Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = thermos-electric cooling devices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2873 KiB  
Article
Improving Resistive Heating, Electrical and Thermal Properties of Graphene-Based Poly(Vinylidene Fluoride) Nanocomposites by Controlled 3D Printing
by Rumiana Kotsilkova, Vladimir Georgiev, Mariya Aleksandrova, Todor Batakliev, Evgeni Ivanov, Giovanni Spinelli, Rade Tomov and Tsvetozar Tsanev
Nanomaterials 2024, 14(22), 1840; https://doi.org/10.3390/nano14221840 - 17 Nov 2024
Viewed by 1875
Abstract
This study developed a novel 3D-printable poly(vinylidene fluoride) (PVDF)-based nanocomposite incorporating 6 wt% graphene nanoplatelets (GNPs) with programmable characteristics for resistive heating applications. The results highlighted the significant effect of a controlled printing direction (longitudinal, diagonal, and transverse) on the electrical, thermal, Joule [...] Read more.
This study developed a novel 3D-printable poly(vinylidene fluoride) (PVDF)-based nanocomposite incorporating 6 wt% graphene nanoplatelets (GNPs) with programmable characteristics for resistive heating applications. The results highlighted the significant effect of a controlled printing direction (longitudinal, diagonal, and transverse) on the electrical, thermal, Joule heating, and thermo-resistive properties of the printed structures. The 6 wt% GNP/PVDF nanocomposite exhibited a high electrical conductivity of 112 S·m−1 when printed in a longitudinal direction, which decreased significantly in other directions. The Joule heating tests confirmed the material’s efficiency in resistive heating, with the maximum temperature reaching up to 65 °C under an applied low voltage of 2 V at a raster angle of printing of 0°, while the heating Tmax decreased stepwise with 10 °C at the 45° and the 90° printing directions. The repeatability of the Joule heating performance was verified through multiple heating and cooling cycles, demonstrating consistent maximum temperatures across several tests. The effect of sample thickness, controlled by the number of printed layers, was investigated, and the results underscore the advantages of programmable 3D printing orientation in thin layers for enhanced thermal stability, tailored electrical conductivity, and efficient Joule heating capabilities of 6 wt% GNP/PVDF composites, positioning them as promising candidates for next-generation 3D-printed electronic devices and self-heating applications. Full article
(This article belongs to the Special Issue Hybrid Nano Polymer Composites (2nd Edition))
Show Figures

Figure 1

15 pages, 3379 KiB  
Review
Review of 2 × 2 Silicon Photonic Switches
by Wencheng Yue, Yan Cai and Mingbin Yu
Photonics 2023, 10(5), 564; https://doi.org/10.3390/photonics10050564 - 11 May 2023
Cited by 16 | Viewed by 6439
Abstract
With the advent of 5G, artificial intelligence (AI), Internet of Things (IoT), cloud computing, Internet plus, and so on, data traffic is exploding and higher requirements are put forward for information transmission and switching. Traditional switching requires optical/electrical/optical conversions, which brings additional power [...] Read more.
With the advent of 5G, artificial intelligence (AI), Internet of Things (IoT), cloud computing, Internet plus, and so on, data traffic is exploding and higher requirements are put forward for information transmission and switching. Traditional switching requires optical/electrical/optical conversions, which brings additional power consumption and requires the deployment of large amounts of cooling equipment. This increases the cost and complexity of the system. Moreover, limited by the electronic bottleneck, electrical switching will suffer from many problems such as bandwidth, delay, crosstalk, and so on, with the continuous reduction in device footprint. Optical switching does not require optical/electrical/optical conversions and has lower power consumption, larger capacity, and lower cost. Silicon photonic switches received much attention because of their compatibility with the complementary metal-oxide-semiconductor (CMOS) process and are anticipated to be potential candidates to replace electrical switches in many applications such as data center and telecommunication networks. 2 × 2 silicon photonic switches are the basic components to build the large-scale optical switching matrices. Thus, this review article mainly focuses on the principle and state of the art of 2 × 2 silicon photonic switches, including electro-optic switches, thermo-optic switches, and nonvolatile silicon photonic switches assisted by phase-change materials. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

14 pages, 12535 KiB  
Article
Effect of Electro-Thermo-Mechanical Coupling Stress on Top-Cooled E-Mode AlGaN/GaN HEMT
by Jie Jiang, Qiuqi Chen, Shengdong Hu, Yijun Shi, Zhiyuan He, Yun Huang, Caixin Hui, Yiqiang Chen, Hao Wu and Guoguang Lu
Materials 2023, 16(4), 1484; https://doi.org/10.3390/ma16041484 - 10 Feb 2023
Cited by 4 | Viewed by 2602
Abstract
This work investigated the effects of single stress and electro-thermo-mechanical coupling stress on the electrical properties of top-cooled enhancement mode (E-mode) Aluminium Gallium Nitride/Gallium Nitride (AlGaN/GaN) high electron mobility transistor (HEMT) (GS66508T). Planar pressure, linear deformation, punctate deformation, environmental temperature, electro-thermal coupling, thermo-mechanical [...] Read more.
This work investigated the effects of single stress and electro-thermo-mechanical coupling stress on the electrical properties of top-cooled enhancement mode (E-mode) Aluminium Gallium Nitride/Gallium Nitride (AlGaN/GaN) high electron mobility transistor (HEMT) (GS66508T). Planar pressure, linear deformation, punctate deformation, environmental temperature, electro-thermal coupling, thermo-mechanical coupling, and electro-thermo-mechanical coupling stresses were applied to the device. It was found that different kinds of stress had different influence mechanisms on the device. Namely, excessive mechanical pressure/deformation stress caused serious, irrecoverable degradation of the device’s leakage current, with the gate leakage current (Ig) increasing by ~107 times and the drain-to-source leakage current (Idss) increasing by ~106 times after mechanical punctate deformation of 0.5 mm. The device characteristics were not restored after the mechanical stress was removed. Compared with three mechanical stresses, environmental thermal stress had a greater influence on the device’s transfer characteristic and on-resistance (Ron) but far less influence on Ig and Idss. As was expected, multiple stress coupled to the device promoted invalidation of the device. For more in-depth investigation, finite element simulation carried out with COMSOL was used to analyze the effect of electro-thermo-mechanical coupling stress on top-cooled E-mode AlGaN/GaN HEMT. The results of the experiments and simulation demonstrated that single and coupled stresses, especially mechanical stress coupled with other stresses, degraded the electrical properties or even caused irreversible damage to top-cooled E-mode AlGaN/GaN HEMT. Mechanical stress should be reduced as much as possible in the packaging design, transportation, storage, and application of top-cooled E-mode AlGaN/GaN HEMT. Full article
(This article belongs to the Special Issue Wide and Ultra-Wide Bandgap Semiconductor Materials for Power Devices)
Show Figures

Figure 1

12 pages, 3489 KiB  
Article
Thermodynamic Characterization of a Highly Transparent Microfluidic Chip with Multiple On-Chip Temperature Control Units
by Tianhang Yang, Jinxian Wang, Sining Lv, Songjing Li and Gangyin Luo
Crystals 2022, 12(6), 856; https://doi.org/10.3390/cryst12060856 - 17 Jun 2022
Cited by 51 | Viewed by 2721
Abstract
Indium tin oxide (ITO) is a functional material with great transparency, machinability, electrical conductivity and thermo–sensitivity. Based on its excellent thermoelectric performance, we designed and fabricated a multilayer transparent microfluidic chip with multiple sets of on–chip heating, local temperature measurement and positive on–chip [...] Read more.
Indium tin oxide (ITO) is a functional material with great transparency, machinability, electrical conductivity and thermo–sensitivity. Based on its excellent thermoelectric performance, we designed and fabricated a multilayer transparent microfluidic chip with multiple sets of on–chip heating, local temperature measurement and positive on–chip cooling function units. Temperature control plays a significant role in microfluidic approaches, especially in the devices that are designed for bioengineering, chemical synthesis and disease detection. The transparency of the chip contributes to achieve the real–time observation of fluid flow and optical detection. The chip consists of a temperature control layer made with an etched ITO deposited glass, a PDMS (polydimethylsiloxane) fluid layer, a PDMS cooling and flow control layer. The performances of the ITO on–chip microheaters, ITO on–chip temperature sensors and two coolants were tested and analyzed in different working conditions. The positive on–chip heating and cooling were proved to be area-specific under a large temperature–regulating range. This PDMS–ITO–glass based chip could be applied to both temporal and spatial stable temperature–regulating principles for various purposes. Full article
(This article belongs to the Special Issue Functional Materials and Metamaterials)
Show Figures

Figure 1

10 pages, 3732 KiB  
Article
Poly(N-isopropylacrylamide) Hydrogel for Diving/Surfacing Device
by Jung Gi Choi, Hocheol Gwac, Yongwoo Jang, Christopher Richards, Holly Warren, Geoffrey Spinks and Seon Jeong Kim
Micromachines 2021, 12(2), 210; https://doi.org/10.3390/mi12020210 - 19 Feb 2021
Cited by 13 | Viewed by 3808
Abstract
Underwater robots and vehicles have received great attention due to their potential applications in remote sensing and search and rescue. A challenge for micro aquatic robots is the lack of small motors needed for three-dimensional locomotion in water. Here, we show a simple [...] Read more.
Underwater robots and vehicles have received great attention due to their potential applications in remote sensing and search and rescue. A challenge for micro aquatic robots is the lack of small motors needed for three-dimensional locomotion in water. Here, we show a simple diving and surfacing device fabricated from thermo-sensitive poly(N-isopropylacrylamide) or a poly(N-isopropylacrylamide)-containing hydrogel. The poly(N-isopropylacrylamide)-containing device exhibited fast and reversible diving/surfacing cycles in response to changing temperature. Modulation of the interaction between poly(N-isopropylacrylamide) chains and water molecules at temperatures above or below the lower critical solution temperature regulates the gel density through the swelling and de-swelling. The gel surfaced in water when heated and sank when cooled. We further showed reversible diving/surfacing cycles of the device when exposed to electrical and ultrasonic stimuli. Finally, a small electrically heated gel was incorporated into a miniature submarine and used to control the diving depth. These results suggest that the poly(N-isopropylacrylamide)-containing device has good potential for underwater remote-controlled micro aquatic robots. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

27 pages, 5696 KiB  
Article
Experimental Calibration and Validation of a Simulation Model for Fault Detection of HVAC Systems and Application to a Case Study
by Antonio Rosato, Francesco Guarino, Vincenzo Filomena, Sergio Sibilio and Luigi Maffei
Energies 2020, 13(15), 3948; https://doi.org/10.3390/en13153948 - 1 Aug 2020
Cited by 21 | Viewed by 3800
Abstract
Automated fault detection and diagnostics (FDD) could provide a cornerstone for predictive maintenance of heating, ventilation and air-conditioning (HVAC) systems based on the development of simulation models able to accurately compare the faulty operation with respect to nominal conditions. In this paper, several [...] Read more.
Automated fault detection and diagnostics (FDD) could provide a cornerstone for predictive maintenance of heating, ventilation and air-conditioning (HVAC) systems based on the development of simulation models able to accurately compare the faulty operation with respect to nominal conditions. In this paper, several experiments have been carried out for assessing the performance of the HVAC unit (nominal cooling/heating capacity of 5.0/5.0 kW) controlling the thermo-hygrometric comfort inside a 4.0 × 4.0 × 3.6 m test room at the Department of Architecture and Industrial Design of the University of Campania Luigi Vanvitelli (Italy); then, a detailed dynamic simulation model has been developed and validated by contrasting the predictions with the measured data. The model has also been used to analyze the dynamic variations of key parameters associated to faulty operation in comparison to normal performance, in order to identify simplified rules for detection of any non-optimal states of HVAC devices. Finally, the simulated performance of the HVAC unit has also been investigated while serving a typical Italian building office with and without the occurrence of typical faults with the main aim of assessing the impact of the faults on thermo-hygrometric comfort conditions as well as electric energy consumption. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

16 pages, 2668 KiB  
Article
Surface Modification of Silicon Nanowire Based Field Effect Transistors with Stimuli Responsive Polymer Brushes for Biosensing Applications
by Stephanie Klinghammer, Sebastian Rauch, Sebastian Pregl, Petra Uhlmann, Larysa Baraban and Gianaurelio Cuniberti
Micromachines 2020, 11(3), 274; https://doi.org/10.3390/mi11030274 - 6 Mar 2020
Cited by 19 | Viewed by 4383
Abstract
We demonstrate the functionalization of silicon nanowire based field effect transistors (SiNW FETs) FETs with stimuli-responsive polymer brushes of poly(N-isopropylacrylamide) (PNIPAAM) and poly(acrylic acid) (PAA). Surface functionalization was confirmed by atomic force microscopy, contact angle measurements, and verified electrically using a silicon nanowire [...] Read more.
We demonstrate the functionalization of silicon nanowire based field effect transistors (SiNW FETs) FETs with stimuli-responsive polymer brushes of poly(N-isopropylacrylamide) (PNIPAAM) and poly(acrylic acid) (PAA). Surface functionalization was confirmed by atomic force microscopy, contact angle measurements, and verified electrically using a silicon nanowire based field effect transistor sensor device. For thermo-responsive PNIPAAM, the physicochemical properties (i.e., a reversible phase transition, wettability) were induced by crossing the lower critical solution temperature (LCST) of about 32 °C. Taking advantage of this property, osteosarcomic SaoS-2 cells were cultured on PNIPAAM-modified sensors at temperatures above the LCST, and completely detached by simply cooling. Next, the weak polyelectrolyte PAA, that is sensitive towards alteration of pH and ionic strength, was used to cover the silicon nanowire based device. Here, the increase of pH will cause deprotonation of the present carboxylic (COOH) groups along the chains into negatively charged COO moieties that repel each other and cause swelling of the polymer. Our experimental results suggest that this functionalization enhances the pH sensitivity of the SiNW FETs. Specific receptor (bio-)molecules can be added to the polymer brushes by simple click chemistry so that functionality of the brush layer can be tuned optionally. We demonstrate at the proof-of concept-level that osteosarcomic Saos-2 cells can adhere to PNIPAAM-modified FETs, and cell signals could be recorded electrically. This study presents an applicable route for the modification of highly sensitive, versatile FETs that can be applied for detection of a variety of biological analytes. Full article
(This article belongs to the Special Issue Nanomaterials-Based Biosensors)
Show Figures

Figure 1

21 pages, 6219 KiB  
Article
Numerical Simulation and Validation of Thermoeletric Generator Based Self-Cooling System with Airflow
by Cheng-Xian Lin and Robel Kiflemariam
Energies 2019, 12(21), 4052; https://doi.org/10.3390/en12214052 - 24 Oct 2019
Cited by 4 | Viewed by 3508
Abstract
In this paper, a general numerical methodology is developed and validated for the simulation of steady as well as transient thermal and electrical behaviors of thermoelectric generator (TEG)-based air flow self-cooling systems. The present model provides a comprehensive framework to advance the study [...] Read more.
In this paper, a general numerical methodology is developed and validated for the simulation of steady as well as transient thermal and electrical behaviors of thermoelectric generator (TEG)-based air flow self-cooling systems. The present model provides a comprehensive framework to advance the study of self-cooling applications by combining fluid flow, heat transfer and electric circuit simulations. The methodology is implemented by equation-based coupled modeling capabilities from multidisciplinary fields to capture the dynamic thermos-electric interaction in TEG elements, enabling the simulation of overall heating/cooling/power characteristics as well as spatially distributed thermal and flow fields in the entire device. Experiments have been conducted on two types of self-cooling arrangements to measure the device temperature, voltage and power produced by TEG modules. It was found that the computational model was able to predict the experimental results within 5% error. A parametric study was carried out using the validated model to study the effect of heat sink geometry and TEG arrangements on device temperature and power produced by the device. It was found that the power for self-cooling could be maximized by proper matching of the TEG modules to the fluid mover. Although an increase in fin density results in a rise in fan power consumption, a marked increase in net power and decreases in thermal resistance are observed. Full article
Show Figures

Figure 1

16 pages, 5282 KiB  
Article
Hierarchical Structure of iPP During Injection Molding Process with Fast Mold Temperature Evolution
by Vito Speranza, Sara Liparoti, Roberto Pantani and Giuseppe Titomanlio
Materials 2019, 12(3), 424; https://doi.org/10.3390/ma12030424 - 30 Jan 2019
Cited by 37 | Viewed by 3939 | Correction
Abstract
Mold surface temperature strongly influences the molecular orientation and morphology developed in injection molded samples. In this work, an isotactic polypropylene was injected into a rectangular mold, in which the cavity surface temperature was properly modulated during the process by an electrical heating [...] Read more.
Mold surface temperature strongly influences the molecular orientation and morphology developed in injection molded samples. In this work, an isotactic polypropylene was injected into a rectangular mold, in which the cavity surface temperature was properly modulated during the process by an electrical heating device. The induced thermo-mechanical histories strongly influenced the morphology developed in the injection molded parts. Polarized optical microscope and atomic force microscope were adopted for morphological investigations. The combination of flow field and cooling rate experienced by the polymer determined the hierarchical structure. Under strong flow fields and high temperatures, a tightly packed structure, called shish-kebab, aligned along the flow direction, was observed. Under weak flow fields, the formation of β-phase, as cylindrites form, was observed. The formation of each morphological structure was analyzed and discussed on the bases of the flow and temperature fields, experienced by the polymer during each stage of the injection molding process. Full article
Show Figures

Graphical abstract

50 pages, 8539 KiB  
Review
Metaheuristic Techniques in Enhancing the Efficiency and Performance of Thermo-Electric Cooling Devices
by Pandian Vasant, Utku Kose and Junzo Watada
Energies 2017, 10(11), 1703; https://doi.org/10.3390/en10111703 - 25 Oct 2017
Cited by 35 | Viewed by 6360
Abstract
The objective of this paper is to focus on the technical issues of single-stage thermo-electric coolers (TECs) and two-stage TECs and then apply new methods in optimizing the dimensions of TECs. In detail, some metaheuristics—simulated annealing (SA) and differential evolution (DE)—are applied to [...] Read more.
The objective of this paper is to focus on the technical issues of single-stage thermo-electric coolers (TECs) and two-stage TECs and then apply new methods in optimizing the dimensions of TECs. In detail, some metaheuristics—simulated annealing (SA) and differential evolution (DE)—are applied to search the optimal design parameters of both types of TEC, which yielded cooling rates and coefficients of performance (COPs) individually and simultaneously. The optimization findings obtained by using SA and DE are validated by applying them in some defined test cases taking into consideration non-linear inequality and non-linear equality constraint conditions. The performance of SA and DE are verified after comparing the findings with the ones obtained applying the genetic algorithm (GA) and hybridization technique (HSAGA and HSADE). Mathematical modelling and parameter setting of TEC is combined with SA and DE to find better optimal findings. The work revealed that SA and DE can be applied successfully to solve single-objective and multi-objective TEC optimization problems. In terms of stability, reliability, robustness and computational efficiency, they provide better performance than GA. Multi-objective optimizations considering both objective functions are useful for the designer to find the suitable design parameters of TECs which balance the important roles of cooling rate and COP. Full article
(This article belongs to the Section L: Energy Sources)
Show Figures

Figure 1

30 pages, 4099 KiB  
Article
Advances in Integrated Vehicle Thermal Management and Numerical Simulation
by Yan Wang, Qing Gao, Tianshi Zhang, Guohua Wang, Zhipeng Jiang and Yunxia Li
Energies 2017, 10(10), 1636; https://doi.org/10.3390/en10101636 - 18 Oct 2017
Cited by 62 | Viewed by 22735
Abstract
With the increasing demands for vehicle dynamic performance, economy, safety and comfort, and with ever stricter laws concerning energy conservation and emissions, vehicle power systems are becoming much more complex. To pursue high efficiency and light weight in automobile design, the power system [...] Read more.
With the increasing demands for vehicle dynamic performance, economy, safety and comfort, and with ever stricter laws concerning energy conservation and emissions, vehicle power systems are becoming much more complex. To pursue high efficiency and light weight in automobile design, the power system and its vehicle integrated thermal management (VITM) system have attracted widespread attention as the major components of modern vehicle technology. Regarding the internal combustion engine vehicle (ICEV), its integrated thermal management (ITM) mainly contains internal combustion engine (ICE) cooling, turbo-charged cooling, exhaust gas recirculation (EGR) cooling, lubrication cooling and air conditioning (AC) or heat pump (HP). As for electric vehicles (EVs), the ITM mainly includes battery cooling/preheating, electric machines (EM) cooling and AC or HP. With the rational effective and comprehensive control over the mentioned dynamic devices and thermal components, the modern VITM can realize collaborative optimization of multiple thermodynamic processes from the aspect of system integration. Furthermore, the computer-aided calculation and numerical simulation have been the significant design methods, especially for complex VITM. The 1D programming can correlate multi-thermal components and the 3D simulating can develop structuralized and modularized design. Additionally, co-simulations can virtualize simulation of various thermo-hydraulic behaviors under the vehicle transient operational conditions. This article reviews relevant researching work and current advances in the ever broadening field of modern vehicle thermal management (VTM). Based on the systematic summaries of the design methods and applications of ITM, future tasks and proposals are presented. This article aims to promote innovation of ITM, strengthen the precise control and the performance predictable ability, furthermore, to enhance the level of research and development (R&D). Full article
(This article belongs to the Special Issue Advanced Thermal Simulation of Energy Systems)
Show Figures

Figure 1

22 pages, 749 KiB  
Article
Performance and Stress Analysis of Metal Oxide Films for CMOS-Integrated Gas Sensors
by Lado Filipovic and Siegfried Selberherr
Sensors 2015, 15(4), 7206-7227; https://doi.org/10.3390/s150407206 - 25 Mar 2015
Cited by 48 | Viewed by 9783
Abstract
The integration of gas sensor components into smart phones, tablets and wrist watches will revolutionize the environmental health and safety industry by providing individuals the ability to detect harmful chemicals and pollutants in the environment using always-on hand-held or wearable devices. Metal oxide [...] Read more.
The integration of gas sensor components into smart phones, tablets and wrist watches will revolutionize the environmental health and safety industry by providing individuals the ability to detect harmful chemicals and pollutants in the environment using always-on hand-held or wearable devices. Metal oxide gas sensors rely on changes in their electrical conductance due to the interaction of the oxide with a surrounding gas. These sensors have been extensively studied in the hopes that they will provide full gas sensing functionality with CMOS integrability. The performance of several metal oxide materials, such as tin oxide (SnO2), zinc oxide (ZnO), indium oxide (In2O3) and indium-tin-oxide (ITO), are studied for the detection of various harmful or toxic cases. Due to the need for these films to be heated to temperatures between 250°C and 550°C during operation in order to increase their sensing functionality, a considerable degradation of the film can result. The stress generation during thin film deposition and the thermo-mechanical stress that arises during post-deposition cooling is analyzed through simulations. A tin oxide thin film is deposited using the efficient and economical spray pyrolysis technique, which involves three steps: the atomization of the precursor solution, the transport of the aerosol droplets towards the wafer and the decomposition of the precursor at or near the substrate resulting in film growth. The details of this technique and a simulation methodology are presented. The dependence of the deposition technique on the sensor performance is also discussed. Full article
(This article belongs to the Special Issue Smart Materials for Switchable Sensors)
Show Figures

Back to TopTop