.K. Aberrant Phase Precession of Lateral Septal Cells in a Maternal Immune Activation Model of Schizophrenia Risk May Disrupt the Integration of Location with Reward. J. Neurosci. Off. J. Soc. Neurosci. 2022, 42, 4187–4201. [Google Scholar] [CrossRef]
- Humphries, M.D.; Wood, R.; Gurney, K. Dopamine-Modulated Dynamic Cell Assemblies Generated by the GABAergic Striatal Microcircuit. Neural Netw. 2009, 22, 1174–1188. [Google Scholar] [CrossRef] [PubMed]
- Gascoyne, L.E.; Brookes, M.J.; Rathnaiah, M.; Katshu, M.Z.U.H.; Koelewijn, L.; Williams, G.; Kumar, J.; Walters, J.T.R.; Seedat, Z.A.; Palaniyappan, L.; et al. Motor-Related Oscillatory Activity in Schizophrenia According to Phase of Illness and Clinical Symptom Severity. NeuroImage Clin. 2021, 29, 102524. [Google Scholar] [CrossRef]
- Skaggs, W.E.; McNaughton, B.L.; Wilson, M.A.; Barnes, C.A. Theta Phase Precession in Hippocampal Neuronal Populations and the Compression of Temporal Sequences. Hippocampus 1996, 6, 149–172. [Google Scholar] [CrossRef]
- O’Keefe, J.; Recce, M.L. Phase Relationship between Hippocampal Place Units and the EEG Theta Rhythm. Hippocampus 1993, 3, 317–330. [Google Scholar] [CrossRef]
- Huxter, J.; Burgess, N.; O’Keefe, J. Independent Rate and Temporal Coding in Hippocampal Pyramidal Cells. Nature 2003, 425, 828–832. [Google Scholar] [CrossRef]
- Jensen, O.; Lisman, J.E. Position Reconstruction from an Ensemble of Hippocampal Place Cells: Contribution of Theta Phase Coding. J. Neurophysiol. 2000, 83, 2602–2609. [Google Scholar] [CrossRef]
- Foster, D.J.; Wilson, M.A. Hippocampal Theta Sequences. Hippocampus 2007, 17, 1093–1099. [Google Scholar] [CrossRef]
- Dan, Y.; Poo, M.-M. Spike Timing-Dependent Plasticity of Neural Circuits. Neuron 2004, 44, 23–30. [Google Scholar] [CrossRef]
- Buzsáki, G.; Tingley, D. Space and Time: The Hippocampus as a Sequence Generator. Trends Cogn. Sci. 2018, 22, 853–869. [Google Scholar] [CrossRef]
- Dragoi, G.; Buzsáki, G. Temporal Encoding of Place Sequences by Hippocampal Cell Assemblies. Neuron 2006, 50, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Drieu, C.; Zugaro, M. Hippocampal Sequences During Exploration: Mechanisms and Functions. Front. Cell. Neurosci. 2019, 13, 232. [Google Scholar] [CrossRef]
- Muessig, L.; Lasek, M.; Varsavsky, I.; Cacucci, F.; Wills, T.J. Coordinated Emergence of Hippocampal Replay and Theta Sequences during Post-Natal Development. Curr. Biol. 2019, 29, 834–840.e4. [Google Scholar] [CrossRef]
- Wikenheiser, A.M.; Redish, A.D. Hippocampal Theta Sequences Reflect Current Goals. Nat. Neurosci. 2015, 18, 289–294. [Google Scholar] [CrossRef]
- Gupta, A.S.; van der Meer, M.A.A.; Touretzky, D.S.; Redish, A.D. Segmentation of Spatial Experience by Hippocampal Theta Sequences. Nat. Neurosci. 2012, 15, 1032–1039. [Google Scholar] [CrossRef]
- Johnson, A.; Redish, A.D. Neural Ensembles in CA3 Transiently Encode Paths Forward of the Animal at a Decision Point. J. Neurosci. 2007, 27, 12176–12189. [Google Scholar] [CrossRef]
- Pastalkova, E.; Itskov, V.; Amarasingham, A.; Buzsaki, G. Internally Generated Cell Assembly Sequences in the Rat Hippocampus. Science 2008, 321, 1322–1327. [Google Scholar] [CrossRef]
- Cei, A.; Girardeau, G.; Drieu, C.; Kanbi, K.E.; Zugaro, M. Reversed Theta Sequences of Hippocampal Cell Assemblies during Backward Travel. Nat. Neurosci. 2014, 17, 719–724. [Google Scholar] [CrossRef]
- Lenck-Santini, P.-P.; Fenton, A.A.; Muller, R.U. Discharge Properties of Hippocampal Neurons during Performance of a Jump Avoidance Task. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 6773–6786. [Google Scholar] [CrossRef]
- Shimbo, A.; Izawa, E.-I.; Fujisawa, S. Scalable Representation of Time in the Hippocampus. Sci. Adv. 2021, 7, eabd7013. [Google Scholar] [CrossRef]
- Qasim, S.E.; Fried, I.; Jacobs, J. Phase Precession in the Human Hippocampus and Entorhinal Cortex. Cell 2021, 184, 3242–3255.e10. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Yebra, M.; Schjetnan, A.G.P.; Patel, K.; Katz, C.N.; Kyzar, M.; Mosher, C.P.; Kalia, S.K.; Chung, J.M.; Reed, C.M.; et al. Theta Phase Precession Supports Memory Formation and Retrieval of Naturalistic Experience in Humans. Nat. Hum. Behav. 2024, 8, 2423–2436. [Google Scholar] [CrossRef] [PubMed]
- Bilkey, D.K.; Jensen, C. Neural Markers of Event Boundaries. Top. Cogn. Sci. 2019, 13, 28–141. [Google Scholar] [CrossRef] [PubMed]
- Kurby, C.A.; Zacks, J.M. Segmentation in the Perception and Memory of Events. Trends Cogn. Sci. 2008, 12, 72–79. [Google Scholar] [CrossRef]
- Kaplan, R.; Schuck, N.W.; Doeller, C.F. The Role of Mental Maps in Decision-Making. Trends Neurosci. 2017, 40, 256–259. [Google Scholar] [CrossRef]
- Sloin, H.E.; Spivak, L.; Levi, A.; Gattegno, R.; Someck, S.; Stark, E. Local Activation of CA1 Pyramidal Cells Induces Theta-Phase Precession. Science 2024, 383, 551–558. [Google Scholar] [CrossRef]
- Royer, S.; Zemelman, B.V.; Losonczy, A.; Kim, J.; Chance, F.; Magee, J.C.; Buzsáki, G. Control of Timing, Rate and Bursts of Hippocampal Place Cells by Dendritic and Somatic Inhibition. Nat. Neurosci. 2012, 15, 769–775. [Google Scholar] [CrossRef]
- Ducharme, G.; Lowe, G.C.; Goutagny, R.; Williams, S. Early Alterations in Hippocampal Circuitry and Theta Rhythm Generation in a Mouse Model of Prenatal Infection: Implications for Schizophrenia. PLoS ONE 2012, 7, e29754. [Google Scholar] [CrossRef]
- Terada, S.; Sakurai, Y.; Nakahara, H.; Fujisawa, S. Temporal and Rate Coding for Discrete Event Sequences in the Hippocampus. Neuron 2017, 94, 1248–1262.e4. [Google Scholar] [CrossRef]
- Takahashi, M.; Nishida, H.; Redish, A.D.; Lauwereyns, J. Theta Phase Shift in Spike Timing and Modulation of Gamma Oscillation: A Dynamic Code for Spatial Alternation during Fixation in Rat Hippocampal Area CA1. J. Neurophysiol. 2014, 111, 1601–1614. [Google Scholar] [CrossRef]
- Wang, Y.; Romani, S.; Lustig, B.; Leonardo, A.; Pastalkova, E. Theta Sequences Are Essential for Internally Generated Hippocampal Firing Fields. Nat. Neurosci. 2015, 18, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Radvansky, G.A.; Zacks, J.M. Event Boundaries in Memory and Cognition. Curr. Opin. Behav. Sci. 2017, 17, 133–140. [Google Scholar] [CrossRef]
- Zalla, T.; Verlut, I.; Franck, N.; Puzenat, D.; Sirigu, A. Perception of Dynamic Action in Patients with Schizophrenia. Psychiatry Res. 2004, 128, 39–51. [Google Scholar] [CrossRef]
- Coffman, B.A.; Haigh, S.M.; Murphy, T.K.; Salisbury, D.F. Event-Related Potentials Demonstrate Deficits in Acoustic Segmentation in Schizophrenia. Schizophr. Res. 2016, 173, 109–115. [Google Scholar] [CrossRef]
- O’Keefe, J.; Nadel, L. The Hippocampus as a Cognitive Map; Clarendon Press: New York, NY, USA; Oxford University Press: Oxford, UK, 1978; ISBN 0-19-857206-9. [Google Scholar]
- MacDonald, C.J.; Lepage, K.Q.; Eden, U.T.; Eichenbaum, H. Hippocampal “Time Cells” Bridge the Gap in Memory for Discontiguous Events. Neuron 2011, 71, 737–749. [Google Scholar] [CrossRef]
- Heys, J.G.; Dombeck, D.A. Evidence for a Subcircuit in Medial Entorhinal Cortex Representing Elapsed Time during Immobility. Nat. Neurosci. 2018, 21, 1574–1582. [Google Scholar] [CrossRef]
- Eichenbaum, H. Time Cells in the Hippocampus: A New Dimension for Mapping Memories. Nat. Rev. Neurosci. 2014, 15, 732–744. [Google Scholar] [CrossRef]
- Banquet, J.-P.; Gaussier, P.; Cuperlier, N.; Hok, V.; Save, E.; Poucet, B.; Quoy, M.; Wiener, S.I. Time as the Fourth Dimension in the Hippocampus. Prog. Neurobiol. 2021, 199, 101920. [Google Scholar] [CrossRef]
- Reddy, L.; Zoefel, B.; Possel, J.K.; Peters, J.; Dijksterhuis, D.E.; Poncet, M.; van Straaten, E.C.W.; Baayen, J.C.; Idema, S.; Self, M.W. Human Hippocampal Neurons Track Moments in a Sequence of Events. J. Neurosci. 2021, 41, 6714–6725. [Google Scholar] [CrossRef]
- Carpenter, W.T.; Davis, J.M. Another View of the History of Antipsychotic Drug Discovery and Development. Mol. Psychiatry 2012, 17, 1168–1173. [Google Scholar] [CrossRef]
- Girgis, R.R.; Zoghbi, A.W.; Javitt, D.C.; Lieberman, J.A. The Past and Future of Novel, Non-Dopamine-2 Receptor Therapeutics for Schizophrenia: A Critical and Comprehensive Review. J. Psychiatr. Res. 2018, 108, 57–83. [Google Scholar] [CrossRef] [PubMed]
- Stępnicki, P.; Kondej, M.; Kaczor, A.A. Current Concepts and Treatments of Schizophrenia. Molecules 2018, 23, 2087. [Google Scholar] [CrossRef] [PubMed]
- Belforte, J.E.; Zsiros, V.; Sklar, E.R.; Jiang, Z.; Yu, G.; Li, Y.; Quinlan, E.M.; Nakazawa, K. Postnatal NMDA Receptor Ablation in Corticolimbic Interneurons Confers Schizophrenia-like Phenotypes. Nat. Neurosci. 2010, 13, 76–83. [Google Scholar] [CrossRef]
- Gordon, J.A. Testing the Glutamate Hypothesis of Schizophrenia. Nat. Neurosci. 2010, 13, 2–4. [Google Scholar] [CrossRef]
- Howes, O.D.; Bukala, B.R.; Beck, K. Schizophrenia: From Neurochemistry to Circuits, Symptoms and Treatments. Nat. Rev. Neurol. 2024, 20, 22–35. [Google Scholar] [CrossRef]
- Uliana, D.L.; Lisboa, J.R.F.; Gomes, F.V.; Grace, A.A. The Excitatory-Inhibitory Balance as a Target for the Development of Novel Drugs to Treat Schizophrenia. Biochem. Pharmacol. 2024, 228, 116298. [Google Scholar] [CrossRef]
- Kaar, S.J.; Nottage, J.F.; Angelescu, I.; Marques, T.R.; Howes, O.D. Gamma Oscillations and Potassium Channel Modulation in Schizophrenia: Targeting GABAergic Dysfunction. Clin. EEG Neurosci. 2024, 55, 203–213. [Google Scholar] [CrossRef]
- Ventriglio, A.; Bellomo, A.; Ricci, F.; Magnifico, G.; Rinaldi, A.; Borraccino, L.; Piccininni, C.; Cuoco, F.; Gianfelice, G.; Fornaro, M.; et al. New Pharmacological Targets for the Treatment of Schizophrenia: A Literature Review. Curr. Top. Med. Chem. 2021, 21, 1500–1516. [Google Scholar] [CrossRef]
- Chiou, L.-C.; Sieghart, W. IUPHAR Review: Alpha6-Containing GABAA Receptors–Novel Targets for the Treatment of Schizophrenia. Pharmacol. Res. 2025, 213, 107613. [Google Scholar] [CrossRef]
- Howes, O.D.; Dawkins, E.; Lobo, M.C.; Kaar, S.J.; Beck, K. New Drug Treatments for Schizophrenia: A Review of Approaches to Target Circuit Dysfunction. Biol. Psychiatry 2024, 96, 638–650. [Google Scholar] [CrossRef]
- Singh, S.; Khushu, S.; Kumar, P.; Goyal, S.; Bhatia, T.; Deshpande, S.N. Evidence for Regional Hippocampal Damage in Patients with Schizophrenia. Neuroradiology 2018, 60, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Tamminga, C.A.; Stan, A.D.; Wagner, A.D. The Hippocampal Formation in Schizophrenia. Am. J. Psychiatry 2010, 167, 1178–1193. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, D.R. Cell Biology of the Hippocampal Formation in Schizophrenia. Biol. Psychiatry 1999, 45, 395–402. [Google Scholar] [CrossRef]
- Boyer, P.; Phillips, J.L.; Rousseau, F.L.; Ilivitsky, S. Hippocampal Abnormalities and Memory Deficits: New Evidence of a Strong Pathophysiological Link in Schizophrenia. Brain Res. Rev. 2007, 54, 92–112. [Google Scholar] [CrossRef]
- Tamlyn, D.; McKenna, P.J.; Mortimer, A.M.; Lund, C.E.; Hammond, S.; Baddeley, A.D. Memory Impairment in Schizophrenia: Its Extent, Affiliations and Neuropsychological Character. Psychol. Med. 1992, 22, 101–115. [Google Scholar] [CrossRef]
- Steiner, J.; Brisch, R.; Schiltz, K.; Dobrowolny, H.; Mawrin, C.; Krzyżanowska, M.; Bernstein, H.-G.; Jankowski, Z.; Braun, K.; Schmitt, A.; et al. GABAergic System Impairment in the Hippocampus and Superior Temporal Gyrus of Patients with Paranoid Schizophrenia: A Post-Mortem Study. Schizophr. Res. 2016, 177, 10–17. [Google Scholar] [CrossRef]
- Heckers, S.; Konradi, C. GABAergic Mechanisms of Hippocampal Hyperactivity in Schizophrenia. Schizophr. Res. 2015, 167, 4–11. [Google Scholar] [CrossRef]
- Fujikawa, R.; Yamada, J.; Jinno, S. Subclass Imbalance of Parvalbumin-Expressing GABAergic Neurons in the Hippocampus of a Mouse Ketamine Model for Schizophrenia, with Reference to Perineuronal Nets. Schizophr. Res. 2021, 229, 80–93. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speers, L.J.; Bilkey, D.K. Inflammation in Schizophrenia: The Role of Disordered Oscillatory Mechanisms. Cells 2025, 14, 650. https://doi.org/10.3390/cells14090650
Speers LJ, Bilkey DK. Inflammation in Schizophrenia: The Role of Disordered Oscillatory Mechanisms. Cells. 2025; 14(9):650. https://doi.org/10.3390/cells14090650
Chicago/Turabian StyleSpeers, Lucinda J., and David K. Bilkey. 2025. "Inflammation in Schizophrenia: The Role of Disordered Oscillatory Mechanisms" Cells 14, no. 9: 650. https://doi.org/10.3390/cells14090650
APA StyleSpeers, L. J., & Bilkey, D. K. (2025). Inflammation in Schizophrenia: The Role of Disordered Oscillatory Mechanisms. Cells, 14(9), 650. https://doi.org/10.3390/cells14090650