Review of 2 × 2 Silicon Photonic Switches
Abstract
:1. Introduction
2. 2 × 2 Silicon Electro-Optic Switches
2.1. Principle
2.2. State of the Art
3. 2 × 2 Silicon Thermo-Optic Switches
3.1. Principle
3.2. State of the Art
3.3. Multiplexing Schemes
4. 2 × 2 Nonvolatile Silicon Photonic Switches Assisted by PCMs
4.1. PCMs
4.2. State of the Art
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Z. Silicon Photonics, 1st ed.; Peking University: Beijing, China, 2012. [Google Scholar]
- Sun, C.; Wade, M.T.; Lee, Y.; Orcutt, J.S.; Alloatti, L.; Georgas, M.S.; Waterman, A.S.; Shainline, J.M.; Avizienis, R.R.; Lin, S. Single-chip microprocessor that communicates directly using light. Nature 2015, 528, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Paesani, S.; Ding, Y.; Santagati, R.; Skrzypczyk, P.; Salavrakos, A.; Tura, J.; Augusiak, R.; Mancinska, L.; Bacco, D.; et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 2018, 360, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Harris, N.C.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; Larochelle, H.; Englund, D. Deep learning with coherent nanophotonic circuits. Nat. Photonics 2017, 11, 441–446. [Google Scholar] [CrossRef]
- Zhuang, L.; Roeloffzen, C.G.; Hoekman, M.; Boller, K.-J.; Lowery, A.J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2015, 2, 854–859. [Google Scholar] [CrossRef]
- Liu, W.; Li, M.; Guzzon, R.S.; Norberg, E.J.; Parker, J.S.; Lu, M.; Coldren, L.A.; Yao, J. A fully reconfigurable photonic integrated signal processor. Nat. Photonics 2016, 10, 190–195. [Google Scholar] [CrossRef]
- Graydon, O. Birth of the programmable optical chip. Nat. Photonics 2016, 10, 1. [Google Scholar]
- Perez, D.; Gasulla, I.; Crudgington, L.; Thomson, D.J.; Khokhar, A.Z.; Li, K.; Cao, W.; Mashanovich, G.Z.; Capmany, J. Multipurpose silicon photonics signal processor core. Nat. Commun. 2017, 8, 636. [Google Scholar] [CrossRef]
- Rogers, C.; Piggott, A.Y.; Thomson, D.J.; Wiser, R.F.; Opris, I.E.; Fortune, S.A.; Compston, A.J.; Gondarenko, A.; Meng, F.; Chen, X.; et al. A universal 3D imaging sensor on a silicon photonics platform. Nature 2021, 590, 256–261. [Google Scholar] [CrossRef]
- Harris, N.C.; Steinbrecher, G.R.; Prabhu, M.; Lahini, Y.; Mower, J.; Bunandar, D.; Chen, C.; Wong, F.N.C.; Baehr-Jones, T.; Hochberg, M.; et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics 2017, 11, 447–452. [Google Scholar] [CrossRef]
- Arrazola, J.M.; Bergholm, V.; Brádler, K.; Bromley, T.R.; Collins, M.J.; Dhand, I.; Fumagalli, A.; Gerrits, T.; Goussev, A.; Helt, L.G.; et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 2021, 591, 54–60. [Google Scholar] [CrossRef]
- Wu, M.C.; Solgaard, O.; Ford, J.E. Optical MEMS for lightwave communication. J. Lightwave Technol. 2006, 24, 4433–4454. [Google Scholar] [CrossRef]
- Tanaka, S.; Jeong, S.; Yamazaki, S.; Uetake, A.; Tomabechi, S.; Ekawa, M.; Morito, K. Monolithically integrated 8:1 SOA gate switch with large extinction ratio and wide input power dynamic range. IEEE J. Sel. Top. Quantum Electron. 2009, 45, 1155–1162. [Google Scholar] [CrossRef]
- Frisken, S.; Baxter, G.; Abakoumov, D.; Hao, Z.; Clarke, I.; Poole, S. Flexible and grid-less wavelength selective switch using LCOS technology. In Proceedings of the Optical Fiber Communication Conference and Exposition, Los Angeles, CA, USA, 6–10 March 2011; pp. 1–3. [Google Scholar] [CrossRef]
- Asakawa, K.; Sugimoto, Y.; Ikeda, N.; Watanabe, Y.; Ozaki, N.; Takata, Y.; Kitagawa, Y.; Ohkouchi, S.; Nakamura, S.; Watanabe, A.; et al. Photonic crystal all-optical switches. In Optical Switches; Li, B., Chua, S.J., Eds.; Woodhead Publishing: Cambridge, UK, 2010; pp. 241–275. [Google Scholar] [CrossRef]
- Lee, B.G.; Dupuis, N.; Pepeljugoski, P.; Schares, L.; Budd, R.; Bickford, J.R.; Schow, C.L. Silicon photonic switch fabrics in computer communications systems. J. Lightwave Technol. 2015, 33, 768–777. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Zhang, L.; Poon, A.W. Silicon and hybrid silicon photonic devices for intra-datacenter applications: State of the art and perspectives. Photonics Res. 2015, 3, B10–B27. [Google Scholar] [CrossRef]
- Cheng, Q.; Rumley, S.; Bahadori, M.; Bergman, K. Photonic switching in high performance datacenters. Opt. Express 2018, 26, 16022–16043. [Google Scholar] [CrossRef]
- Yao, Z.; Wu, K.; Tan, B.X.; Wang, J.; Li, Y.; Zhang, Y.; Poon, A.W. Integrated silicon photonic microresonators: Emerging technologies. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 5900324. [Google Scholar] [CrossRef]
- Tu, X.; Song, C.; Huang, T.; Chen, Z.; Fu, H. State of the art and perspectives on silicon photonic switches. Micromachines 2019, 10, 51. [Google Scholar] [CrossRef]
- Soref, R.A.; Bennett, B.R. Electrooptical effects in silicon. IEEE J. Quant. Electron. 1987, 23, 123–129. [Google Scholar] [CrossRef]
- Reed, G.T.; Mashanovich, G.; Gardes, F.Y.; Thomson, D.J. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526. [Google Scholar] [CrossRef]
- Lorenzo, J.P.; Soref, R.A. 1.3 μm electro-optic silicon switch. Appl. Phys. Lett. 1987, 51, 6–8. [Google Scholar] [CrossRef]
- Soref, R.A.; Lorenzo, J.P. All-silicon active and passive guided-wave components for λ = 1.3 and λ = 1.6 μm. IEEE J. Quantum Electron. 1986, 22, 873–879. [Google Scholar] [CrossRef]
- Lee, B.G.; Green, W.; Campenhout, J.V.; Schow, C.L. Comparison of ring resonator and Mach-Zehnder photonic switches integrated with digital CMOS drivers. In Proceedings of the 23rd Annual Meeting of the IEEE Photonics Society, Denver, CO, USA, 7–11 November 2010; pp. 327–328. [Google Scholar]
- Wang, W.; Zhao, Y.; Zhou, H.; Hu, T.; Yang, J.; Wang, M.; Jiang, X. Mach-Zehnder based 2 × 2 electro-optical switches on silicon-on-insulator with low crosstalk. In Proceedings of the 9th International Conference on Group IV Photonics, San Diego, CA, USA, 29–31 August 2012; pp. 300–302. [Google Scholar] [CrossRef]
- Xing, J.; Li, Z.; Yu, Y.; Yu, J. Low cross-talk 2 × 2 silicon electro-optic switch matrix with a double-gate configuration. Opt. Lett. 2013, 38, 4774–4776. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.; Liao, S.; Liang, H.; Shafiiha, R.; Feng, D.Z.; Li, G.L.; Zheng, X.Z.; Krishnamoorthy, A.V.; Asghari, M. Submilliwatt, ultrafast and broadband electro-optic silicon switches. Opt. Express 2010, 18, 252251–252257. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhou, L.; Li, X.; Chen, J. Low-power 2 × 2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers. Opt. Lett. 2014, 39, 1633–1636. [Google Scholar] [CrossRef]
- Dupuis, N.; Lee, B.G.; Rylyakov, A.V.; Kuchta, D.M.; Baks, C.W.; Orcutt, J.S.; Gill, D.M.; Green, W.M.J.; Schow, C.L. Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 Mach-Zehnder silicon photonic switches. J. Lightwave Technol. 2015, 33, 3597–3606. [Google Scholar] [CrossRef]
- Xing, J.; Li, Z.; Zhou, P.; Gong, Y.; Yu, Y.; Tan, M.; Yu, J. Compact silicon-on-insulator-based 2 × 2 Mach–Zehnder interferometer electro-optic switch with low crosstalk. Chin. Opt. Lett. 2015, 13, 061301. [Google Scholar] [CrossRef]
- Dupuis, N.; Rylyakov, A.V.; Schow, C.L.; Kuchta, D.M.; Baks, C.W.; Orcutt, J.S.; Gill, D.M.; Green, W.M.J.; Lee, B.G. Ultralow crosstalk nanosecond-scale nested 2 × 2 Mach-Zehnder silicon photonic switch. Opt. Lett. 2016, 41, 3002–3005. [Google Scholar] [CrossRef]
- Dehghani, F.; Abdollahi, M.; Mohammadi, S.; Barekatain, B. HDMS: High-performance dual-shaped microring-resonator-based optical switch. Opt. Eng. 2022, 61, 035105. [Google Scholar] [CrossRef]
- Sun, C.; Wei, M.; Tang, B.; Ma, H.; Zhang, P.; Luo, Y.; Jian, J.; Li, L.; Lin, H. High-performance silicon pin diode switches in the 2-μm wave band. Opt. Lett. 2022, 47, 2758–2761. [Google Scholar] [CrossRef]
- Campenhout, J.V.; Green, W.M.J.; Assefa, S.; Vlasov, Y.A. Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Opt. Express 2009, 17, 24020–24029. [Google Scholar] [CrossRef]
- Calò, G.; D’Orazio, A.; Petruzzelli, V. Broadband Mach-Zehnder switch for photonic networks on chip. J. Lightwave Technol. 2012, 30, 944–952. [Google Scholar] [CrossRef]
- Cocorullo, G.; Della Corte, F.G.; Rendina, I. Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm. Appl. Phys. Lett. 1999, 74, 3338–3340. [Google Scholar] [CrossRef]
- Dai, D.; Shan, H.; Song, L.; Wang, S. Reconfigurable silicon photonics: Devices and circuits. In Proceedings of the SPIE Optics + Optoelectronics Conference, Integrated Optics: Physics and Simulations III, Prague, Czech Republic, 17 May 2017. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Xiao, X.; Li, Z.; Yu, Y.; Yu, J. Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction. Opt. Lett. 2014, 39, 751–753. [Google Scholar] [CrossRef] [PubMed]
- Watts, M.R.; Sun, J.; DeRose, C.; Trotter, D.C.; Young, R.W.; Nielson, G.N. Adiabatic thermo-optic Mach-Zehnder switch. Opt. Lett. 2013, 38, 733–735. [Google Scholar] [CrossRef]
- Yu, L.; He, S.; Zheng, J.; Dai, D. Graphene-based transparent nano-heater for thermally-tuning silicon nanophotonic integrated devices. In Proceedings of the Progress in Electromagnetics Research Symposium, Guangzhou, China, 25–28 August 2014; pp. 1735–1738. [Google Scholar]
- Yan, S.; Zhu, X.; Frandsen, L.H.; Xiao, S.; Asger Mortensen, N.; Dong, J.; Ding, Y. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal Waveguides. Nat. Commun. 2017, 8, 14411. [Google Scholar] [CrossRef]
- Fang, Q.; Song, J.; Liow, T.Y.; Cai, H.; Yu, M.; Lo, G.; Kwong, D.L. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photonics Technol. Lett. 2011, 23, 525–527. [Google Scholar] [CrossRef]
- He, G.; Ji, L.; Gao, Y.; Liu, R.; Sun, X.; Yi, Y.; Wang, X.; Chen, C.; Wang, F.; Zhang, D. Low power 1 × 4 polymer/SiO2 hybrid waveguide thermo-optic switch. Opt. Commun. 2017, 402, 422–429. [Google Scholar] [CrossRef]
- Chen, K.; Duan, F.; Yu, Y. Performance-enhanced silicon thermo-optic Mach-Zehnder switch using laterally supported suspended phase arms and efficient electrodes. Opt. Lett. 2019, 44, 951–954. [Google Scholar] [CrossRef]
- Duan, F.; Chen, K.; Chen, D.; Yu, Y. Low-power and high-speed 2 × 2 thermo-optic MMI-MZI switch with suspended phase arms and heater-on-slab structure. Opt. Lett. 2020, 46, 234–237. [Google Scholar] [CrossRef]
- Jacques, M.; Samani, A.; El-Fiky, E.; Patel, D.; Xing, Z.; Plant, D.V. Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Opt. Express 2019, 27, 10456–10471. [Google Scholar] [CrossRef]
- Kita, T.; Mendez-Astudillo, M. Ultrafast silicon MZI optical switch with periodic electrodes and integrated heat sink. J. Lightwave Technol. 2021, 39, 5054–5060. [Google Scholar] [CrossRef]
- Selvaraja, S.K.; Bogaerts, W.; Dumon, P.; Thourhout, D.V.; Baets, R. Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 316–324. [Google Scholar] [CrossRef]
- Espinola, R.L.; Tsai, M.C.; Yardley, J.T.; Osgood, R.M. Fast and low-power thermooptic switch on thin silicon-on-insulator. IEEE Photon. Technol. Lett. 2003, 15, 1366–1368. [Google Scholar] [CrossRef]
- Song, L.; Li, H.; Dai, D. Mach-Zehnder silicon-photonic switch with low random phase errors. Opt. Lett. 2021, 46, 78–81. [Google Scholar] [CrossRef]
- Winzer, P.J.; Neilson, D.T.; Chraplyvy, A.R. Fiber-optic transmission and networking: The previous 20 and the next 20 years. Opt. Express 2018, 26, 24190–24239. [Google Scholar] [CrossRef]
- Hao, J.; Zhou, T.; Lei, Z.; Ding, J.; Xin, F.; Lin, Y. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip. Opt. Express 2017, 25, 20698–20707. [Google Scholar]
- Zhang, Y.; Zhang, R.; Zhu, Q.; Yuan, Y.; Su, Y. Architecture and devices for silicon photonic switching in wavelength, polarization and mode. J. Lightwave Technol. 2019, 38, 215–225. [Google Scholar] [CrossRef]
- Hang, D.N.T.; Duy, H.T.; Thanh, T.T.T.; Khoi, N.D.H.; Truong, C.D. Compact, highly efficient, and controllable simultaneous 2 × 2 three-mode silicon photonic switch in the continuum band. IEEE Access 2021, 9, 102387–102396. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, D.; Grinberg, Y.; Liboiron-Ladouceur, O. Efficient mode exchanger-based silicon photonic switch enabled by inverse design. Opt. Express 2022, 30, 20543–20553. [Google Scholar] [CrossRef]
- De Galarreta, C.R.; Sinev, I.; Alexeev, A.M.; Trofimov, P.; Ladutenko, K.; Carrillo, S.G.-C.; Gemo, E.; Baldycheva, A.; Bertolotti, J.; Wright, C.D. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica 2020, 7, 476–484. [Google Scholar] [CrossRef]
- Youngblood, N.; Rios, C.; Gemo, E.; Feldmann, J.; Cheng, Z.; Baldycheva, A.; Pernice, W.H.P.; Wright, C.D.; Bhaskaran, H. Tunable volatility of Ge2Sb2Te5 in integrated photonics. Adv. Funct. Mater. 2019, 29, 1807571. [Google Scholar] [CrossRef]
- Wang, Y.; Landreman, P.; Schoen, D.; Okabe, K.; Brongersma, M.L. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol. 2021, 16, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Qiang, L.; Du, K.; Lu, C.; Min, Q. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST. Laser Photonics Rev. 2017, 11, 1700091. [Google Scholar] [CrossRef]
- Xu, P.; Zheng, J.; Doylend, J.K.; Majumdar, A. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photonics 2019, 6, 553–557. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Li, J.; Soref, R.; Gu, T.; Hu, J. Broadband nonvolatile photonic switching based on optical phase change materials: Beyond the classical figure-of-merit. Opt. Lett. 2018, 43, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Delaney, M.; Zeimpekis, I.; Lawson, D.; Hewak, D.W.; Muskens, O.L. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 2020, 30, 2002447. [Google Scholar] [CrossRef]
- Shportko, K.; Kremers, S.; Woda, M.; Lencer, D.; Robertson, J.; Wuttig, M. Resonant bonding in crystalline phase-change materials. Nat. Mater. 2008, 7, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Orava, J.; Greer, A.L.; Gholipour, B.; Hewak, D.W.; Smith, C.E. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat. Mater. 2012, 11, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Loke, D.; Lee, T.H.; Wang, W.J.; Shi, L.P.; Zhao, R.; Yeo, Y.C.; Chong, T.C.; Elliott, S.R. Breaking the speed limits of phase-change memory. Science 2012, 336, 1566–1569. [Google Scholar] [CrossRef] [PubMed]
- Raoux, S.; Xiong, F.; Wuttig, M.; Pop, E. Phase change materials and phase change memory. MRS Bull. 2014, 39, 703–710. [Google Scholar] [CrossRef]
- Raoux, S.; Burr, G.W.; Breitwisch, M.J.; Rettner, C.T.; Lam, C.H. Phase-change random access memory: A scalable technology. IBM J. Res. Dev. 2008, 52, 465–479. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, M.; Xie, Y.; Shi, Y.; Kumar, R.; Panepucci, R.R.; Dai, D. Wavelength-selective 2 × 2 optical switch based on a Ge2Sb2Te5-assisted microring. Photonics Res. 2020, 8, 1171–1176. [Google Scholar] [CrossRef]
- Chen, R.; Fang, Z.; Fröch, J.E.; Xu, P.; Zheng, J.; Majumdar, A. Broadband nonvolatile eectrically controlled programmable units in silicon photonics. ACS Photon. 2022, 9, 2142–2150. [Google Scholar] [CrossRef]
- Jiang, W. Reconfigurable mode (de) multiplexer via 3D triple-waveguide directional coupler with optical phase change material. J. Lightwave Technol. 2018, 37, 1000–1007. [Google Scholar] [CrossRef]
- De Leonardis, F.; Soref, R.; Passaro, V.M.N.; Zhang, Y.; Hu, J. Broadband electro-optical crossbar switches using low-loss Ge2Sb2Se4Te1 Phase Change Material. J. Lightwave Technol. 2019, 37, 3183–3191. [Google Scholar] [CrossRef]
- Ríos, C.; Du, Q.; Zhang, Y.; Popescu, C.-C.; Shalaginov, M.Y.; Miller, P.; Roberts, C.; Kang, M.; Richardson, K.A.; Gu, T.; et al. Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials. PhotoniX 2022, 3, 26. [Google Scholar] [CrossRef]
- Yang, X.; Nisar, M.S.; Yuan, W.; Zheng, F.; Lu, L.; Chen, J.; Zhou, L. Phase change material enabled 2 × 2 silicon nonvolatile optical switch. Opt. Lett. 2021, 46, 4224–4227. [Google Scholar] [CrossRef]
Type | Ref. | λ (nm) | Structure | IL (dB) | CT (dB) | Power (mW) | Rise Time | Fall Time | Bandwidth (nm) | Size (μm2) |
---|---|---|---|---|---|---|---|---|---|---|
Electro-optic switches | [27] | 1550 | MZI | 9 | −31 | 40.8 | / | / | 40 | / |
[28] | ~1550 | MZI | 3.2 | <−17 | 0.6 | 6 ns | 6 ns | 60 | 150 × 150 | |
[29] | ~1550 | DR-MZI 1 | <3.4 | <−20 | 0.69 + 2.31 | 0.41 ns | 0.41 ns | 0.48 | / | |
[30] | 1310 | MZI | ~1 | −23 | 1 | 4 ns | 4 ns | 45 | / | |
[31] | ~1550 | MZI | 3 | −20 | 7.07 | 5.32 ns | 5.41 ns | 20 | / | |
[32] | 1310 | MZI | 2 | −34.5 | 2 | 4 ns | 4 ns | / | / | |
[35] | 1550 | MZI | <2.9 | −17 | 3 | 4 ns | 4 ns | 110 | ||
[36] | 1550 | 3W MZI 2 | 1.1 | −15 | 2.6 | / | / | 115 | / | |
Thermo-optic switches | [45] | ~1550 | MZI | 0.5 | −11.5 | 1.1 | 76 μs | 48 μs | 100 | 240 × 24 |
[46] | ~1550 | MZI | 0.5 | −30 | 1.07 | 10.4 μs | 5.2 μs | 25 | 450 × 30 | |
[48] | 1550 | MZI | 1 | −41.7 | 22.6 | 0.36 μs | 0.5 μs | / | 60 × 30 | |
[51] | 1550 | MZI | 1 | −30 | 30.6 | / | / | >60 | / |
State | / | OS1 1 | OS2 | OS3 | OS4 |
---|---|---|---|---|---|
Cross | Power (mW) | 42.4 | 46.6 | 6.4 | 22.5 |
Voltage (V) | 10.3 | 10.8 | 4.0 | 7.5 | |
Bar | Power (mW) | 16.9 | 18.5 | 32.4 | 48.4 |
Voltage (V) | 6.5 | 6.8 | 9.0 | 11.0 |
Ref. | PCM | Structure | IL (dB) | CT (dB) | Bandwidth (nm) | Coupling Length (μm) | Phase Transition Approach |
---|---|---|---|---|---|---|---|
[61] | GST | 3W DC | cross: 1 bar: 1~2 | cross: <−15 bar: <−10 | 30 | 35 | Rapid thermal annealing (RTA) |
[69] | GST | MRR 1 | through: 0.9 drop: 2 | through: ~−20 drop: ~−18 | 0.35 | 15.72 | / |
[70] | GST | 3W DC | cross: ~2 bar: ~2 | cross: <−8 bar: <−8 | 35 | 64 | PIN heater |
[62] | GSST | 3W DC | cross: 0.013 bar: 0.32 | cross: −37 bar: −32 | / | / | / |
[71] | GSST | 3W DC | For TE | / | 12 | / | |
cross: 0.38 bar: 1.14 | cross: −18.63 bar: −15.14 | ||||||
For TM | / | 8.28 | |||||
cross: 0.12 bar: 1.98 | cross: −16.37 bar: −13.23 | ||||||
[74] | SbS | MZI single-drive | cross: <3 bar: <3 | cross: <−10 bar: <−10 | 10 | 9 | RTA |
MZI push-pull dual-drive | cross: 0.6 bar: 0.6 | cross: <−20 bar: <−20 | / | 3.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, W.; Cai, Y.; Yu, M. Review of 2 × 2 Silicon Photonic Switches. Photonics 2023, 10, 564. https://doi.org/10.3390/photonics10050564
Yue W, Cai Y, Yu M. Review of 2 × 2 Silicon Photonic Switches. Photonics. 2023; 10(5):564. https://doi.org/10.3390/photonics10050564
Chicago/Turabian StyleYue, Wencheng, Yan Cai, and Mingbin Yu. 2023. "Review of 2 × 2 Silicon Photonic Switches" Photonics 10, no. 5: 564. https://doi.org/10.3390/photonics10050564
APA StyleYue, W., Cai, Y., & Yu, M. (2023). Review of 2 × 2 Silicon Photonic Switches. Photonics, 10(5), 564. https://doi.org/10.3390/photonics10050564